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ABOUT A VARIANT OF THE 1d VLASOV EQUATION, DUBBED
“VLASOV-DIRAC-BENNEY EQUATION”

CLAUDE BARDOS

Abstract. This is a report on project initiated with Anne Nouri [3], presently in progress,
with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns
a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass.
Emphasis is put on the relations between the linearized version, the full non linear problem
and also on natural connections with several other equations of mathematical physic.

1. Introduction

This talk was devoted to a one d variant of the classical Vlasov-Poisson equation where the
Coulomb interacting potential V is replaced by the delta mass:

(1.1) ∂tf(t, x, v) + v∂xf(t, x, v)− ∂xρf (t, x)∂vf(t, x, v) = 0 , ρf (t, x) =

∫

R
f(t, x, v)dv .

Since, in one of the most important configuration it is equivalent to the Benney equation (cf.
section and [4] ) we call it the Vlasov−Dirac−Benney equation or in short V−D−B.

This equation exhibit both some similarities (at the level of the formal structures) and some
basic difference with the system

(1.2) ∂tf + v · ∇xf + E · ∇vf = 0 , E = −∇x

∫

Rd
V (x− y)

(∫

Rd
f(t, y, v)dv − 1

)
dy

generalization (with respect to the potential V ) of the Vlasov -Poisson equation.
On one hand all the equations of the type (1.2) share in common some essential properties

recalled below:
They are “Liouville equations” associated to a dynamical flow defined by the equations

ẋ(t) = v(t) , v̇(t) = −
∫

Rd
∇xV (x(t)− y)

(∫

Rd
f(t, y, w)dw − 1

)
dy .

They (at least formally) conserve the energy

(1.3) E(f) =

∫

Rd×Rd

|v|2
2
f(t, x, v)dxdv+

1

2

∫

Rd×Rd×Rd×Rd
V (x−y)f(t, x, v)f(t, y, w)dwdydxdv .

On the other hand when the potential is a Dirac mass the uniform background which is
represented by the constant 1 in the definition of the global density ρ =

∫
Rd f(t, y, v)dv − 1, to

ensures global neutrality of the plasma can, be removed and the equation becomes:

(1.4) ∂tf + v · ∇xf −∇xρf · ∇vf = 0 , ρf (x, t) =

∫

Rv
f(x, v, t)dv .

Moreover in (1.4) the mapping f 7→ ρf 7→ E = −∇xρf is an operator of degree 1 while for
the original Vlasov-Poisson equation it is an operator of degree −1. Therefore the effect of the
instabilities will be much more drastic and while for the original Vlasov-Poisson equation the
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issue is the large time asymptotic behavior, here the issue is that the Cauchy problem may be
badly posed even for regular initial data and for arbitrarily small time.

Below we focus on the equation (1.1) which is the 1d version of the problem and where
instead of the symbol ∇ the symbol ∂ is used.

The interest of a one-dimensional space model may be fully justified by physical reasons,
particularly in the quasineutral-limit when the Debye length vanishes (c.f [14]). Moreover it
is in one dimension that the spectral analysis of the linearized problem is, by an adaptation
of the method of Penrose (cf [31]), the most explicit. Then, as we try to show, there is a
natural connection between the properties of the linearized and the fully nonlinear model. This
connection emphasizes the role of “bumps” in the initial profile. In particular in the case of
the one-bump profile the connection with the Benney equation gives a new stability theorem
for the full nonlinear problem. Eventually the stability results are in full agreement with what
is known concerning the WKB limit of the Non-Linear Schrödinger equation.

2. The modal analysis of the linearized equation

In this section one considers in Rx×Rv the dynamic of the V−D−B equation for fluctuations
near the neighborhood of space independent probability distribution function G(v),

G(v) ≥ 0 ,

∫

R
G(v)dv = 1,

which is an obvious stationary solution of the equation

∂tf + v∂xf − ∂xρf∂vf = 0 , ρf (x, t) =

∫

Rv
f(x, v, t)dv

Therefore f is changed into G(v) + f (f denoting now the fluctuations) and the linearized
equation becomes

∂tf + v∂xf − ∂xρG′(v) = 0,

by dropping quadratic terms in the fluctuations.

2.1. Modal analysis of the linearized equation. A standard tool in the analysis of the
general (for any potential V ) Vlasov equation is the introduction of modal analysis, i.e. solutions
(whenever they exist) of the form

ek(t, x, v) = A(k, v)ei(kx−ω(k)t),

leading to the equation

(−iω(k) + ikv)A(k, v)− ikV̂ (k)ρ̂A(k)G′(v) = 0,

which upon integration with respect to v is equivalent to

(2.1) A(k, v)− V̂ (k)
G′(v)

v − ω(k)/k
ρ̂A(k) = 0 ,

and

(2.2)

(
1− V̂ (k)

∫

R

G′(v)

v − ω(k)/k
dv

)
ρ̂A(k) = 0 .

Instabilities appear whenever there exists a solution ω(k) of the above system with Imω(k) > 0 ,
where Im denotes the imaginary part. This approach has been developed by Penrose [31] for

the one-dimensional Vlasov-Poisson equation where one has V̂ (k) = 1/k2. In this case the
system (2.1) and (2.2) has no solution for Imω 6= 0 and |k| large enough. This is in agreement
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with the fact that the problem is always well posed and that the only issues are its asymptotic
behavior for |t| going to ∞.

Below we adapt the Penrose construction to the linearized V−D−B equation

∂tf + v∂xf − ∂xρfG′(v) = 0, ρf (t, x) =

∫

R
f(t, x, v)dv.

The main difference is that now the operator f 7→ ∂xρfG
′(v) is “of order 1” while for the Vlasov-

Poisson equation it was “of order −1” and therefore it supports more violent perturbations.
With ω(k) = ω∗k (observe that ω∗ has the dimension of a complex velocity and note the link
with the typical dispersion relation for the frequency of acoustic waves Reω = ck, with c a real
constant velocity) the system (2.1) and (2.2) becomes

(2.3) A(k, v)− G′(v)

v − ω∗ ρ̂A(k) = 0

and

(2.4)

(
1−

∫

Rv

G′(v)

v − ω∗dv
)
ρ̂A(k) = 0 .

We now introduce the open sets =± = {ω ∈ C, ± Imω > 0}, the mapping

Z : ω 7→ Z(ω) =

∫

Rv

G′(v)

v − ωdv ,

and call solutions ω of the equation

Z(ω) = 1 with Imω 6= 0,

unstable modes. Observe that ω ∈ =+ is a solution of (2.4) if and only ω ∈ =− is also a
solution. Therefore it is enough to consider only the set Z(=+) . As in [31] one has the:

Proposition 2.1. Assume for the probability profile v 7→ G(v) the following regularity hypoth-
esis:

(2.5) v 7→ G′(v) ∈ C0,α(Rv) ∩ L1(Rv) .

