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INVISCID LIMIT FOR FREE-SURFACE NAVIER-STOKES EQUATIONS

FREDERIC ROUSSET

ABSTRACT. The aim of this talk is to present recent results obtained with N. Masmoudi on
the free surface Navier-Stokes equations with small viscosity.

1. INTRODUCTION

We are interested in the motion of viscous fluids with a free surface under the influence of

gravity.
In the incompressible case, the equations of motion read:
(1.1) du+u-Vu+Vp=cAu, V-u=0, z€f,

where u € R3 is the velocity of the fluid and p € R is the apparent pressure, p = p* + p”
with p? the pressure of the fluid and p" = g3 the hydrostatic pressure. We assume that the
fluid domain is the simplest one:

Q, = {$ eR3 13< h(t,xl,xg)}

with h(t, x1,22) which defines the free surface is also an unkown in the problem.
The boundary conditions on the free surface x3 = h(t, z1,x2) are the following:

(1.2) Oh =u- N = —u 00h — ugOoh + us, (11, 75) € R?
where N is the outward normal given by N = (—01h, —dsh, 1)" and
(1.3) pN —-2eSuN =ghN

where

Su = %(Vu + V).

The first boundary condition is of kinematic nature, it basically states that fluid particles
on the free surface have to stay on the free surface. The second boundary condition is of
physical nature, it means that one can impose the normal component of the stress tensor
(we neglect surface tension) on the free surface.

We are interested in the motion of the fluid at large Reynolds number, this is the reason
for the small parameter € > 0 in the equation (1.4).

We shall focus the exposition on the incompressible case which is technically slightly easier,
but one can also consider more complete models taking into account compressible effects [31],

L {3tp+v~(pu)20,
(-4 plowu~+u-Vu] —eV - 2u(p)S(u) + A(p)(V-u)|+Vp=F,, x€Q,t>0

where p(t, x) is the density, u(t,z) € R? is the velocity of the fluid and p is the pressure of
the fluid. We can assume that the fluid is isentropic and hence p = p” is a function of p.
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The fluid is again supposed to be viscous. The shear viscosity is given by eu(p) and the bulk
viscosity is given by e(u(p) + A(p)). Finally, F, is a forcing term.

In the limit ¢ tends to zero, we expect the solution of (1.4) to converge towards a solution
of the free surface Euler equation. Indeed, it is a natural conjecture in fluid mechanics
that the physical solutions of the Euler equations are the ones that can be obtained by
vanishing viscosity limit from the Navier-Stokes equation. In order to perform rigorously
this justification, we want to:

o Get the existence of a strong solution on an interval of time [0, 7] independent of €
e Get uniform estimates sufficient to pass to the limit towards a solution of the Euler
equation and thus recover the well-posedness of the free surface Euler equation.

There are two main difficulties in order to implement this strategy for the Navier-Stokes
equation with free surface boundary conditions. The first one is related to the control of the
regularity of the surface uniformly in € and the second one is related to the presence of a
boundary layer in the vicinity of the free surface. Note that for such an approach to be valid
we need to get a functional space in which both the Navier-Stokes and the inviscid, Euler,
equations are well posed.

2. BOUNDARY LAYERS

We shall first discuss briefly the problem of boundary layers. For the Navier-Stokes equa-
tion, even with boundary conditions on a rigid wall, it is well known that the standard local
existence results of strong solutions are valid on an interval of time [0, 7] with 7 that tends
to zero when ¢ goes to zero and thus they cannot be used in order to pass to the limit from
strong compactness arguments. Note that even in the two-dimensional case where strong
solutions are known to be global, the uniform estimates are also only valid on an interval
of time that vanishes when e goes to zero. All this difficulties are due to the presence of a
boundary layer that is to say a small region close to the boundary where the gradient of the
solution is very large.

