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About global existence and asymptotic behavior
for two dimensional gravity water waves

Thomas Alazard

Département de Mathématiques et Applications
École normale supérieure et CNRS UMR 8553

45, rue d’Ulm
F-75230 Paris, France

(joint work with Jean-Marc Delort)

Abstract

The main result of this talk is a global existence theorem for the water waves equa-
tion with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an
asymptotic description in physical coordinates of the solution, which shows that modified
scattering holds.

The proof is based on a bootstrap argument involving L2 and L∞ estimates. The L2

bounds are proved in the paper [5]. They rely on a normal forms paradifferential method
allowing one to obtain energy estimates on the Eulerian formulation of the water waves
equation. The uniform bounds, and the proof of the global existence result, are presented
in [4]. These uniform bounds are proved interpreting the equation in a semi-classical way,
and combining Klainerman vector fields with the description of the solution in terms of
semi-classical lagrangian distributions.

1 Main result

We consider the initial value problem for the motion of a two-dimensional incompressible
fluid under the influence of gravity. At time t, the fluid domain, denoted by Ω(t), has a free
boundary described by the equation y = η(t, x), so that

Ω(t) =
{

(x, y) ∈ R2 ; y < η(t, x)
}
.

The equations by which the motion is to be determined are well-known. Firstly, the velocity
field v : Ω→ R2 is assumed to be irrotational and to satisfy the incompressible Euler equations.
It follows that v = ∇x,yφ for some velocity potential φ : Ω→ R satisfying

(1.1) ∆x,yφ = 0, ∂tφ+
1

2
|∇x,yφ|2 + P + gy = 0,

where g > 0 is the acceleration of gravity, P is the pressure term, ∇x,y = (∂x, ∂y) and
∆x,y = ∂2

x + ∂2
y . Hereafter, the units of length and time are chosen so that g = 1.
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The problem is then given by two boundary conditions on the free surface:

(1.2)

{
∂tη =

√
1 + (∂xη)2 ∂nφ on ∂Ω,

P = 0 on ∂Ω,

where ∂n is the outward normal derivative of Ω, so that
√

1 + (∂xη)2 ∂nφ = ∂yφ− (∂xη)∂xφ.
The former condition is a kinematic condition (which states that the free surface moves with
the fluid). The condition P = 0 is a dynamic condition that expresses a balance of forces
across the free surface.

Below are two pictures of the two-dimensional waves we consider. It is important to emphasize
that these are small amplitude waves (of size ε� 1), localized in x (by contrast with periodic
solutions) and that the fluid domain is infinitely deep.

y

x

ε

1

y = η(t, x)

down to −∞

Two different approaches were used in the analysis of the water waves equations: the La-
grangean formulation with a more geometrical point of view and the Eulerian formulation in
relation with microlocal analysis. Our analysis is entirely based on the Eulerian formulation
of the water waves equations: we shall work on the so-called Craig–Sulem–Zakharov system
which we introduce now. Following Zakharov [48] and Craig and Sulem [19], we work with
the trace of φ at the free boundary

ψ(t, x) := φ(t, x, η(t, x)).

One also introduces the Dirichlet-Neumann operator G(η) that relates ψ to the normal deriva-
tive ∂nφ by

(G(η)ψ)(t, x) =
√

1 + (∂xη)2 ∂nφ|y=η(t,x).

Then (η, ψ) solves (see [19]) the so-called Craig–Sulem–Zakharov system

(1.3)





∂tη = G(η)ψ,

∂tψ + η +
1

2
(∂xψ)2 − 1

2(1 + (∂xη)2)

(
G(η)ψ + (∂xη)(∂xψ)

)2
= 0.

In [3], it is proved that starting from a classical solution (η, ψ) of (1.3) (such that (η, ψ)
belongs to C0([0, T ];Hs(R)) for some T > 0 and s > 3/2), then one can define φ and P such
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that (1.1) and (1.2) hold. Thus it is sufficient to solve the Craig–Sulem–Zakharov formulation
of the water waves equations.

Our main result is stated in full generality in [4]. A simplified statement asserts the following:

Main result. For small enough initial data of size ε � 1, sufficiently decaying at infinity,

the Cauchy problem for (1.3) is globally in time well-posed. Moreover, u = |Dx|
1
2 ψ + iη

admits the following asymptotic expansion as t goes to +∞: There is a continuous function
α : R→ C, depending of ε but bounded uniformly in ε, such that

(1.4) u(t, x) =
ε√
t
α
(x
t

)
exp
( it

4|x/t| +
iε2

64

|α(x/t)|2

|x/t|5
log(t)

)
+ εt−

1
2
−κρ(t, x)

where κ is some positive number and ρ is a function uniformly bounded for t ≥ 1, ε ∈]0, ε0].