Then the mapping ω 7→ Z(ω) is well defined and analytic on =+ Moreover Z(=+) is a bounded
set with boundary given by

∂(Z(=+)) =

{
w ∈ R 7→ p.v.

∫

R

G′(v)

v − wdv + iπG′(w)

}
;

∂(Z(=+)) is a bounded curve which go to 0 for w → ±∞.

Therefore the existence or non-existence of unstable modes is equivalent to the fact that 1
belongs or not to the set Z(=+). Proceeding as in [31] one follows the curve

∂Z+ : ω ∈ R 7→ p.v.

∫

R

G′(v)

v − wdv + iπG′(w).

This curve starts and ends at the origin for ω = ±∞ and winds round Z(=+) anticlockwise.
To have 1 /∈ Z(=+) it is sufficient that any Z(v∗) point of intersection of ∂Z+ (whenever it

exists) belongs to the interval ) −∞, 1( . However to have 1 ∈ Z(=+) it is necessary (but not
sufficient, at variance with the standard Penrose Criteria) that ∂Z+ crosses the real axis at a
point Z+(v∗) ∈ [1,∞) . This leads to the following
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Theorem 2.1. Assume for the profile G the regularity hypothesis (2.5) then:
1 If for any solution of v∗ ∈ Rv of the equation G′(v∗) = 0 one has

(2.6) p.v.

∫

R

G′(v)

v − v∗dv < 1,

there are no unstable mode.
2 If G(v) has a minimum v∗ with the relation

p.v.

∫

R

G′(v)

v − v∗dv > 1,

and no maximum with v∗∗ with

p.v.

∫

R

G′(v)

v − v∗∗dv > 1,

there exist unstable modes.

Proof. For the proof it is enough to follow the curve ∂Z+ from ω∗ = −∞ to ω∗ = +∞. �
Remark 2.1. 1 The above theorem concerns points v∗ ∈ Rv where G′(v∗) = 0 therefore (with
the regularity hypothesis (2.5) ), the Cauchy principal values of integrals, denoted by “p.v.”,
are in fact classical integrals.

2 For any ω∗ with =ω∗ 6= 0 the validity of the integration by part

(2.7)

∫

Rv

G′(v)

v − ω∗dv =

∫

Rv

G(v)

(v − ω∗)2dv

implies that the relation (2.4) is well defined not only for profiles in the class C1,α but also
for any finite measure. As a consequence the statements of the theorem (2.1) can be extended
to more general profiles. For instance if the profile G is the limit in weak L1 of a family of
probabilities Gε(v) ∈ C1,α satisfying the property:

(2.8) ∀ω∗ ∈ =+ |1−
∫

Rv

G′ε(v)

v − ω∗dv| > η

with η independent of ε there are no unstable modes.

As explained in classical books of Plasma Physics (cf. [25] Chapter 9) longitudinal electro-
static kinetic instabilities are related to the effect of “bump-on-tail” in the profile G(v) . This is
in agreement with the following examples where the existence of unstable modes, is discussed
either as illustration of the theorem (2.1) or with direct computations.

Example 1. A profile G(v) ∈ C1,α with only one local maxima (say v∗) generates no unstable
mode. In fact for the only point where ∂Z+ crosses the real axis is v∗ and since G(v) is increasing
for v < v∗ and decreasing for v > v∗ one has

∫

R

G′(v)

v − v∗dv < 0 < 1.

Example 2. In particular when G(v) = δv is a Dirac mass (the extreme case a one simple
bump) of a mass there is no unstable mode. With the point 2 of the remark 2.1 this follows
from the point 1 of the theorem 2.1 . Moreover this can also be proven by the following explicit
computation

G(v) = δv =⇒
∫

R

G′(v)

v − ωdv =

∫

R

δv
(v − ω)2

dv =
1

ω2
,
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and therefore the solutions of the dispersion equation ω2 = 1 (cf. Eq. (2.4)) are given by
ω∗ = ±1, numbers with no imaginary part.

Example 3. However for G(v) = 1
2
(δv−a + δv+a) the existence of unstable modes depends

on the size of a. Dirac masses generate unstable modes, if and only if they are close enough,
according to the formula

1−
∫

R

G′(v)

v − ωdv = 1− 1

(a− ω)2
+

1

(a+ ω)2
,

which has non real solutions if and only if a2 < 2 .
Example 4. Assume that G(v) is even with G(0) = G′(0) = 0, then for ε small enough,

Gε(v) =
1

ε
G(
v

ε
)

generates unstable modes. In fact for ω∗ = iσ with σ ∈ R the solution of the equation

1−
∫

R

G′ε(v)

v − ω∗dv = 0,

becomes

0 = 1−
∫

R

G′ε(v)

v − ω∗dv =1−
∫

R

G′ε(v)v

v2 + σ2
dv − i

∫

R

G′ε(v)σ

v2 + σ2
dv

= 1−
∫

R

G′ε(v)v

v2 + σ2
dv .

(2.9)

Eventually the function

σ 7→ I(σ) =

∫

R

G′ε(v)v

v2 + σ2
dv,

is continuous decreasing from I(0) =
∫
R
G′ε(v)v
v2

dv to I(∞) = 0 and by continuity the existence
of a solution of (2.9) is ensured when

p.v.

∫

R

G′ε(v)

v
dv = 2

∫ ∞

0

G′ε(v)

v
dv = 2

∫ ∞

0

Gε(v)

v2
dv =

2

ε2

∫ ∞

0

G(v)

v2
dv > 1 .

3. Consequence of the modal analysis for the linearized problem: stability
of the single bump profile.

In the presence of unstable modes (which are frequency homogenous ω(k) = ω∗k) the solution
of the V−D−B equation with initial data

∫

R
eikx

G′(v)

v − ω∗ ρ̂(k)dk,

has to be given by

f(x, v, t) =

∫

R
eikxe−iω

∗kt G
′(v)

v − ω∗ ρ̂(k)dk,

and even for initial data in S(R) for t > 0 it is not defined (even in S ′(R)) unless |ρ(k)| ≤ Ce−a|k|.
In this case (which corresponds to analytic initial data [30, 35]) it exists up to a finite time
T ∗ = a/| Imω∗| and may not exist for later time.

On the other hand a profile v 7→ G(v) with only one maximum leads to a stability result,
robust with respect to the potentials and profiles G(v) . To precise the stability result we start
with the derivation of a formal energy identity for smooth functions:
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Proposition 3.1. Assume that the profile G(v) has only one bump or more precisely that:

(3.1) G′(v) := −H(v)(v − a) with H(v) > 0, a ∈ R,

then any smooth solution f(x, v, t) of the linearized Vlasov equation with potential V :

(3.2) ∂tf(t, x, v) + v∂xf(t, x, v)−G′(v) ∂x

∫

R
V (x− y)

(∫

R
f(t, y, w)dw

)
dy = 0 ,

satisfies the energy identity:

(3.3)
1

2

d

dt

(∫

R×R
H−1(v)(f(t, x, v))2dxdv+

∫

R×R
V (x− y)ρf (x, t)ρf (x, t)dxdy

)
= 0 .