In the case of an homogeneous Dirichlet boundary condition on a rigid wall uj,_o=01n

the simplest domain 2 = {z > 0}, the expected description of the solution is:
ut ~uf +V(ty, 2/Ve)

where u” is a solution of the Euler equation and V' (¢,y, Z), the boundary layer, is supposed
to be fastly decreasing in its last variable. One immediately see that «* cannot be bounded
in H*, s > 5/2 which is the standard space in which the 3-D Euler equation is well-posed.
Nevertheless, one can try to justify rigorously the above asymptotic expansion i.e. to write
the solution under the form

(2.1) ut = uP +V(t,y,z/\E) +1°

and study the equation for the remainder r° in order to prove that it goes to zero (of course
if needed one can start from an approximate solution with more terms). There are many
difficulties in the case of Dirichlet boundary conditions:

E

e the profile V' solves the Prandtl equation which is often ill-posed for non analytic
data: [13].
e even when one can construct it, the approximate solution can be unstable [16], [21]
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Therefore, for the Navier-Stokes equation with Dirichlet boundary condition, the justification
of the inviscid limit is known only in the analytic framework [34].

Nevertheless, we point out that the above approach is efficient even for general quasilinear
hyperbolic-parabolic systems (thus also for compressible fluids and MHD equations) when the
boundary is non-characteristic (this happens for example with injection or succion boundary
conditions), in this case the size of the boundary layer is € (in the ansatz (2.1), V' depends
on z/¢) or in dimension one. We refer to [15, 17, 18, 32, 20, 33, 38].

A more favorable boundary condition on a rigid wall for which the boundary layer is
similar to the one about a free surface is the Navier (slip) boundary condition which reads

N®N
N2

(2.2) u-N =0, [ISuN = ollu, II=1Id—

where av > 0 is a fixed parameter. The justification of the inviscid limit for the Navier-Stokes
equation with Navier boundary condition has been studied for a long time, [4], [11], [25],
[23]. In particular, in the three-dimensional case, in [23], it is proven by a modulated energy
type approach that for a sufficiently smooth solution of the Euler equation defined on some
interval [0, 7], an L? convergence holds on [0,T]. Nevertheless, these results, in particular
the last one in 3D do not provide uniform estimates in strong norms. In the case of the
Navier boundary condition, this is not needed in order to pass to the limit since one can
start from a Leray global weak solution but since the existence of weak solutions is not known
for the Navier-Stokes equation with a free surface, in order to see the problem with Navier
boundary condition as a model problem for the free surface, we need to prove that a strong
solution in a suitable functional space of the Navier-Stokes equation exists on an interval of
time independent of €. For some special type of Navier boundary conditions or boundaries,
some uniform H? (or W7 with p large enough) estimates and a uniform time of existence
for Navier-Stokes when the viscosity goes to zero have been recently obtained (see [39, 8, 7]).
For these special boundary conditions, the main part of the boundary layer vanishes which
allows this uniform control in some limited regularity Sobolev space. Nevertheless, as shown
in [24], in the case of Navier boundary conditions, the asymptotic expansion is under the
form

(2.3) uf =uf + VeV(t,y, z/VE) +erf

and the profile V' except for exceptional boundary conditions (i.e. for some choice of «) is
not zero. With this expansion, we see that u° still cannot be bounded in H®* s > 5/2 when V'
is not zero. Nevertheless, these case seems much more favorable since one can expect the
Lipschitz norm of u* to be uniformly bounded. Consequently, it seems reasonable to get
uniform estimates by using the Sobolev conormal spaces that are classically used in the
study of hyperbolic initial boundary value problems [5, 19, 22, 37].

We shall use the following definition:

In S, defined by = = (y,2), y € R? 2 < 0. Let us introduce the vector fields

z
1—2

ZZ' == ai, Z == 1, 2, Zg - 8Z.
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We define the Sobolev conormal spaces H™ on L? as

H(S)={f e L*S), z°felL*S), |aof<m}
IF15 = > 12717

laj<m
We can also consider the Sobolev conormal spaces built on L*°:
W (S) = {f € L¥(S), Z°f € L™(S), la] <m)

1 oo = D 12 fllzoe-

|la|<k

For general domains with smooth boundaries, the spaces can be defined by using local charts.
In [29], we have obtained:

Theorem 2.1. For m > myg, and 2 a smooth domain, consider ug a divergence free vector
field with zero mormal component on the boundary and such that vy € H?, Vuy € H™™!
and Vug € WL, Then , there exists T > 0 such that for every e € (0,1), there is a unique
solution u® of the Navier-Stokes equation (1.4) with Navier boundary condition with initial

data ug. Moreover, we have the uniform estimates:
T
sup ([u(®)ln + (9Ot + V(D)) + 2 | IV as <.
; 0
From the above uniform estimates, it is easy to get:

Corollary 2.2. u® converges strongly towards u solution of the Euler equation and such that

sup ([[u()llm + [F0(8) 1+ [Vu(t) 1.0 ) < +o0
[0,7]

)

The proof of this result is based on conormal energy estimates of v and its normal derivative
and on direct L™ type estimates for Vu. These L*° estimates which are the most delicate
to get are obtained directly from the equation and not from Sobolev embedding. Indeed,
in view of the behaviour (2.3), one cannot get uniform estimates for ||0,ul/z~ from Sobolev
embedding results.