As an example of small enough initial data sufficiently decaying at infinity, consider

(1.5) η|t=1 = εη0, ψ|t=1 = εψ0,

with η0, ψ0 in C∞0 (R). Then there exists a unique solution (η, ψ) in C∞([1,+∞[;H∞(R)) of
(1.3). In fact, one may allow ψ to be merely in some homogeneous Sobolev space.

The first term in the oscillatory exponential which appears in (1.4) is the phase of oscillation
of the solutions of the linearized equation (this computation was performed by Cauchy in
his memoir [11]). The second term in this oscillatory exponential, that is the logarithmic
correction, shows that the solutions do not scatter (only a modified scattering holds). That
the behavior of the solutions when time goes to infinity is not the same as the behavior of
the solutions of the linearized equation comes from the fact that we are considering a critical
problem. This is the main obstacle to prove global well-posedness.

We discuss in the end of this introduction some related previous works. There is quite a lot
of results which are known and we shall recall only some of them. The study of the Cauchy
problem for the water waves equations began with the pioneering work of Nalimov [37] who
proved that the Cauchy problem is well-posed locally in time, in the framework of Sobolev
spaces, under an additional smallness assumption on the data. We also refer to Shinbrot [41],
Yoshihara [47] and Craig [15]. Without smallness assumptions on the data, the well-posedness
of the Cauchy problem was first proved by Wu for the case without surface tension (see [43, 44])
and by Beyer-Günther in [10] in the case with surface tension. Several extensions of their
results have been obtained and we refer to Córdoba, Córdoba and Gancedo [13], Coutand-
Shkoller [14], Lannes [32, 33, 34], Linblad [35], Masmoudi-Rousset [36] and Shatah-Zeng
[39, 40] for recent results on the Cauchy problem for the gravity water waves equation.

Given ε ≥ 0, consider the solutions to the water waves system (1.3) with initial data satisfying
(1.5). In her breakthrough result [45], Wu proved that the maximal time of existence Tε is
larger or equal to ec/ε for d = 1. Then Germain–Masmoudi–Shatah [22] and Wu [46] have
shown that the Cauchy problem for three-dimensional waves is globally in time well-posed
for ε small enough (with linear scattering in Germain-Masmoudi-Shatah and no assumption

about the decay to 0 at spatial infinity of |Dx|
1
2 ψ in Wu). Germain–Masmoudi–Shatah

recently proved global existence for pure capillary waves in dimension d = 2 in [21].

Exp. no XVIII— About global existence and asymptotic behavior for two dimensional gravity water waves
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It is worth recalling that the only known coercive quantity for (1.3) is the hamiltonian, which
reads (see [48, 19])

(1.6) H =
1

2

∫
η2 dx+

1

2

∫
ψG(η)ψ dx.

We refer to the paper by Benjamin and Olver [9] for considerations on the conservation laws
of the water waves equations. One can compare the hamiltonian with the critical threshold
given by the scaling invariance of the equations. Recall (see [9, 12]) that if (η, ψ) solves (1.3),
then the functions (ηλ, ψλ) defined by

(1.7) ηλ(t, x) = λ−2η
(
λt, λ2x

)
, ψλ(t, x) = λ−3ψ

(
λt, λ2x

)
(λ > 0)

are also solutions of (1.3). In particular, one notices that the critical space for the scaling
corresponds to η0 in Ḣ3/2(R). Since the hamiltonian (1.6) only controls the L2(R)-norm of η,
one sees that the hamiltonian is highly supercritical for the water waves equation and hence
one cannot use it directly to prove global well-posedness of the Cauchy problem.

Our approach follows a variant of the vector fields method introduced by Klainerman in
[30, 29] to study the wave and Klein-Gordon equations (see the book by Hörmander in [24]
or the Bourbaki seminar by Lannes [31] for an introduction to this method). More precisely,
we shall follow the approach introduced in [20] for the analysis of the Klein-Gordon equation
in space dimension one, to cope with the fact that solutions of the equation do not scatter.
Results for one dimensional Schrödinger equations, that display the same non scattering
behavior, have been proved by Hayashi and Naumkin [23], and global existence for a simplified
model of the water waves equation studied by Ionescu and Pusateri in [26].