Proof. Let us introduce the notation f(t, x, v) = H(v)f̃(t, x, v), multiply the equation (3.2) by

f̃ and integrate over the phase-space (x, v) to obtain

1

2

d

dt

(∫

R×R
H−1(v)(f(t, x, v))2dxdv

)

+

∫

R×R
∂xV (x− y)ρf (t, y)

∫

R
H(v)(v − a)f̃(t, x, v)dvdydx = 0 .

(3.4)

Then observe that one has

a

∫

R×R
∂xV (x− y)ρf (t, y)

∫

R
f(t, x, v)dvdydx

= a

∫

R×R
∂xV (x− y)ρf (t, y)ρf (t, x)dydx = 0 .

Therefore (3.4) turns out to be

1

2

d

dt

(∫

R×R
H−1(v)(f(t, x, v))2dxdv

)

−
∫

R×R
V (x− y)ρf (t, y)∂x

∫

R
vH(v)f̃(t, x, v)dvdydx = 0 .

(3.5)

This last term can be obtained by integration of (3.2) with respect to the velocity v as

(3.6) ∂tρf (t, x) + ∂x

∫

R
vH(v)f̃(t, x, v)dv = 0 .

Pluging (3.6) into (3.5) one obtains (3.3). �
With the above computation in mind we consider linearized Vlasov equations with a semi-

definite profile V near a profile G(v) which satisfies the relation

(3.7) G′(v) := −H(v)(v − a) with H(v) > 0, a ∈ R,

and introduce the Hilbert space HV of functions f : R2 7→ R such that:
∫

Rx×Rv
−HV (v)(f(x, v))2dvdx+

∫

Rx×Ry
V (x− y)ρf (x)ρg(y)dxdy,<∞,

with the scalar product 〈·, ·〉H is defined by

〈f, g〉HV =

∫

R×R
H−1(v)f(x, v)g(x, v)dxdv +

∫

R×R
V (x− y)ρf (x)ρg(y)dxdy,

Claude Bardos
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Remark 3.1. 1 Since G(v) is a positive density the weight

H−1(v) = −(v − a)

G′(v)
,

is unbounded for |v| → ∞. Therefore HV is a subspace of functions of L2(Rx × Rv) with
convenient decay for v →∞.

2 Semi-definite potentials are potentials V such that

(3.8)

∫

R×R
V (x− y)g(x)g(y)dxdy ≥ 0

for all continuous functions g with compact support. By Bochner theorem (cf. Chapter XI, 13
of Yosida [36]) such potential are the Fourier transform of positive measures

V (x) =

∫

R
eixkdṼ (k),

with k 7→ Ṽ (k) a non decreasing right-continuous bounded function This class obviously contain
the Dirac mass and in this case the scalar product on HV becomes

(3.9) 〈fg〉HV =

∫

R×R
H−1(v)f(x, v)g(x, v)dxdv +

∫
ρf (x)ρg(x)dxd

For the unbounded operator A defined as the restriction to HV of the operator:

(3.10) f 7→ v∂xf − ∂v
∫
V (x− y)

∫
f(y, w)dwdy∂vf :

D(A) ={f ∈ HV s.t; v∂xf − ∂v
∫
V (x− y)

∫
f(y, w)dwdy∂vf ∈ HV }

Af = v∂xf − ∂v
∫
V (x− y)

∫
f(y, w)dwdy∂vf

(3.11)

one has the following

Theorem 3.1. For semi-definite potential V and G a profile which satisfies the relation (3.1)
the unbounded operator A is anti-adjoint in HV and therefore is the generator of a strongly
continuous group of unitary operators in this space.

Proof. With the energy conservation (3.3) and the access to explicit computation the rest of the
proof is routine. First show that A is closed and anti-adjoint. Therefore for any λ ∈ R − {0}
the image of (λI + A) is closed subspace of H. Then in Fourier space solve the equation

(3.12) λf + Af = g ∈ S(Rx × Rv) ,

and observe that the solution of (3.12) belongs to D(A) .
(λI + A)(D(A)) being both closed and dense coincides with H . And following Kato [24]

page 271 or 279 one completes the proof. �
Corollary 3.1. With the hypothesis of the theorem (3.1) , A is the generator of a strongly
continuous unitary group and the Cauchy problem

(3.13)
df

dt
+ Af = 0 f(x, v, 0) = f0(x, v)

has for any initial data f0 ∈ HV a unique “weak ” solution f(x, v, t) = (e−itAf0)(x, v) ∈
C(Rt;HV ) Moreover whenever f0 ∈ D(A) this solution is strong (i.e. f(., ., t) ∈ C1(Rt;HV ) ∩
C0(Rt;D(A))).
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This statement is a direct consequence of the theorem 3.1 in the frame of strongly continuous
semi groups and no proof is needed.

Remark 3.2. 1 Since G(v) is a positive density the weight

H−1(v) = −(v − a)

G′(v)
,

is unbounded for |v| → ∞. Therefore the corollary 3.1 concerns the evolution of solutions with
convenient decay at infinity.

2 The theorem 3.1 has been stated for any Vlasov equation with a semi-positive definite
potential. In particular it applies to the case where V is the Delta distribution.

4. Consequence of the modal analysis for the nonlinear
Vlasov-Dirac-Benney equation

The above analysis of the linearized V−D−B equation leads by perturbations method to well
adapted instability or stability results for the nonlinear-problem.

For a theorem concerning the instability we denote by Ḣm the space of functions f ∈
L∞(Rx, L

1(Rv)) with, for 1 ≤ l ≤ m, derivatives ∂lxf ∈ L2(Rx;L
1(Rv)) equipped with the

corresponding norm.

Definition 4.1. We say that a Cauchy problem f0(x, v) 7→ S(t)[f0](x, v), defined by a nonlinear
dynamics on the phase space (x, v) ∈ R×R, is locally (Ḣm-Ḣ1) well-posed if there is a constant
cm such that for any initial datum f0 ∈ Ḣm, there exist a time T > 0 and a unique solution

S(t)[f0] ∈ L∞(0, T ; Ḣ1)

such that
ess sup

t∈(0,T )
‖ S(t)[f0] ‖Ḣ1≤ cm ‖ f0 ‖Ḣm .

Theorem 4.1. For every m ∈ N∗, the Cauchy problem for the dynamics S(t) defined by the
V−D−B equation is not locally (Ḣm-Ḣ1) well-posed.

Proof. The proof follows standard perturbation techniques as developed by [20] and coworkers.
It proceeds par contradiction. Assume that the problem is locally (Hm-H1) well-posed. Intro-
duce a profile G(v) which generates unstable modes ω∗k and consider, for the dynamics S(t),
initial data of the form

(4.1) f s0 = G(v) + sφ0(x, v) with φ0(x, v) =

∫

R
eikx

G′(v)

v − ω∗ ρ̂(k)dk .

