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Spectral invariants for coupled spin-oscillators

Vũ Ngo.c San
Université de Rennes 1 et IUF

Séminaire Laurent Schwartz, IHES, 15 février 2011

This text deals with inverse spectral theory in a semiclassical setting.
Given a quantum system, the haunting question is « What interesting quan-
tities can be discovered on the spectrum that can help to characterize the
system ? » The general framework will be semiclassical analysis, and the
issue is to recover the classical dynamics from the quantum spectrum. The
coupling of a spin and an oscillator is a fundamental example in physics
where some nontrivial explicit calculations can be done.

1 Inverse spectral problems

Inverse spectral problems are well known and broadly studied in mathemat-
ics. They have obvious applications in physics, biology, chemistry, etc.

The most famous problem for a mathematician was advertized by Kac [14] :
can one hear the shape of a drum ? It concerns the discrete spectrum of the
Laplacian ∆ on a compact Euclidean domain Ω ∈ Rn, with some boundary
conditions (usually Dirichlet).
Question: determine Ω from the spectrum of ∆. . . up to isometry. The
isometry group is of course very important. It will be crucial in our setting
below.

An old variant of this question concerns the Laplace-Beltrami ∆ on a
compact Riemannian manifold (M,g) :
Question: determine the metric g from the spectrum of ∆.

As is well known, the simple answer to both questions is: no! The rie-
mannian case was settled by Milnor in 1964 [15], who showed that « there
exist two Riemannian flat tori of dimension 16 which are not globally isomet-
ric (though affinely equivalent), and yet whose Laplacian for exterior forms
has the same sequence of eigenvalues. » [MathSciNet]

The case of a compact domain in R2 is a bit more recent. In 1992,
Gordon, Webb and Wolpert [10] exhibited non-isometric polygonal domains
with the same spectrum (Figure 1).
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Figure 1: An example of non-isometric polygonal domains with the same
spectrum, found by Gordon, Webb, Wolpert.

2 More interesting questions. . .

These negative results should not lead us to think that subject is over. It is
far from over, the true question being: . . . what do we really understand ?

To make my point, here is a simple question for which we don’t have any
answer yet:
Open problem: What about when Ω ⊂ R2 is convex ?

In other words, are there two non-isometric convex domains that give the
same spectrum ? The situation is even worse, as the following is still open :
Open problem: What about when Ω ⊂ R2 with ∂Ω analytic ?

The most recent advances on these question are due to works by Zelditch
1995–2009, see [28, 27, 29]. Here is what Steve Zelditch says on his webpage
about the last article :

« Second paper in a series on the inverse spectral problem for
analytic plane domains. In the first paper in the series, I give
rigorous version of the Balian-Bloch trace asymptotics for the
resolvent. It gives a new algorithm for calculating wave invariants
associated to periodic reflecting rays of bounded domains. In
this paper, I calculate the wave invariants for a bouncing ball
orbit (among others), and use them to determine the domain
when the domain is analytic and possesses one symmetry. The
symmetry is assumed to interchange the two endpoints of the
bouncing ball orbit. The calculation uses some new methods
and I have spent a fair amount of effort verifying the different
steps before submitting the article. Any comments would be
much appreciated. »

It is worth noticing that many methods involved are not specific to the
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Laplacian. Normal forms, microlocal analysis... these suggest that one could
do something for more general operators.

3 Semiclassical Schrödinger

The inverse spectral theory for the Schrödinger operator is also an old sub-
ject. Here we assume that the potential V is C∞.
Schrödinger operator on L2(Rn): −~2

2 ∆+ V (x).
An important feature of this equation is the semiclassical parameter ~. Of

course, if V is zero, we recover the Laplacian, but the semiclassical parameter
induces a slight change of viewpoint: we shall focus now only on a spectral
window close to some given energy, but in the asymptotic regime ~ → 0. For
the Laplacian, this amounts to looking only at the high energy spectrum.

Naturally, the inverse question is the following :
Question: Can we recover the potential from the semiclassical spectrum ?

Precisely, this means that we shall need the spectrum not only for a fixed
value of ~, but for a whole sequence of values of ~ that should accumulate
at zero. Hence the phrase “semiclassical spectrum”. It can be misleading to
some people : it is not a “spectrum” computed from classical data, but an
infinite collection of true quantum mechanical spectra.