Our proof of global existence is entirely based on the analysis of the Eulerian formulation of
the water waves equations by means of microlocal analysis. In this direction, it is influenced
by the papers by Lannes [32] and Iooss-Plotnikov [28]. More precisely, to prove Sobolev energy
inequalities, we follow the paradifferential analysis introduced in [6] and further developed in
[2, 1].

Finally, let us mention that Ionescu and Pusateri [25] independently obtained a global exis-
tence result very similar to the one we get here. The main difference is that they assume less
decay on the initial data, and get asymptotics not for the solution in physical space, with
control of the remainders in L∞, but for its space Fourier transform, with remainders in L2.
These asymptotics, as well as ours, show that solutions do not scatter. To get asymptotics
with remainders estimated in L∞, we shall commute iterated vector field Z = t∂t + 2x∂x
to the water waves equations. This introduces several new difficulties and requires that the
initial data be sufficiently decaying at infinity.

2 General strategy of proof

The water waves equations are fully nonlinear and contains quadratic terms. However, to
explain the strategy of the proof we consider as a (much) simplified model an equation of the
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form

(Dt − P (Dx))u = N(u)

u|t=1 = εu0,
(2.1)

where Dt = 1
i
∂
∂t , P (ξ) is a real valued symbol (for the linearized water waves equation, P (ξ)

would be |ξ|1/2), and N(u) is a nonlinearity vanishing at order at least two at zero.

The general framework we use is the one of Klainerman vector fields. Recall that a Klainerman
vector field for Dt−P (Dx) is a space-time vector field Z such that [Z,Dt−P (Dx)] is zero (or
a multiple λ(Dt−P (Dx)) of Dt−P (Dx)). For the water waves system, Z will be t∂t+2x∂x or
Dx. In that way, (Dt−P (Dx))Zku = ZkN(u) for any k (or (Dt−P (Dx))(Z+λ)ku = ZkN(u)),
and since P (ξ) is real valued, an easy energy inequality shows that

(2.2) ‖Zku(t, ·)‖L2 ≤ ‖Zku(1, ·)‖L2 +

∫ t

1
‖ZkN(u)(τ, ·)‖L2 dτ,

for any t ≥ 1. Assume first that N(u) is cubic, so that

(2.3) ‖ZkN(u)‖L2 ≤ C‖u‖2L∞‖Zku‖L2 + C
∑

k1+k2+k3≤k
k1,k2≤k3≤k−1

‖Zk1u‖L∞‖Zk2u‖L∞‖Zk3u‖L2 .

Assuming an a priori L∞ bound, one can deduce from (2.2) an L2 estimate. More precisely,
introduce the following property, where s is a large even integer:

For t in some interval [1, T [, ‖u(t, ·)‖L∞ = O(ε/
√
t)

and for k = 0, . . . , s/2, ‖Zku(t, ·)‖L∞ = O
(
εt−

1
2

+δ̃′k
)
,

(A)

where δ̃′k are small positive numbers. Plugging these a priori bounds in (2.2), (2.3), we get

(2.4)

‖Zku(t, ·)‖L2 ≤ ‖Zku(1, ·)‖L2 + Cε2

∫ t

1
‖Zku(τ, ·)‖L2

dτ

τ

+ Cε2

∫ t

1
‖Zk−1u(τ, ·)‖L2τ

2δ̃′
k/2
−1
dτ.

Gronwall inequality implies then that

(B) ‖Zku(t, ·)‖L2 = O(εtδk), k ≤ s,

for some small δk > 0 (δk > Cε2 and δk > 2δ̃′k/2).

The proof of global existence is done classically using a bootstrap argument allowing one to
to show that if (A) and (B) are assumed to hold on some interval, they actually hold on the
same interval with smaller constants in the estimates. We have outlined above the way of
obtaining (B), assuming (A) for a solution of the model equation (2.1). In the next section,
we shall explain the new difficulties that have to be solved to prove (B) for the water waves
equation. In the last two sections, we shall explain the way of obtaining (A), assuming (B).

Exp. no XVIII— About global existence and asymptotic behavior for two dimensional gravity water waves
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3 Sobolev estimates

The proof of a long time energy inequality of the form (B) for the water waves system (1.3)
faces two serious obstacles. The first obstacle is an apparent loss of derivatives in energy
inequalities. This difficulty already arises for local existence results, and was solved initially
by Nalimov [37] and Wu [43, 44]. For long time existence problems, Wu [46] uses arguments
combining the Eulerian and Lagrangian formulations of the system. Our approach in [5] is
purely Eulerian.