If the nonlinear problem is (Ḣm-Ḣ1) well-posed for 0 < t < T on this interval the function

∂s(S(t)[f s0 ])|s=0

belongs to L∞(0, T ; Ḣ1) and is a solution of the linearized problem. Hence by explicit compu-
tation in Fourier space, it has to be given by the formula

(4.2) ∂s(S(t)[f s0 ])|s=0(x, v, t) =

∫

R
eikxe−iω

∗kt G
′(v)

v − ω∗ ρ̂(k)dk

If the problem would be well posed, for initial data given by (4.1) with

(4.3) ∀m > 0 lim
|k|→∞

|k|m|ρ̂(k)| = 0 and ∀a > 0 lim
|k|→∞

|ρ(k)|ea|k| =∞

Claude Bardos
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(which belong to ∩mḢm ) the solution of the linearized problem would exist for some time T
But the formula (4.2) shows that this is not possible. Hence the contradiction �

However (4.2) also indicates that, for initial data satisfying the condition

(4.4) |ρ̂(k)| ≤ Ce−a|k| ,

the linearized problem may remain well posed for |t| < a/|ω∗| and therefore the non linear
problem may be also locally in time well posed.

With the Payley-Wiener theorem (cf. [36] p. 161, and [30, 35]) the condition (4.4) implies
that the function ρ(x) can be extended as an analytic function ρ(x + iy) in the strip |y| < a .
Therefore it is only in the analytic setting that a general Cauchy theorem for the V−D−B
equation can be valid and this is the object of the following

Theorem 4.2. Jabin-Nouri (2011) [22]: For any (x, v) analytic function f0(x, v) with

∀α, m , n sup
x
|∂xm∂vnf0(x, v)|(1 + |v|)α = C(m,n)o(|v|)

there exists, for a finite time T , an analytic solution of the Cauchy problem.

5. Relations with fluid mechanics

However as observed above the linearization near a simple bump profile leads to a very stable
evolution equation and this motivates several stability theorems. Some of them can be obtained
by connections with different equations of fluid mechanics.

5.0.1. The mono-kinetic solution. Direct computations show that a phase space density

f(t, x, v) = ρ(t, x)δ(v − u(t, x))

is a distributional solution of the V−D−B equation (1.1) if and only if its moments

ρ(t, x) =

∫

R
f(t, x, v)dv and ρ(t, x)u(t, x) =

∫

R
vf(t, x, v)dv

are solutions of the system

(5.1) ∂tρ+ ∂x(ρu) = 0 , ∂t(ρu) + ∂x

(
ρu2 +

ρ2

2

)
= 0.

For (ρ, u) ∈ R+ × R the system is strictly hyperbolic therefore the existence of a local in time
(near (ρ0, u0) ∈ H2(R) with ρ0(x) = α > 0) of smooth is ensured (cf. [13] ) . Observe that
this result is in full agreement with the stability of example 2 of the section 2.1.

5.0.2. Multi-kinetic solutions. These observations can be generalized to multi-kinetic solutions
of the form

f(t, x, v) =
∑

1≤n≤N
ρn(t, x)δ(v − un(t, x))

with (ρn, un) solutions of the system

∂tρn + ∂x(ρnun) = 0 ,

∂t(ρnun) + ∂x
(
ρnu

2
n

)
+ ρn∂x

( ∑

1≤`≤N
ρ`

)
= 0.

However this system is not always hyperbolic and the Cauchy problem is not always locally in
time well posed. In particular for N = 2 and (ρ1, ρ2, u1, u2) = (1, 1, a,−a) direct computations
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show that the system is hyperbolic (hence the Cauchy problem is well posed) if and only if
a2 > 2 . Once again this is in full agreement with the Example 3 of section 2.1.

6. The one-bump continuous profile and the genuine Benney equation

The very robust stability of linearized Cauchy problem, near a one-bump profile G(v), indi-
cates that similar local in time results should hold for the full nonlinear equation with initial
data near a one-bump profile G(v).

As long as v 7→ f(t, x, v) remains (for (t, x) given a.e.) a one-bump continuous profile, with
maximum equal to 1 for simplicity, i.e.

sup
v∈R

f(t, x, v) = 1, (t, x) a.e.,

one defines a.e. in (x, a) ∈ R× [0, 1] the functions v±(t, x, a) by the formula

v−(t, x, a) ≤ v+(t, x, a) f(t, x, v±(t, x, a)) = a,

and recover the one-bump profile f(t, x, v) according to the formula

(6.1) f(t, x, v) =

∫ 1

0

Y(v+(t, x, a)− v)− Y(v−(t, x, a)− v))da

where Y denotes the Heaviside function.
Direct computation shows that in this situation f is a distributional solution of the V−D−B

equation if and only if v±(t, x, a) are solutions of the system

(6.2) ∂tv± + v±∂xv± + ∂xρ = 0, ρ(t, x) =

∫ 1

0

(v+(t, x, a)− v−(t, x, a))da.

If we introduce the mean density and velocity of the fluid labelled by the tag “a”, defined
respectively by

(6.3) %(t, x, a) = v+(t, x, a)− v−(t, x, a), u(t, x, a) =
1

2
(v+(t, x, a) + v−(t, x, a))

this system (6.2) is equivalent to the fluid type system

(6.4)

∂t%(t, x, a) + ∂x(%(t, x, a)u(t, x, a)) = 0,

∂tu(t, x, a) + ∂x

(
1

2
u2(t, x, a) +

1

8
%2(t, x, a)

)
+ ∂x

∫ 1

0

%(t, x, b)db = 0,

which was derived by Benney [4] as a model for water-waves. (This the reason for the name

Vlasov-Dirac-Benney). Without the integral term ∂x
∫ 1

0
%(t, x, a)da the infinite dimensional

system (6.4) would be an infinite system of isentropic Euler equations since all the fluids “a”
are decoupled. For such systems two types of results are available.

1 In any space dimension with smooth initial data the local in time existence uniqueness and
stability of a solution (see [13]).

2 In 1 space variable the existence of a global in time weak entropic solution ([11]).
The proof of 1 relies on the fact that the energy

(6.5) E(u, %) =
1

2

∫

R

∫ 1

0

(
%(t, x, a)u2(t, x, a) +

1

12
%3(t, x, a)

)
dadx

is for the isentropic equation (in the sense of Peter Lax) a convex entropy (therefore we use
below the name energy-entropy!).
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The existence of such entropy implies that the system is hyperbolic. Therefore in 1 space
variable it has “Riemann invariants” which are used for the proofs of 2.

In the present case the energy-entropy :
(6.6)

E(u, %) =
1

2

∫

R

∫ 1

0

(
%(t, x, a)u2(t, x, a) +

1

12
%3(t, x, a)

)
dadx+

1

2

∫

R

(∫ 1

0

%(t, x, a)da

)2

dx.

has an extra term which makes the analysis more complicated but does not prevent the gener-
alization of the proofs of 1 or 2.