Again, semiclassical inverse spectral theory is not new, but it is clearly
of renewed interest. Several people are currently very active on related ques-
tions [11], [13], [12], etc.

I would like to mention two recent advances in the particular case of 1D
Schrödinger operators with smooth potential.

Theorem 3.1 (Colin de Verdière – Guillemin [5]) The Taylor expan-
sion of the potential at a generic non-degenerate critical point is determined
by the semiclassical spectrum of the associated Schrödinger operator near the
corresponding critical value.

Theorem 3.2 (Colin de Verdière [3]) Under some genericity assumption,
one can explicitly reconstruct the full potential from the semiclassical spec-
trum.

I will discuss below the genericity condition of the last theorem. It is a
very weak (thus very generic) condition.
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4 More general operators

We can ask the inverse spectral question for even more general operators.
The Laplacian ~2∆ and the Schrödinger operator −~2

2 ∆+V (x) are instances
of semiclassical (pseudo)differential operators.
Goal: develop an inverse spectral theory for general semiclassical operators.

The subject is not completely new. See for instance [13].
What to recover from the spectrum ? We claim that the only natural
classical object that should be recovered from the spectrum is the principal
symbol of the pseudodifferential operator. This is a direct generalization of
the riemannian case, where the principal symbol clearly encodes the metric
g.

However, heuristically, it is not reasonable to try and recover the full
principal symbol : it is a function of 2n variables, whereas « the shape of
the drum », the metric, or the potential only depend on n variables.

In fact, if one works modulo symplectomorphisms then determining the
principal symbol sounds much more realistic. Indeed, the group of symplec-
tomorphisms can be quite large (larger than the group of isometries of the
position space, since any isometry extends to a canonical transformation in
phase space, but there are lots of canonical transformations that do not arise
from isometries).
Remark: From a more concrete point of view, what does it means to know
the principal symbol p only modulo symplectomorphism ? It is clear that if
we view p as a classical hamiltonian, giving rise to a hamiltonian vector field
Xp, then the flow of this vector field is invariant under symplectomorphism.

Thus, the classical dynamics induced by p is the most natural symplectic
invariant of the system. This is what we want to recover from the spectrum.
With this in mind, our question now becomes : what tractable quantities can
be discovered on the spectrum that more or less characterize the dynamics ?

5 Inverse result for Morse functions in 1D

I would like to explain here a recent result of mine [22] which gives a fairly
complete answer in the case of 1D Morse hamiltonians. The setting is as
follows.

• P = P (~) is a selfadjoint pseudodifferential operator in Ψ0(m) with
principal symbol p, elliptic at infinity.

• ~ ∈ J where J ⊂ [0, 1] is an infinite subset with zero as an accumula-
tion point.
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• There exists a neighbourhood J of I such that p−1(J) is compact in
M .

Recall that in the semiclassical theory, the ellipticity at infinity means
that |p(x, ξ)| > 1

C (|x|
2 + |ξ|2)m/2 for |x|2 + |ξ|2 > C.

The following is well known.

Proposition 5.1 Under these hypothesis, for any open interval I ⊂ J there
exists ~0 > 0 such that the spectrum of P in I is discrete for ~ 6 ~0.

We concentrate on the spectrum that lies inside the interval I. Thus, our
phase space is now M = p−1(I).

Theorem 5.2 ([22]) Suppose that p↾M is a Morse function. Assume that
the graphs of the periods of all trajectories of the hamiltonian flow defined by
p↾M , as functions of the energy, intersect generically.

Then the knowledge of the spectrum Σ(P,J , I) + O(~2) determines the
dynamics of the hamiltonian system p↾M .

More precisely, the generic assumption, similar to the one used in [3],
is that any two smooth lagrangian (=curves) in (E, τ) space, where τ is a
period of the hamiltonian flow of p at energy p = E, should have a non-
flat intersection : the contact should have a finite order. It is a very weak
condition, but it does rule out, for instance, systems with symmetry (like the
symmetric double well potential). For these systems, one could certainly do
a similar analysis in the restricted class of symmetric hamiltonians. On the
other hand, detecting the symmetry from the spectrum would require other
ideas, and might be very interesting.