We begin by explaining the idea on the model obtained from (1.3) paralinearizing the equa-

tions and keeping only the quadratic terms. If we denote u =
[ η

|Dx|1/2ψ
]
, such a model may

be written as
∂tu = TAu

where TA is the paradifferential operator with symbol A, and where A(u, x, ξ) is a matrix of
symbols A(u, x, ξ) = A0(u, x, ξ) +A1(u, x, ξ), with

A0(u, x, ξ) =

[
−i(∂xψ)ξ |ξ|1/2
−|ξ|1/2 −i(∂xψ)ξ

]
, A1(u, x, ξ) = (|Dx|ψ) |ξ|

[
−1 0
0 1

]
.

Because of the A1 contribution, which is self-adjoint, the eigenvalues of A(u, x, ξ) are not
purely imaginary. For large |ξ|, there is one eigenvalue with positive real part, which shows
that one cannot expect for the solution of ∂tu = TAu energy inequalities without derivative
losses (see also the discussions in Craig [16, Section 4] or Lannes [32, Section 4.1]). A way
to circumvent this difficulty is well known, and consists in using the “good unknown” of
Alinhac [7]. For our quadratic model, this just means introducing as a new unknown ũ =
[ η

|Dx|1/2ω
]
, where ω = ψ − T|Dx|ψη is the (quadratic approximation of the) good unknown.

In that way, ignoring again remainders and terms which are at least cubic, one gets for ũ an
evolution equation ∂tũ = TA0 ũ. Since A0 is anti-self-adjoint, one gets L2 or Sobolev energy

inequalities for ũ. In particular, if for some s, ‖|Dx|1/2ω‖Hs +‖η‖Hs is under control, and if one

has also an auxiliary bound for ‖|Dx|ψ‖L∞ , one gets an estimate for ‖|Dx|1/2ψ‖Hs−1/2+‖η‖Hs .

For the real water waves problem, one cannot discard cubic or higher order contributions to
the nonlinearity, as we did in the above quadratic approximation. One has to express the
equations in terms of a new unknown ũ =

[ η

|Dx|1/2ω
]

where ω, the good unknown, is given

by ω = ψ − TBη, where B is is expressed in terms of the potential φ defined in (1.1) by
B = (∂yφ)y=η(t,x), the vertical derivative of φ at the boundary. If one denotes analogously by
V the horizontal derivative (∂xφ)|y=η(t,x), one gets explicit expressions for these quantities in
terms of (ψ, η)

B =
G(η)ψ + (∂xη)(∂xψ)

1 + (∂xη)2
, V = ∂xψ −B∂xη.

Following the analysis in [1, 2, 6], one may derive (see [5]) an expression for G(η)ψ in terms
of ω,

G(η)ψ = |Dx|ω − ∂x(TV η) + F (η)ψ,

Thomas Alazard
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where F (η)ψ is a quadratic smoothing term, that belongs to Hs+γ−4 if η is in Cγ ∩Hs and

|Dx|1/2ψ belongs to Cγ−1/2 ∩ Hs−1/2. This gives a quite explicit expression for the main
contributions to G(η)ψ. Moreover, one may prove as well tame estimates, that complement
similar results due to Craig, Schanz and Sulem (see [18] and [42, Chapter 11], and [8, 28]),
and establish bounds for the approximation of G(η)ψ (resp. F (η)ψ) by its Taylor expansion at
order two G≤2(η)ψ (resp. F≤2(η)ψ). Putting together such estimates, one derives an evolution
equation for ũ and proves energy inequalities similar to the ones outlined above in the case
of the quadratic approximation.

More precisely, we prove (see [5]) that

U =

(
T√aη

|Dx|
1
2
(
ψ − TBη

)
)

with

{
a = −∂nP |y=η

B = ∂yφ|y=η

satisfies

(3.1) ∂tU +DU +Q(U) + S(U) + C(U) = G,

where D =

(
0 − |Dx|

1
2

|Dx|
1
2 0

)
≡ i |Dx|

1
2 and

‖Q(U)‖Hs−1 ≤ K ‖U‖Cρ ‖U‖Hs , Q(U) is of order 1, quadratic

‖S(U)‖Hs+1 ≤ K ‖U‖Cρ ‖U‖Hs , S(U) is of order −1, quadratic

‖C(U)‖Hs−1 ≤ C(‖U‖Cρ) ‖U‖2Cρ ‖U‖Hs , C(U) is of order 1, cubic

‖G‖Hs ≤ C(‖U‖Cρ) ‖U‖2Cρ ‖U‖Hs , G is of order 0, cubic

for some fixed ρ > 0 and s large enough (these are tame estimates).