N. Besse ([5]) already gave a local time result for the Cauchy problem inspired by 2. Using
previous works of Teshukov [32, 33, 34] he extended the notion of Riemann invariants as singular
integral operators (cf. [5]) for details.

Below we describe a new proof for the system (6.2) inspired by the proofs of results of the type
1. This proof is slightly simpler and requires much less regularity (in particular no regularity
with respect to the a variable).

For a one-bump profile, as above, the conserved energy can be expressed in term of the
variables v±. With the relation f(t, x, v±(t, x, a)) = a one has

∫

R

|v|2
2
f(v)dv =

1

6

∫

R

d|v|3
dv

f(v)dv = −1

6

∫

R
|v|3 df

dv
dv =

1

6

∫ 1

0

(v3+(a)− v3−(a))da .

Hence for any one-bump profile, using the notation ~V = (v−, v+)t

(6.7) η(~V) =
1

6

∫ 1

0

(v3+(t, x, a)− v3−(t, x, a))da+
1

2

(∫ 1

0

(v+(t, x, a)− v−(t, x, a))da

)2

is an energy-entropy.
This suggests that the matrix-integral operator (the Hessian of η(~V))

(6.8) Σ(~V) =



−v−(t, x, a) +

∫ 1

0

da −
∫ 1

0

da

−
∫ 1

0

da v+(t, x, a) +

∫ 1

0

da


 ,

should be a symmetrizer for the system (6.2) in the space L2(R;L2(0, 1)). Indeed this leads to
the

Proposition 6.1. A priori estimate. Any smooth solution ~V = (v−, v+)t of the equation
(6.2), satisfies the a priori nonlinear Gronwall estimate

(6.9)
d

dt

(
‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) +

∫

R×(0,1)
(Σ(~V)∂3x

~V, ∂3x
~V)dadx

)

≤ C
(

1 + ‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

Proof. The fact that

∀ k ≥ 1, |∂kxρ(t, x)|2 ≤ 2

∫ 1

0

|∂kx ~V(t, a, x)|2da,

is systematically used. C denotes different constants, all of them being independent of the
solution and changing from line to line. In some of the formulas the variables (t, x, a) may be
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omitted. First observe that one has

(6.10)
‖∂2xρ‖2L∞(R) ≤ C

(
‖∂3xρ‖2L2(R) + ‖ρ‖2L∞(R)

)

≤ C
(
‖∂3x ~V‖2L2(R×(0,1)) + ‖~V‖2L∞(R×(0,1))

)
.

Then from the equation (6.2), using the maximum principle (with integration along character-
istic curves), Young inequality and (6.10), one deduce the estimate

(6.11)

∂t‖~V‖2L∞(R×(0,1)) ≤ C
(
‖∂xρ‖2L∞(R) + ‖~V‖2L∞(R×(0,1))

)

≤ C
(
‖∂3x‖~V‖2L2(R×(0,1)) + ‖~V‖2L∞(R×(0,1))

)

≤ C
(

1 + ‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

By differentiating with respect to the x variable the equation (6.2) we get

∂t∂xv± + v±∂x(∂xv±) = −(∂xv±)2 − ∂2xρ
which, using the maximum principle, Young inequality and (6.10), gives the estimate

∂t‖∂x ~V‖2L∞(R×(0,1)) ≤ C
(
‖∂2xρ‖2L∞(R) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂x ~V‖3L∞(R×(0,1))

)

≤ C
(
‖∂3x ~V‖2L∞(R×(0,1)) + ‖~V‖2L∞(R×(0,1)) +‖∂x ~V‖2L∞(R×(0,1)) + ‖∂x ~V‖3L∞(R×(0,1))

)

≤ C
(

1 + ‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

(6.12)

The next step involves the symmetrization of the equation (6.2) written in the form

(6.13) ∂t ~V +M∂x ~V = 0,

with the matrix-integral operator M given by the formula

(6.14) M(t, x, a) =



v−(t, x, a)−

∫ 1

0

da

∫ 1

0

da

−
∫ 1

0

da v+(t, x, a) +

∫ 1

0

da


 .

For later use observe that the derivatives of M have the following simple form

∀ k ≥ 1, ∂kxM(t, x, a) =

(
∂kxv−(t, x, a) 0

0 ∂kxv+(t, x, a)

)
.

Then for the third-order x-derivative of V one has

(6.15) ∂t∂
3
x
~V +M∂x(∂

3
x
~V) = R,

with
R = −∂3xM∂x ~V − 3∂2xM∂2x

~V − 3∂xM∂3x
~V,

and notice that, with the Gagliardo-Nirenberg interpolation inequality

∀f ∈ H2(R) ‖∂xf‖L4 ≤ C‖∂2xf‖1/2L2 ‖f‖1/2L∞ ,

to bound the term ‖∂2xM∂2xV ‖L2(R×(0,1)) one has

(6.16) ‖R‖L2(R×(0,1)) ≤ C
(
‖∂x ~V‖L∞(R×(0,1))‖∂3x ~V‖L2(R×(0,1))

)
.
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Next apply to the equation (6.15) the operator (6.8) and observe that for almost t ≥ 0 ,
K = SM ∈ L((L2(R× (0, 1)))2) is a matrix-integral symmetric operator given by the formula

K =



−v2− +

∫ 1

0

da · v− + v− ·
∫ 1

0

da −v− ·
∫ 1

0

da −
∫ 1

0

da · v+

−v+ ·
∫ 1

0

da −
∫ 1

0

da · v− v2+ +

∫ 1

0

da · v+ + v+ ·
∫ 1

0

da


 .

For later use observe that the t derivative of Σ(~V) and the x derivative of K are given by

(6.17) ∂tΣ(~V) =

(
−∂tv−+ 0

0 ∂tv+

)
=

(
v−∂xv+ + ∂xρ 0

0 −v+∂xv+ − ∂xρ

)

(6.18)

∂xK =

(
−2v−∂xv− +

∫ 1

0
da · ∂xv− + ∂xv− ·

∫ 1

0
da −∂xv− ·

∫ 1

0
da−

∫ 1

0
da · ∂xv+

−∂xv− ·
∫ 1

0
da−

∫ 1

0
da · ∂xv+ 2v+∂xv+ +

∫ 1

0
da · ∂xv+ + ∂xv+ ·

∫ 1

0
da

)

Therefore applying Σ(~V) to the equation (6.15), and taking the L2(R × (0, 1))-scalar-product

against ∂3x
~V, leads to

(6.19)
d

dt
(Σ(~V)∂3x

~V, ∂3x
~V) = 2(Σ(~V)R, ∂3x

~V) + (∂tΣ(~V)∂3x
~V, ∂3x

~V) + (∂xK∂
3
x
~V, ∂3x

~V) .