I find the proof of this result very entertaining. It includes singularity
theory, topology, symplectic invariants..., and uses microlocal analysis in
phase space and in “time-energy” space. As always in these inverse results,
there are two steps : a quantum step and a classical step. The quantum step
extracts some numerical invariants from the spectrum; the classical step
should prove that these numerical invariants are enough to symplectically
discriminate. Here the final ingredient (classical step) is provided by a purely
symplectic classification theorem due to Dufour-Molino-Toulet [7].

6 Classical and quantum integrable systems

Of course, one would like to explore higher dimensions. Several directions
of study could be natural. I believe that similar methods should be usable
under some hypothesis of complete integrability. Let me explain this briefly.

Exp. no VII— Spectral invariants for coupled spin-oscillators
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Let M be a symplectic manifold of dimension 2n. A classical (or Li-
ouville) integrable system is the data of n functions p1, . . . , pn on M which
Poisson-commute : {pi, pj} = 0, and whose differential are almost every-
where independent.

Let H~ be a Hilbert space quantizing M . A quantum integrable system
is the data of n self-adjoint semiclassical operators P1, . . . , Pn acting on H~
which commute : [Pi, Pj ] = 0, and whose principal symbols p1, . . . , pn form
a Liouville integrable system on M .

The statement above does not mention then quantization scheme explic-
itly; indeed, it is natural to expect that the methods should apply not only
to pseudodifferential operators, but also to semiclassical Toeplitz operators
on compact phase spaces [2].

7 Inverse spectral theory for integrable systems

Since we have a set of commuting operators, instead of a single spectrum one
considers the joint spectrum of P1, . . . , Pn (which we assume to be discrete.)

Jspec(P1, . . . , Pn) = {(λ1, . . . , λn) ∈ Rn, ∩j ker(Pj − λj) 6= 0}.

Naturally, the classical analogue of the joint spectrum is the image of the
“joint classical energy map” — usually called “momentum map” or “energy-
momentum map”, which is the map F := (p1, . . . , pn) : M → Rn. It is
customary, in this setting, to simply call F “the integrable system”. Thus,
our inverse spectral question can be phrased as follows :
Question: Does the joint spectrum determine the Liouville integrable sys-
tem p1, . . . , pn ? (up to symplectic equivalence, of course).

There is no general answer for the moment, as work is in progress, and the
problem is vast. With Pelayo, we wrote an attempt to set up a whole research
programme in this direction in [16]. In the present text, it is probably wiser
(and quicker) to start with examples. For the moment, much of the research
has been done in two degrees of freedom, so we will examine three famous
2D examples :

• Harmonic oscillators.

• The quantum spherical pendulum.

• The quantum spin-oscillator coupling.

San Vũ Ngo.c
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8 Harmonic oscillators

Two uncoupled harmonic oscillators form one of the simplest quantum inte-
grable systems. All computations are explicit, and it is already interesting
to have in mind the structure of the joint spectrum, as it serves as a model
for the so-called elliptic-elliptic singularity.

Thus we have two self-adjoint operators acting on L2(R2) :

P1 = −~2

2

∂2

∂x21
+

x21
2
, P2 = −~2

2

∂2

∂x22
+

x22
2
.

We know that Spectrum(Pj) = ~(12 + N). Therefore, the joint spectrum is
as follows (see Figure 2) :

Jspec(P1, P2) = ~
(
(
1

2
,
1

2
) + N2

)
.

E1

E2

Figure 2: Joint spectrum of harmonic oscillators. It extends indefinitely in
the positive quadrant.

From a geometric viewpoint, the key feature of such a simple system is
that the classical symbols p1 = (ξ21 + x21)/2 and p2 = (ξ22 + x22)/2 generate a
hamiltonian 2-torus action on R4. It was proved by Colin de Verdière [4] that
each time you have a completely integrable system whose symbols define a
torus action, then the joint spectrum is very similar to Figure 2 : it is the
intersection of a ~-lattice with a convex cone.