• Paradifferential normal forms method

In the model equation (2.1) discussed above, we considered a cubic nonlinearity: this played
an essential role to make appear in the first integral in the right hand side of (2.4) the almost
integrable factor 1/τ . For a quadratic nonlinearity, we would have had instead a 1/

√
τ -factor,

which would have given in (B), through Gronwall, a O(eε
√
t)-bound, instead of O(εtδk). The

way to overcome such a difficulty is well known since the work of Shatah [38] devoted to
the non-linear Klein-Gordon equation: it is to use a normal forms method to eliminate the
quadratic part of the nonlinearity.

In practice, one looks for a local diffeomorphism at 0 in Hs, for s large enough, so that the
Sobolev energy inequality written for the equation obtained by conjugation by this diffeomor-
phim be of the form (2.4). Nonlinear changes of unknowns, reducing the water waves system
to a cubic equation, have been known for quite a time (see Craig [17] or Iooss and Plotnikov
[27, Lemma 1]). However, these transformations were losing derivatives, as a consequence of
the quasi-linear character of the problem.

Exp. no XVIII— About global existence and asymptotic behavior for two dimensional gravity water waves
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The idea is to seek Φ = U + E(U,U) such that E is bilinear and chosen in such a way that
the equation on Φ is cubic, of the form ∂tΦ +DΦ = N(≥3)(Φ). Since

∂tΦ +DΦ = DE(U,U)−Q(U)− S(U)− E(DU,U)− E(U,DU) + cubic

it is thus tempting to seek E = E1 + E2 such that

S(U) + E1(DU,U) + E1(U,DU) = DE1(U,U)

Q(U) + E2(DU,U) + E2(U,DU) = DE2(U,U).

One finds bilinear Fourier multipliers with (matrix valued) symbols

M1(ξ1, ξ2) =
(
· · ·
) ξ1

|ξ1|
, M2(ξ1, ξ2) =

(
· · ·
)
ξ2.

The problem presents itself: ξ2 (resp. ξ1/|ξ1|) is the symbol of the Dx (resp. the Hilbert
transform), which is not bounded on L2 (resp. L∞).

Nevertheless, one can construct a bona fide change of unknown, without derivatives losses, if
one notices that it is not necessary to eliminate the whole quadratic part of the nonlinearity,
but only the part of it that would bring non zero contributions in a Sobolev energy inequality.
It is proved in [5] that there is a bilinear mapping (U1, U2) 7→ E(U1, U2) such that U2 7→
E(U1, U2) is of order 0 (which means that it is bounded from Hµ to Hµ) and

B(U) := E(DU,U) + E(U,DU)−DE(U,U)

satisfies
Re
〈
Q(U) + S(U) +B(U) , U

〉
Hs×Hs = 0.

Moreover, as a byproduct of the paradifferential analysis, one can prove that E(U1, U2) de-
pends tamely on U1, in a sense which is made precise in the following proposition.

Proposition. There exist γ > 0 and a bounded bilinear mapping (v, f) 7→ E(v, f) satisfying

‖E(v, f)‖Hµ ≤ K ‖v‖C3 ‖f‖Hµ (∀µ ≥ −1)

and such that, for any s large enough, Φ = U + E(U,U) satisfies

∂tΦ +DΦ + L(U)Φ + C(U)Φ = Γ

where the operators D and C(u) are as in (3.1), the source term satisfies

‖Γ‖Hs ≤ C(‖U‖Cγ ) ‖U‖2Cγ
∥∥Φ
∥∥
Hs

and the quadratic term L(U)Φ satisfies

(3.2) Re〈L(U)Φ,Φ〉Hs×Hs = 0

where 〈·, ·〉Hs×Hs denotes the Hs-scalar product.

Thomas Alazard
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The key point is that the quadratic term L(U)Φ do not contribute to the energy estimate in
view of (3.2). As a corollary, we obtain that there exists γ > 0 such that, for any s ≥ γ+1/2,

if Nγ(t) = ‖η(t, ·)‖Cγ +
∥∥|Dx|

1
2 ψ(t, ·)

∥∥
Cγ−

1
2

is small enough, then the Hs-Sobolev energy Ms

defined by Ms(t) = ‖U + E(U,U)‖2Hs satisfies

Ms(t) ∼ ‖η(t, ·)‖2Hs(R) +
∥∥|Dx|

1
2 ψ
∥∥2

Hs− 1
2 (R)

+
∥∥(∇x,yφ)|y=η(t, ·)

∥∥2

Hs− 1
2 (R)

,

and

Ms(t) ≤Ms(0) +

∫ t

0
C(Nγ(τ))Nγ(τ)2Ms(τ) dτ.

Then one obtains, through Gronwall inequality, an estimate of the form (B) (when Z = Dx)
assuming an a priori decay in Hölder norms of the type (A). Finally, let us mention that
one has to combine the preceding ideas with the commutation of (t∂t + 2x∂x)-vector fields to
the equations. We refer the reader to the last two chapters of [5] for a full description of the
technical issues that arise then.