The three terms of the right hand side of (6.19) are estimated as follows. For the first term,
using (6.8) and (6.16) one has

‖(Σ(~V)R, ∂3x
~V)‖ ≤ ‖Σ(~V)‖L∞‖R‖L2(R×(0,1))‖∂3x ~V‖L2(R×(0,1))

≤ C(1 + ‖∂x ~V‖L∞R×(0,1)))‖R‖L2(R×(0,1))‖∂3x ~V‖L2(R×(0,1))

≤ C
(

1 + ‖~V‖2L∞R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

For the second term, using (6.17) and (6.10), one gets

|(∂tΣ(~V)∂3x
~V,∂3x

~V)| ≤ C
(
‖~V∂x ~V‖L∞(R×(0,1)) + ‖∂xρ‖L∞(R)

)
‖∂3x ~V‖2L2(R×(0,1))

≤ C
(

1 + ‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

Finally for the third term, using (6.18) and the same token, one obtains

|(∂xK∂3x ~V, ∂3x ~V)| ≤ ‖∂xK‖L∞(R×(0,1))‖∂3x ~V‖2L2(R×(0,1))

≤ C
(

1 + ‖~V‖2L∞(R×(0,1)) + ‖∂x ~V‖2L∞(R×(0,1)) + ‖∂3x ~V‖2L2(R×(0,1))

)2
.

With the insertion of these three estimates in (6.19), and estimates (6.11)-(6.12) the proof of
the proposition (6.1) is completed. �

This leads to the following theorem

Theorem 6.1. Let us introduce the functionnal space

(6.20) B(T ∗) =
{
~V ∈ C (0, T ∗;L∞(Rx × (0, 1))) ∩ L∞

(
0, T ∗;L2((0, 1);H3(Rx))

)}

and the open subset O(m,M, T ∗) of B(T ∗), defined by

(6.21) O(m,M, T ∗) =
{
~V ∈ B(T ∗) with 0 < m < −v−(t, x, a), v+(t, x, a) < M <∞

}
.
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1. Assume that the initial data ~V(0, x, a) = (v−(0, x, a), v+(0, x, a))t satisfy for some given
m > 0, and M > 0 the estimate

(6.22) m < −v−(0, x, a) < M and m < v+(0, x, a) < M,

and the regularity property

(6.23) ‖∂3x ~V(0)‖L2(R×(0,1)) ≤ κ <∞,
then there exists a time T ∗ = T ∗(m,M,R) such that the corresponding Cauchy problem, for the
system

(6.24) ∂tv± + ∂x

(
v2±
2

+

∫ 1

0

(v+(t, x, a)− v−(t, x, a))da

)
= 0,

has a unique solution (~V = (v−(t, x, a), v+(t, x, a))t) ∈ O(m,M, T ∗).

2. Moreover if ~V(0, x, a) is the weak limit (for instance in L∞(R × (0, 1)) weak-∗) of a

sequence of functions ~VN(t, x, a) which satisfy uniformly with respect to N the estimates (6.22)
and (6.23) the corresponding solutions (defined in O(m,M, T ∗) with T ∗ independent of N)

converge (for instance in B(T ∗) weak-∗) to a function ~V(t, x, a) which is the solution of the
problem (6.24) with the corresponding initial data.

Proof. The a priori estimate (6.9) is an adaptation to the present case (where M includes in
its expression integral operators) of the classical estimates for hyperbolic systems with entropy.
Then the remaining part of the proof follows the lines of this classical case (see [13] for example).
The main detail in the difference appears in the Gronwall estimate deduced from the relation
(6.9). It would be of the type

dY

dt
≤ CY 2,

with

Y (t) = ‖~V(t)‖2L∞(R×(0,1)) + ‖∂x ~V(t)‖2L∞(R×(0,1)) +

∫

R×(0,1)
(S(t)∂3x

~V(t), ∂3x
~V(t))dadx,

if the right hand side of (6.9) could be bounded by CY 2. In Y (t) appears the expression

(Σ(~V)(t)∂3x
~V(t), ∂3x

~V(t))

=

∫

R
dx

∫ 1

0

da
(
−v−(t, x, a)(∂3xv−(t, x, a))2 + v+(t, x, a)(∂3xv+(t, x, a))2

)

+

∫

R
dx

(∫ 1

0

(∂3xv+(t, x, a)− ∂3xv−(t, x, a))da

)2

,

(6.25)

which is non negative provided −v−(t, x, a) > 0 and v+(t, x, a) > 0. Moreover for Y (t) to be
finite at t = 0, the hypothesis −v−(x, a, 0), v+(x, a, 0) < M are required. However the relations

m < m1 < −v−(t, x, a), v+(t, x, a) < M1 < M,

are “open properties” and with ∂tΣ(~V) bounded in L∞, they remain valid for a finite time.
With these observations one can construct say by iteration and for T ∗ small enough (as in [13]

and [29]) the solution Σ(~V) ∈ O(m,M, T ∗) .
The point 2 is a direct consequence of the fact that the x regularity estimate is uniform with

respect to N . This is enough to pass to the limit in the equations. �
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Remark 6.1. 1. As noticed above the system, (6.2) is equivalent with the change of unknowns
(6.3) to the Benney equation (6.4), hence the theorem 6.1 provides with this change of variables
a similar treatment of the Cauchy problem for this system. In fact a direct proof (with slightly
more complicated estimates) could be done for this system using the symmetrizer

(6.26) ∇2E(ρ, u)(t, x, a) =


1

4
%(t, x, a) +

∫ 1

0

da u(t, x, a)

u(t, x, a) %(t, x, a)


 .

2. The essential “geometric hypothesis” are

−M < v−(x, a, 0) < −m < 0 < m < v+(x, a, 0) < M .

Besides this requirement the present proof uses no regularity or monotonicity of the map a 7→
v±(t, x, a). However with the equation

(6.27) ∂t∂a(v±) + ∂x(v±(∂av±)) = 0,

obtained by differentiating (6.24) with respect to the a variable, one observes that the solution
v±(x, a, t) given by the theorem 6.1 would preserve the monotonicity of the functions a 7→
v±(x, t, a) up to the time T ∗ whenever such property holds for t = 0 [12].

Keeping in mind the point 2 of the above remark one can consider for V (t, x, a) piecewise
constant functions with respect to the a variable as described in the following,

Proposition 6.2. Assume that the functions v±(0, x, a) are piecewise constant and defined by
the formula

for 1 ≤ j ≤ N and
N − j
N

< a ≤ N − j + 1

N
, v±(0, x, a) = v±(0, x, j),

with for 1 ≤ j ≤ N ,

v±(0, x, j) ∈ H3(R) and m < −v−(0, x, j), v+(0, x, j) < M,

then the Cauchy problem associated to the waterbag equation (6.24) with the corresponding
initial data v±(0, x, a) has a unique solution V ∈ O(m,M, T ∗).

This proposition is a direct consequence of the Theorem 6.1 because the initial data satisfy
the hypothesis of this theorem.