9 Spherical pendulum

The spherical pendulum, an ancient system already studied by Huygens, is
now tightly associated with Hans Duistermaat and Richard Cushman [8, 6],
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who discovered a non-trivial topological invariant (the monodromy) that,
contrary to the case of harmonic oscillators, prevents the system from being a
hamiltonian torus action. I proved in [23] that this invariant can be detected
on the joint spectrum (see Figure 3). The two commuting operators are
acting on L2(S2) :

Ĥ = −~2
2 ∆+ z, Ĵ =

~
i

(
y
∂

∂x
− x

∂

∂y

)
=

~
i

∂

∂θ
.

There is no explicit formula for the spectrum. The spectrum in Figure 3) was
computed by numerical diagonalisation after compression on a sufficiently
large orthonormal basis.

2

20 1

0

1

−1

−1

−2

Figure 3: Joint spectrum of the Spherical pendulum. The peculiar arrange-
ment of eigenvalues around the point (0, 1) is a characterization of quantum
monodromy.

10 Classical Spin-oscillator coupling

Our last example has a strong physics flavour. It is naturally obtained when
one studies the coupling of a quantum spin with a simple harmonic oscillator.
This can be used, for instance, to confine a quantum particle with a finite
number of states within a quantum well. In the physics literature, it is
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called the Jaynes-Cummings model [1]. What follows is a joint work with
Á. Pelayo [18].

It is easier to introduce first the classical version. The phase space is
M = S2

(x,y,z) × R2
(u,v), and the commuting hamiltonians are

J := (u2 + v2)/2 + z, H :=
1

2
(ux+ vy).

Figure 4: The figure on the right shows the bifurcation diagram of the clas-
sical spin–oscillator system.

A straightforward singularity computation gives the following (see for
instance the survey [20] for the definitions) :

Proposition 10.1 ([18]) The singularities of the coupled spin–oscillator
are non-degenerate and of elliptic-elliptic, transversally-elliptic or focus-
focus type (it is a semitoric system). It has exactly one focus-focus singularity
at the “North Pole” ((0, 0, 1), (0, 0)) ∈ S2 ×R2 and one elliptic-elliptic sin-
gularity at the “South Pole” ((0, 0, −1), (0, 0)).

The Quantum sphere (spin) Since the phase space of the spin–oscillator
is not a cotangent bundle, it cannot be quantised by ordinary (pseudo)-
differential operators. However, the sphere S2 has a very simple and natural
semiclassical quantization, which we describe now.

Let L(z1, z2) =
|z1|2+|z2|2

2 . This harmonic oscillator generates a Hamilto-
nian S1-action on C 2 = R4. The level set L−1(2) is a 3-sphere. We use the

Exp. no VII— Spectral invariants for coupled spin-oscillators
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Hopf fibration S3
2 → S2 where S3

2 := L−1(2) ⊂ C 2, given by

x = Re(z1z̄2)/2
y = Im(z1z̄2)/2

z = (|z1|2 − |z2|2)/4.

Then we have S2 = S3
2/S

1. Thus S2 is the so-called Marsden-Weinstein
reduction of C2 by this hamiltonian S1-action. We use the idea of Quan-
tization commutes with reduction : the quantum Hilbert space associated
to S2 should be the eigenspace of L̂ corresponding to the classical energy
L = 2. Precisely, the quantization of R4 is L2(R2), the quantization of L is
L̂ = −~2

2

(
d2

dx2
1
+ d2

dx2
2

)
+

x2
1+x2

2
2 . Thus we define the quantization of S2 to be

H := ker(L̂− 2).
Notice that H is a finite dimensional Hilbert space. If 2 = ~(n+1), then

dim(H) = n+ 1 (otherwise H = {0}).

Quantum spin-oscillator We may quantize the Hopf map in a natural
way (Weyl quantization) by viewing it as a map defined on R4. Then, we
may define the quantization of J and H :

Definition 10.2 The quantization of J is the operator

Ĵ = Id ⊗
(
− ~2

2

∂2

∂u2
+

u2

2

)
+ (ẑ ⊗ Id).

The quantization of H is the operator

Ĥ =
1

2
(x̂⊗ u+ ŷ ⊗ (

~
i

∂

∂u
)),

both acting on the Hilbert space H⊗ L2(R).

With these definitions, the joint spectrum is easy to compute numerically,
since we have an explicit expression for the matrix of the operators Ĵ and Ĥ
in a suitable basis.