4 Klainerman-Sobolev inequalities

As previously mentioned, the proof of global existence relies on a bootstrap argument on
properties (A) and (B). We have indicated in the preceding section how (B) may be deduced
from (A). On the other hand, one has to prove that conversely, (A) and (B) imply that (A)
holds with smaller constants in the inequalities. In the last two sections of this paper, we
describe the general strategy of proof, the difficulties one has to cope with, and the ideas used
to overcome them.

The first step is to show that if the L2-estimate (B) holds for k ≤ s, then bounds of the form

(A’) ‖Zku(t, ·)‖L∞ = O(εtδ
′
k), k ≤ s − 100

are true, for small positive δ′k. This is not (A), since the δ′k may be larger that the δ̃′k of (A),
and since this does not give a uniform bound for ‖u(t, ·)‖L∞ . But this first information will
allow us to deduce, in the last step of the proof, estimates of the form (A) from (A′) and the
equation.

Let us make a change of variables x → x/t in the water waves system. If u(t, x) is given

by u(t, x) = (|Dx|1/2ψ + iη)(t, x), we define v by u(t, x) = 1√
t
v(t, x/t). We set h = 1/t and

eventually consider v as a family of functions of x depending on the semi-classical parameter h.
Moreover, for a(x, ξ) a function satisfying convenient symbol estimates, and (vh)h a family of
functions on R, we define

Oph(a)vh = a(x, hD)vh =
1

2π

∫
eixξa(x, hξ)v̂h(ξ) dξ.

Exp. no XVIII— About global existence and asymptotic behavior for two dimensional gravity water waves
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Then the water waves system is equivalent to the equation

(4.1)
(
Dt −Oph

(
xξ + |ξ|1/2

))
v =
√
hQ0(V ) + h

[
C0(V )− i

2
v

]
+ h1+κR(V ),

where we used the following notations

• Q0 (resp. C0) is a nonlocal quadratic (resp. cubic) form of V = (v, v̄) that may be written
as a linear combination of expressions Oph(b0)[

∏`
j=1 Oph(bj)v±], ` = 2 (resp. ` = 3), where

b`(ξ) are homogeneous functions of degree d` ≥ 0 with
∑2

0 d` = 3/2 (resp.
∑3

0 d` = 5/2) and
v+ = v, v− = v̄.

• R(V ) is a remainder, made of the contributions vanishing at least at order four at V = 0.

To simplify the exposition, we shall assume that v satisfies ϕ(hD)v = v for some C∞0 (R−{0})-
function ϕ, equal to one on a large enough compact subset of of R−{0}. Such a property is not
satisfied by solutions of (4.1), but one can essentially reduce to such a situation performing
a dyadic decomposition v =

∑
j∈Z ϕ(2−jhD)v.

The Klainerman vector field associated to the linearization of the water waves equation may
be written, in the new coordinates that we are using, as Z = t∂t+x∂x. Remembering h = 1/t
and expressing ∂t from Z in equation (4.1), we get

(4.2) Oph
(
2xξ + |ξ|1/2

)
v = −

√
hQ0(V ) + h

[
i

2
v − iZv − C0(V )

]
− h1+κR(V ).

Since we factored out the expected decay in 1/
√
t, our goal is to deduce from assumptions

(A) and (B) estimates of the form ‖Zkv‖L∞ = O(εh−δ
′
k) for k ≤ s − 100.

Proposition. Assume that for t in some interval [T0, T [ (i.e. for h in some interval ]h′, h0]),
one has estimates (A) and (B):

(4.3) ‖Zkv‖L∞ = O
(
εh−δ̃

′
k
)
, k ≤ s/2, ‖Zkv‖L2 = O

(
εh−δk

)
, k ≤ s.

Denote Λ = {(x, dω(x));x ∈ R∗} where ω(x) = 1/(4|x|). Then, if γΛ is smooth, supported
close to Λ and equal to one on a neighborhood of Λ, and if γcΛ = 1−γΛ, we have for k ≤ s−100

‖Zk Oph(γcΛ)v‖L2 = O
(
εh

1
2
−δ′k
)
,(4.4)

‖(hDx − dω)Zk Oph(γΛ)v‖L2 = O
(
εh1−δ′k

)
,(4.5)

‖Zkv‖L∞ = O
(
εh−δ

′
k
)
.(4.6)

Idea of proof. One applies k vector fields Z to (4.2) and uses their commutation properties
to the linearized equation. In that way, taking into account the assumptions, one gets

(4.7) Oph
(
2xξ + |ξ|1/2

)
Zkv = OL2

(
εh

1
2
−δ′k
)
.