To conclude this section the above results are applied to the original Vlasov-Dirac-Benney
equation with the following

Theorem 6.2. Assume that the functions v±(0, x, a) satisfy the hypothesis of the Theorem 6.1,
that a 7→ v−(0, x, a) is increasing and a 7→ v+(0, x, a) is decreasing then the Vlasov-Dirac-
Benney equation (1.1) with initial data given by

(6.28) f0(x, v) =

∫ 1

0

(Y(v+(0, x, a)− v)− Y(v−(0, x, a)− v))da,

(with Y denoting the Heaviside function) has for 0 < t < T∗ a unique solution

f(t, x, v) ∈ L∞ (0, T ∗;Lp(Rx × Rv)) for all 1 ≤ p ≤ ∞,
with

ρ(t, x) =

∫

R
f(t, x, v)dv ∈ L∞(0, T ∗;H3(R)),
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which is given by the formula

(6.29) f(t, x, v) =

∫ 1

0

(Y(v+(t, x, a)− v)− Y(v−(t, x, a)− v))da .

Moreover when f0 is defined as the limit for N →∞ of a sequence of functions

fN0 (x, v) =

∫ 1

0

(Y(vN+ (0, x, a)− v)− Y(vN− (0, x, a)− v))da,

where the a 7→ vN± (0, x, a) are monotonic functions (a 7→ v−(0, x, a) non-decreasing and a 7→
v+(0, x, a) non-increasing) satisfying , uniformly with respect to N , the hypothesis

−M < vN− (0, x, a) < −m, 0 < m < vN+ (0, x, a) < M,

‖v±(0)‖L2((0,1);H3(Rx)) <∞,
the corresponding solutions exist on a time interval T ∗ independent of N and one has

fN(t, x, v) ⇀ f(t, x, v) in L∞(0, T ∗;Lp(Rx × Rv)) weak− ∗,

ρN(t, x) =

∫

R
fN(t, x, v) ⇀ ρ(t, x) =

∫

R

f(t, x, v)dv in L∞(0, T ∗;H3(R)) weak− ∗ .

Proof. We first prove that the monotonicity of the functions a 7→ v±(t, x, a) is preserved by the
dynamics. Let us set w± = v±(b) − v±(a), ṽ = v±(b) + v±(a), and form the equation for the
difference w± of two solutions of (6.24), which is equivalent to integrate the equation (6.27)
with respect to the a variable between a and b. Therefore multiplying the resulting equation by
the derivative of a convex regularization of the modulus of w±, integrating with respect to the
x variable and using the fact that v±(t) ∈ L1((0, 1);W 1,1(Rx)) (since v±(t) ∈ L2((0, 1);H3(Rx))
and using Sobolev embeddings) we can show the property

(6.30)
d

dt
‖w±‖L1(Rx) ≤ 0.

Now using Crandall-Tartar result [12] about the relation between nonexpansive (i.e. (6.30))
and order preserving (i.e. monotonicity of the functions a 7→ v±(t, x, a)) mappings, we get,
after time integration of (6.30), the desired result. Since now the monotonicity of the functions
a 7→ v±(t, x, a) is preserved by the dynamics, it implies that one can use the formula (6.29) to
reconstruct the solution f or fN . In particular observe that the fN are solutions of a Liouville
equation

∂tf
N + v∂xf

N + ∂xρ
N∂vf

N = 0, ρN(t, x) =

∫

R
fN(t, x, v)dv,

with ρN uniformly bounded in L∞(0, T ;H3(R)) which can be used to consider the limit N →
∞. �
Remark 6.2. The biggest constraint in the above construction is the fact that the functions
a 7→ v±(0, x, a) have to be defined on a fixed interval (say a ∈ [0, 1]) and bounded above and
below. This implies for the initial profiles v 7→ f0(x, v) the following x independent properties.
(H1) There exist an x independent constant 0 < M <∞ such that

(6.31) |v| ≥M ⇒ f0(x, v) = 0

(H2) There exist an x independent constant 0 < m <∞ constant such that

(6.32) |v| ≤ m⇒ f0(x, v) = 1
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(H3) v 7→ f0(x, v) is non decreasing on the interval )−∞, y−m] v 7→ f0(x, v) and on increasing
on the interval [m,∞( v 7→ f0(x, v) . In short it is a “plateau ”profile.

The instability theorem 4.1 implies that the one bum shape of the profile has to be preserved
by the dynamic and therefore the hypothesis (H2) and (H3) seem almost optimal. On the other

hand in the right hand side of (6.25) appears the ∂3x
~V quadratic term

∫

R
dx

∫ 1

0

da
(
−v−(t, x, a)(∂3xv−(t, x, a))2 + v+(t, x, a)(∂3xv+(t, x, a))2

)

where ∂3xv±(t, x, a))2 are multiplied by the factor |v±(t, x, a)| . Therefore with estimates adapted
to this factors (treated as weights) it may be possible to relax the hypothesis (H1) and consider
one bump initial profiles with unbounded support?

On the other hand it is important to observe that no other regularity with respect to v is
needed and the introduction of the vN± satisfying the hypothesis of the theorem 6.2 shows the
validity of the waterbag model (cf. [5] and [6] for details) as a convenient approximation for the
continuous model.

Remark 6.3. Some different physical scalings lead, instead of V−D−B equation, to other
variants and in particular to the constant density Vlasov equation, i.e.

∂tf + v · ∇xf + E · ∇vf = 0,

∫

Rd
f(t, x, v)dv = 1,

(cf. [7, 8, 9, 19, 21]) where the electric field plays the role of the Lagrange multiplier of the
constraint “constant density”. For instance, in more than one dimension (d > 1) this equation
has non trivial mono-kinetic solutions f(t, x, v) = ρ0δ(v − u(t, x)), where ρ0 is constant and
u(t, x) is the solution of the incompressible Euler equation. For d = 1, Grenier [19] proves an
instability theorem (Theorem 1.1) which is the counterpart of Example 4 of section 2 and of
Theorem 4.1 of section 4. Moreover by energy methods he has proven, for one-bump profile a
stablility result (Theorem 2.1) which share much in common with the present Theorem 6.1.

7. The Vlasov-Dirac-Benney equation at the cross road of semi-classical
limits, fluid mechanics and integrability

It has been observed that stability results can be consequences of the relation of the Vlasov
equation with equations in fluid mechanics. For the classical Vlasov equation this is not a new
idea. Since the paper of Brenier [7] this point of view appeared to be very fruitful for the analysis
of singular limits cf. [21], [28], [5] and [6]. However for what we dubbed V−D−B the connection
was already formally made by Zakharov in 1980 [37]. He observed formal relations between the
Vlasov equation, and the WKB or semi-classical limits of the Non-Linear Schrödinger equation.

Therefore I would like to emphasize that such formal semi-classical limits turn out to be
“rigorously proven limits ” only in cases which also correspond to the stability near one-bump
profile.