Proposition 10.3 For each eigenvalue λ of Ĵ , λ = ~(1−n
2 + ℓ0), ℓ0 ∈ N,

there is a basis of ker Ĵ − λ in which the matrix of Ĥ is

San Vũ Ngo.c

VII–10



(~
2

) 3
2




0 β1 . . . 0
β1 0 β2 0
0 β2 0 β3 0

...
...

. . .
...

...
...
βµ

0 0 . . . βµ 0




,
βk :=

√
(ℓ0 + 1− k)k(n− k + 1).

Spin-Oscillator: the joint spectrum The figure 5 shows the joint spec-
trum of the spin-oscillator model. Although it looks similar to the spherical

Figure 5: The joint spectrum of the spin-oscillator.

pendulum — and indeed, it demonstrates quantum monodromy as well —
it has a distinct feature that makes it easier to study : vertical sections are
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bounded. The vertical direction here, and in fact in all of our three exam-
ples, is special in the sense that the corresponding hamiltonian, J , defines
an S1-action. The quantum manifestation of this fact can be detected : the
joint eigenvalues all lie on regularly spaced vertical lines.

A 2D system with such an S1-action is called semitoric. In [17] and [19],
we have classified these semitoric systems up to symplectic equivalence. A
pioneer study of the joint spectrum of particular examples of such systems
was made by Sadovskii and Zhilinskii [21].

We don’t know yet whether the spectrum of a semitoric system deter-
mines its classical dynamics, but there are a number of facts that support
this conjecture. We mentioned earlier that the monodromy can be detected.
Other quantities can be, too. For instance, one should be able to prove
that the Duistermaat-Heckman measure associated to J = n~ should simply
be the (rescaled) number of eigenvalues in the vertical line x = n~. It is
also tempting to try and recover Maslov indices from the “boundary” of the
spectrum.

In the remaining of this text we want to give numerical evidence that a
dynamical invariant associated to the singularity at (1, 0) can be detected
from the concentration of eigenvalues. This invariant is one of the combina-
torial data that was used in [17] for classifying semitoric systems.

11 Eigenvalue concentration

We start with a numerical exploration related to eigenvalue concentration.
This was done in the spin-oscillator example, but is clearly much more uni-
versal.

Let Σ(n) = {E0 ≤ E1 ≤ . . . ≤ En} be the spectrum of Ĥ|ker(Ĵ−Id). This
is the focus-focus spectrum, in the sense that the corresponding value J = 1
is precisely the image of the focus-focus point.

Let tmin(~) = mink

(
Ek+1−Ek

~

)
be the rescaled lowest eigenvalue spacing,

as a function of ~.

Conjecture 11.1 The following classical limits exist :

B = lim
~→0

(
2π

tmin |ln ~|

)
.

a = lim
~→0

(
2π

Btmin
− |ln ~|

)
.
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Notice that if the second limit exists, this means that B has in fact a two-term
asymptotic expansion. Assuming this, we get a more accurate “accelerated
expression” for B by using two small values of ~ : ~1 and ~2 :

B = lim
~→0

(
2π

tmin |ln ~|

)
=

2π
tmin(~1) −

2π
tmin(~2)

ln(~2/~1)
+O(~1 ln ~1) +O(~2 ln ~2).

This formula is very efficient numerically if we choose a fixed ratio ~1/~2.
We have plotted these quantities in Figures 6 and 7 which suggest B ≃ 2,
a ≃ 4, 7. How can we interpret this ?

Figure 6: Recovering dynamical invariant B. The abscissa is logarithmic :
it is an integer k such that ~ = 1/(2k−1 + 1). Thus the classical limit ~ → 0
is observed for large k. The top curve is the naive computation, the bottom
one is an accelerated formula taking into account an assumed asymptotic
expansion. They show a good convergence to B = 2.

Dynamics on the singular lagrangian manifold Λ0 = {J = 1} ∩ {H =
0}. We claim that these quantities should be related to the dynamics of the
classical system on the singular lagrangian manifold Λ0 = {J = 1}∩{H = 0}.
Apart from being singular, this manifold is in fact easier to study than the
neighboring regular Liouville tori, because it has an explicit parametrization
in terms of simple functions.
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Figure 7: Recovering dynamical invariant a. The abscissa is the same as in
Figure 6. We find from this plot a ≃ 4, 7.