One remarks that 2xξ+ |ξ|1/2 vanishes exactly on Λ. Consequently, this symbol is elliptic on
the support of γcΛ, and this allows one to get (4.4) by ellipticity.
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To prove the second inequality, one uses the fact that,

(4.8) Oph
(
2xξ + |ξ|1/2

)
Zk Oph(γΛ)v = −

√
hOph(γΛ)ZkQ0(V ) +O

(
εh1−δ′k

)
.

We may decompose v = vΛ + vΛc where vΛ = Oph(γΛ)v and vΛc = Oph(γcΛ)v. We write

ZkQ0(V )− ZkQ0(vΛ, v̄Λ) = B(vΛ, Z
kvΛc) + · · ·

where B is the polar form of Q0. By (4.4), ‖ZkvΛc‖L2 = O(εh
1
2
−δ′k), and by assumption

‖vΛ‖L∞ = O(ε). It follows that
∥∥B(vΛ, Z

kvΛc)
∥∥
L2 = O

(
εh

1
2
−δ′k
)
. The other contributions to

ZkQ0(V )− ZkQ0(vΛ, v̄Λ) may be estimated in a similar way, up to extra contributions, that
we do not write explicitly in this outline, and that may be absorbed in the left hand side of
(4.6) at the end of the reasoning. The right hand side of (4.8) may thus be written

(4.9) −
√
hOph(γΛ)ZkQ0(VΛ) +OL2

(
εh1−δ′k

)
,

where VΛ = (vΛ, v̄Λ). One notices then that since vΛ (resp. v̄Λ) is microlocally supported close
to Λ (resp. −Λ), Q0(VΛ) is microlocally supported close to the union of 2Λ, 0Λ and −2Λ, so
far away from the support of the cut-off γΛ (where `Λ = {(x, `dω(x));x ∈ R∗}) – see picture
below.

Consequently, the first term in (4.9) vanishes, and we get

(4.10) Oph
(
2xξ + |ξ|1/2

)
Zk Oph(γΛ)v = OL2

(
εh1−δ′k

)
.

Since 2xξ + |ξ|1/2 and ξ − dω(x) have the same zero set, namely Λ, one may write

ξ − dω(x) = e0(x, ξ)
(
2xξ + |ξ|1/2

)
+ he1(x, ξ)

for some symbols e0, e1. Using symbolic calculus, one deduces (4.5) from (4.10).
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Finally, to obtain (4.6), we write

‖ZkvΛ‖L∞ = ‖e−iω/hZkvΛ‖L∞ ≤ C‖e−iω/hZkvΛ‖1/2L2 ‖Dx(e−iω/hZkvΛ)‖1/2
L2 .

The last factor is h−1/2‖(hDx−dω)ZkvΛ‖1/2L2 , which is O(
√
εh−δ

′
k/2) by (4.5). Moreover, (4.4)

and Sobolev inequality imply that ‖ZkvΛc‖L∞ = O
(
εh−δ

′
k

)
, since we have assumed that v is

spectrally localized for |ξ| ∼ 1/h. This gives (4.6).

5 Optimal L∞ bounds

As seen in the preceding section, one can deduce from the L2-estimates (B) some L∞-estimates
(4.6), which are not the optimal estimates of the form (A) that we need (because the exponents
δ′k are larger than δ̃′k, and because δ′0 is positive, while we need a uniform estimate when no
Z field acts on v). In order to get (A), we deduce from the PDE (4.1) an ODE satisfied by v.

Proposition. Under the conclusions of the preceding proposition, we may write

(5.1) v = vΛ +
√
h(v2Λ + v−2Λ) + h(v3Λ + v−Λ + v−3Λ) + h1+κg,

where κ > 0, g satisfies bounds of the form ‖Zkg‖L∞ = O(εh−δ
′
k), and v`Λ is microlocally

supported close to `Λ and is a semi-classical lagrangian distribution along `Λ, as well as
Zkw`Λ for k ≤ s/2, in the following sense

‖Zkv`Λ‖L∞ = O(εh−δ
′
k),(5.2)

‖Oph(e`(x, ξ))Z
kv`Λ‖L∞ = O(εh1−δ′k), ` ∈ {1,−2, 2},(5.3)

‖Oph(e`(x, ξ))Z
kv`Λ‖L∞ = O(εh

1
2
−δ′k), ` ∈ {−3,−1, 3},(5.4)

if e` vanishes on `Λ.