Start from the Schrödinger equation in Rd with a time-dependent potential V (t, x)

(7.1) i~∂tψ = H(~, V (t))ψ = −~2

2
∆ψ + V (t, x)ψ,

which defines a unitary dynamic in L2(Rd) and assume that the wave-function ψ satisfies the
normalization condition ∫

Rd
|ψ(t, x)|2dx = 1 .
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With

(7.2) V (t, x) =

∫

Rd
V(x− y)|ψ(t, y)|2dy,

one has the family of self consistent Schrödinger equations with in particular the Schrödinger
Poisson equation when V is the Coulomb Potential or the Non-Linear Schrödinger equation
when V is the Dirac mass.

On the other hand with the introduction of the commutator [A,B] = AB−BA, the so-called
self-consistent Von Neumann equation

(7.3) i~∂tK~(t) = [K~(t),H(~, V (t))] with V (t, x) =

∫

Rd
V(x− y)K~(t, y, y)dy,

defines a dynamics on trace 1 self-adjoint unitary operators in L2(Rd) (with kernel denoted
by K~(t, x, y)). In particular whenever ψ~(t) is solution of the equation (7.1) with V (t) given

by (7.2), K~(t, x, y) = ψ~(t, x) ⊗ ψ~(t, y) is a solution of the Von-Neumann equation (7.3).
Eventually introduce the Wigner transform of the operator K~(t)

(7.4) W~(t, x, v) =
1

(2π)d

∫

Rd
e−iy·vK~

(
t, x+

~
2
y, x− ~

2
y
)
dy,

and observe that its formal ~→ 0 limit W (t, x, v) is a solution of the Vlasov equation

∂tW (t, x, v) + v · ∇xW (t, x, v)−∇x

(∫

Rd
V(x− y)

∫

Rd
W (t, y, w)dwdy

)
· ∇vW (t, x, v) = 0,

with

(7.5) W0(x, v) := W (0, x, v) = lim
~→0

W~(0, x, v).

Such results are proven when the potential V is smooth enough (cf. [27] or [16]).
For the Non-Linear Schrödinger equation and for its formal limit the V−D−B equation the

situation is completely different. Since the Cauchy problem may be ill posed (cf. Theorem
4.1) there are in general no chances of such convergence (even for C∞ data and small time).
However, for d = 1, convergence should hold for initial data of the form

K~(0, x, y) =

∫

R
ei
x−y
~ vW0

(
x+ y

2
, v

)
dv,

with W0(x, v) being a one-bump profile satisfying in term of v±(0, x, a) the hypothesis of the
Theorem 6.1 because the limit problem is well posed. I am not aware of such result. On the
other hand if W0 (cf. (7.5)), is analytic (satisfying the Jabin-Nouri hypothesis [22]) convergence
should hold for a finite time. Here also, to the best of my knowledge there is no general proof
of this fact. However in the WKB limit there is a contribution of P. Gerard [15] which may be
generalized. This WKB limit refers to the ~ scaling of the equation (as above) and to initial
data in the form

ψh(0, x) =
∑

1≤k≤N
ρk(x)ei

Sk(x)

~

which give for the Wigner transform at time t = 0,

(7.6) W~(0, x, v) =
1

2π

∫

R
e−iyvψ~

(
0, x+

~
2
y
)
ψ~

(
0, x− ~

2
y
)
dy.

Claude Bardos

XV–18



Now under general hypothesis (ρk ∈ L1
loc, ∂xSk ∈ W 1,1

loc ) and the ∂xSk(x) linearly independent
one has

(7.7) W~(0, x, v)→
∑

1≤k≤N
ρk(x)δ(v −∇Sk(x)), in D′(R).

For N = 1, this corresponds to a mono-kinetic initial data. This is a case (also the “extreme
case” of the one-bump profile) of initial data which give for V−D−B equation a local in time
(before the appearance of singularities) stable solution. Therefore in this setting one can ex-

pect that the Wigner transform of ψ~(t, x)⊗ ψ~(t, y) will converge to the solution of V−D−B
equation. And in fact several proofs of such convergence are available (as said above [15] in the
analytic case) but also Grenier [17, 18] with a proof based on a modification of the Madelung
transform and finally Jin, Levermore and McLaughlin [23].

Note also that the case N > 1, in formula (7.6), has been considered by Zakharov [37] with
formal proofs of convergence. These proofs should completely work in the analytic case as an
application of [15]. In less regular cases for example with N = 2 and (7.7) the examples of
section 5.0.2 lead to the conjecture that with non analytic initial data, local in time convergence
may hold in some cases but not in every cases.

The proof in ([23]) which holds for the mono-kinetic limit is based on the complete integrabil-
ity of the Non-Linear Schrödinger equation by inverse scattering. And therefore the V−D−B
equation appears to share many properties of integrable systems. Zakharov [37] says “it is
integrable in a certain sense”! And he insists on the existence, for the genuine Benney equation
of an infinite number of integrals of motion obviously related to the infinite set of invariants
for the nonlinear Schrödinger equation and to the infinite set of conserved quantities (entropy)
for the 2× 2-equations of fluid mechanics.

8. Conclusion

The spectral analysis share much in common with the approach of Penrose (because of the
1d structure and of the fact that the potential is semi-positive). However due to the singularity
the effect of the initial data on the behavior of the solution (both for the linearized problem
and for the original nonlinear equation ) are much more drastic than for the classical Vlasov
Poisson equation. The case where the problem is locally in time well posed are treated thanks
to interpretation in term of fluid mechanic. A good reason for the name “Benney ” .

As said above the stability results are very sensitive to the geometrical structure of the initial
data and this sensitivity persists all over the article from the property of the linearized problem
to the stability analysis of the non linear one and to its interpretation as a WKB limit of non
linear Schrödinger type equations.

What we dubbed energy-entropy quantities are in fact invariants of the dynamic. They could
be related at every level of the analysis to an intrinsic hamiltonian structure of the problem and
play the same role as the Casimir in the stability theory of Arnold for the 2d Euler equation cf
for instance [1].

Therefore this leaves some room for further studies both on one hand for application to
approximation and numerical analysis and on the other hand, at intrinsic mathematical theory,
for the role that this type of equation may play at the cross road of different limits that share
in common some hamiltonian structure. Eventually one may consider perturbation of profiles
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G(v) with “multi-bumps ” but small enough so that there would be no unstable mode:

(8.1) ∀ω∗ ∈ =+ |1−
∫

Rv

G′ε(v)

v − ω∗dv| > η

In this case one can describe the evolution of the linearized problem (near this profile) by a
distribution group of operators a described in [3]. This means a “almost well posed Cauchy
problem” or more precisely an evolution equation well posed with a finite lost of regularity.
In the setting it may be possible that the non linear problem be approached with the Nash
Moser theorem. Such a construction seems to require not only more regularity with respect
to the x variable but also to the v . And this type of hypothesis are definitely not satisfied for
approximations like the multi water-bags considered above.
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