We work in polar coordinates: u + iv = reit and x + iy = ρeiθ. For
ǫ = ±1, we consider the mapping Sǫ : [−1, 1]× R/2πZ → R2 × S2 given by
(here p = (z̃, θ̃) ∈ [−1, 1] × [0, 2π)):





r(p) =
√
2(1 − z̃)

t(p) = θ̃ + ǫπ2
ρ(p) =

√
1− z̃2

θ(p) = θ̃

z(p) = z̃.

Proposition 11.2 The map Sǫ, where ǫ = ±1, is continuous and Sǫ re-
stricted to (−1, 1) × R/2πZ is a diffeomorphism onto its image. If we let
Λǫ
0 := Sǫ([−1, 1]× R/2πZ), then Λ1

0 ∪ Λ2
0 = Λ0 and

Λ1
0 ∩ Λ2

0 =
(
{(0, 0)} × {(1, 0, 0)}

)
∪
(
C2 × {(0, 0, −1)}

)
,

where C2 denotes the circle of radius 2 centered at (0, 0) in R2. Moreover, Sǫ

restricted to (−1, 1)×R/2πZ is a smooth Lagrangian embedding into R2×S2.
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From this proposition we recover in particular the general fact that Λ0

is homeomorphic to the embedding of a sphere with a double point, or,
equivalently, a “pinched torus” (see Figure 8).

The Taylor series. The general theory of focus-focus singular fibers [25]
tells us that the dynamics intrinsically defines a Taylor series in two variables,
as described in the following picture (Figure 8). This is a dynamical invariant

m

Λ0

S1(A)

Λc

XH1

A

XH2

Figure 8: Definition of the Taylor series

associated to a focus-focus singular fiber Λ0. (Here Λ0 = {J = 1}∩{H = 0}),
defined as follows.

1. Normalize F = (J,H) near Λ0: replace F by (H1,H2) = g◦F such that
near Λ0, (H1,H2) = (q1, q2), with q1 = x1ξ2−x2ξ1, q2 = x1ξ1+x2ξ2, in
some local symplectic coordinates near the singular point m (Eliasson’s
theorem [26].)

2. Notice that the flow of XH2 is periodic. Let A ∈ Λc := (H1,H2)
−1(c)

for some regular value c 6= 0 ∈ R2. We flow along the vector field XH2

until we reach the XH2-orbit of A again. Then we flow along the vector
field XH2 to go back to A.

3. Let γc be the corresponding path ( blue + red in the picture) and
let τ1(c) + τ2(c) be the corresponding flow times for XH1 and XH2 ,
respectively.
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Then the functions

{
σ1(c) := τ1(c)− Im(ln c)

σ2(c) := τ2(c) + Re(ln c).
are smooth (!) and

there exists a smooth function S(c1, c2) such that dS = σ1dc1 + σ2dc2.

Theorem 11.3 ([25]) The Taylor series of S characterizes the foliation, up
to symplectic equivalence.

In practice, this Taylor series is quite hard to compute. Very recently,
the computation was carried out for the spherical pendulum [9]. In [18], we
have simply computed the first terms, which is already quite involved.

Theorem 11.4 ([18]) For the quantum spin-oscillator coupling, we have

S(X,Y ) =
π

2
X + (5 ln 2)Y +O((X,Y )2).

This is a purely classical calculation. But from this, we conjecture

Conjecture 11.5 lim
~→0

(
2π

tmin |ln ~|

)
= 2.

lim
~→0

(
2π

Btmin
− |ln ~|

)
− |ln ~| − γ = 5 ln 2.

Here γ is Euler’s constant, γ ≃ 0.5772156649. This conjecture (or, in fact,
a precised version of Conjecture 11.1 above) is supported by a microlocal
formula proved in [24] for pseudodifferential operators. Proving the conjec-
ture would require an adaptation of this formula to the quantization of S2;
this, certainly, should be done using the microlocal theory of semiclassical
Toeplitz operators, as developed in [2].

Notice that, in view of Conjecture 11.1, this gives

B = 2 a = 6 ln 2 + γ ≃ 4, 74...

which is in agreement with the numerical plots.
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