Remark. Consider a function w = α(x) exp(iω(x)/h). If α is smooth and bounded as well
as its derivatives, we see that (hDx − dω(x))w = OL∞(h) i.e. w satisfies the second of the
above conditions with ` = 1, where e1(x, ξ) = ξ − dω(x) is an equation of Λ. The conclusion
of the proposition thus means that v`Λ enjoys a weak form of such an oscillatory behavior.

The proposition is proved using equation (4.2). For instance, the bound (5.3) for vΛ =
Oph(γΛ)v is proved in the same way as (4.5), with L2-norms replaced by L∞ ones, using (4.6)
to estimate the right hand side. In the same way, one defines v±2Λ as the cut-off of v close

to ±2Λ. As in the proof of (4.4), one shows an OL∞(h
1
2
−δ′k) bound for ZkvΛc , which implies

that the main contribution to Q0(v, v̄) is Q0(vΛ, v̄Λ). Localizing (4.2) close to ±2Λ, one gets
an elliptic equation that allows to determine v±2Λ as a quadratic function of vΛ, v̄Λ. Iterating
the argument, one gets the expansion of the proposition. One does not get in the

√
h-terms

of the expansion a contribution associated to 0Λ because Q0(V ) may be factored out by a
Fourier multiplier vanishing on the zero section. Consequently, non oscillating terms form
part of the O(h1+κ) remainder.

Let us use the result of the preceding proposition to obtain an ODE satisfied by v:
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Proposition. The function v satisfies an ODE of the form

(5.5)

Dtv =
1

2
(1− χ(h−βx))|dω|1/2v − i

√
h(1− χ(h−βx))

[
Φ2(x)v2 + Φ−2(x)v̄2

]

+ h(1− χ(h−βx))
[
Φ3(x)v3 + Φ1(x)|v|2v + Φ−1(x)|v|2v̄ + Φ−3(x)v̄3

]

+O(εh1+κ),

where κ > 0, β > 0 are small, Φ` are real valued functions of x defined on R∗ and χ is in
C∞0 (R), equal to one close to zero.

To prove the proposition, one plugs expansion (5.1) in equation (4.1). The key point is to
use (5.3), (5.4) to express all (pseudo-)differential terms from multiplication operators and
remainders. For instance, if b(ξ) is some symbol, one may write b(ξ) = b|`Λ + e` where e`
vanishes on `Λ = {ξ = `dω}. Consequently

Oph(b)v`Λ = b(`dω)v`Λ + Oph(e`)v`Λ,

and by (5.3), when ` = −2, 1, 2, one gets ‖Oph(e`)v`Λ‖L∞ = O(εh1−δ′0). Since Q0(vΛ, v̄Λ) is
made of expressions of type

S = Oph(b0)[(Oph(b1)vΛ)(Oph(b2)vΛ)]

(and similar ones replacing vΛ by v̄Λ), one gets, using that v2
Λ is lagrangian along 2Λ,

S = b0(2dω)b1(dω)b2(dω)v2
Λ +OL∞(h1−δ′0).

One applies a similar procedure to the other pseudo-differential terms of equation (4.1),

namely Oph(xξ + |ξ|1/2)v and C0(V ), where v is expressed using (5.1) in which the v`Λ are
written as explicit quadratic or cubic forms in (vΛ, v̄Λ). This permits to write all those terms as
polynomial expressions in (vΛ, v̄Λ) with x-depending coefficients, up to a remainder vanishing
like h1+κ when h goes to zero. Expressing back vΛ from v, one gets the ODE (5.5).

As soon as the preceding proposition has been established, the proof of optimal L∞-estimates
for v is straightforward. Applying a Poincaré normal forms method to (5.5), one is reduced
to an equivalent ODE of the form

Dtf =
1

2
(1− χ(h−βx))|dω|1/2

[
1 +
|dω|2
t
|f |2

]
f +O(εt−1−κ).

This implies that ∂t|f |2 is integrable in time, whence a uniform bound for f and explicit
asymptotics when t goes to infinity. Expressing v in terms of f , and writing u(t, x) =
1√
t
v(t, x/t), one obtains the uniform O(t−1/2) bound for u given in (A) as well as the asymp-

totics of the statement of the main theorem. Estimates for Zku are proved in the same
way.
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