3. THE FREE SURFACE NAVIER-STOKES AND EULER EQUATIONS

Local existence results for the free surface Navier-Stokes equation (1.4), (1.2), (1.3) are
now classical [6], [36]. The unknown domain is flattened by using Lagrangian coordinates
and the local existence result is obtained in ”parabolic” Sobolev spaces H"([0,T] x ) =
H3(0,T, 12) 1 L([0,T), H" (), 7 > 3.

In the case of the Euler equation with a free surface, namely
(3.1) ou+u-Vu+Vp=0, V-u=0, ze
with the boundary condition (1.2) and

p=gh
on the boundary, local existence results have been obtained only recently. The difficulty
is that once the problem is transformed into a fixed domain, the new velocity v and the

V4
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surface h are at the same level of regularity. Note that the problem is well-posed only if the
Taylor sign condition

(3.2) —ONp+g>co >0

is verified. Under this condition, the first local existence result in H?® for s sufficiently large
has been obtained in a series of paper [10, 27, 28]. It is based on the reformulation of the
equation in Lagrangian coordinates and the use of the Nash-Moser iteration scheme. More
recent results have been obtained by using other approaches [12, 35]. Note that much more
can be said when u is assumed in addition to be irrotationnal (we obtain the famous water-
waves system), we refer for example to [40], [26], [41], [14], [1]. Nevertheless, note that
irrotational solutions are not really interesting for our problem since in the context of the
Navier-Stokes equation, vorticity on the boundary is automatically created.

4. MAIN RESULT

We shall now describe our approach to get an existence result which is uniform with respect
to e for (1.4), (1.2), (1.3). Note that in order to have uniform estimates, we shall need to
assume a Taylor sign condition (3.2). We also point out that as in the case of the Navier
boundary conditions, we cannot get uniform H*® estimates due to the presence of boundary
layers and we shall thus use Sobolev conormal spaces. [

We first need to choose a way to fix the domain. Many choices are possible, we shall use
a smoothing diffeomorphism defined by

O(t,): w=(y,2), 2 <0 (y,0(t,y,2) = Az +n(t, y, 2))
with 7 defined through its Fourier transform by

Fyn = x([€]2)h

where y is a smooth compactly supported function which takes the value one in the vicinity
of zero. The number A > 0 is chosen in order to have 0, > 1 at the initial time which
ensures that ® is a diffeomorphism.

The main advantage of this choice is that n has a standard Sobolev regularity while for
other choices like Lagrangian coordinates where ® is directly attached to the velocity, ®
will only get from the velocity a Sobolev conormal regularity. This creates some additionnal
difficulties in places. With this choice, one easily gets for n the following type of estimates

Proposition 4.1. We have the following estimates for n
Vs> 0, [Vn(®)lls) < Culh(®)l.

Vs € N, ||77||st°° < Cs|h|s,ooa

For functions defined on the boundary, the norms |- |, and | - |; « refer to the standard
Sobolev norms.

Next, we set v = uo ®, g = pod. This yields an equation for (v, ¢,n) in the fixed domain
S={r=(y,2), 2 <0}

(4.1) 6fv+(v-V“”)v+V“"q:5A‘pv, V. =0, €8
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where the new differential operators are defined by

o , 1
0 =0,— %9, i=0,1,2 & =0"=—0.
0. 0.

and the gradient V¥ and Laplacian A¥ are defined in a natural way by using these operators.
On the boundary, we obtain

(4.2) oh=v-N, qN—-2S°vN=ghN, 2z=0.

Before stating our main result, we also need to define precisely the form of the Taylor sign
condition that we shall use. By using the divergence free condition, we get as usual that the
pressure ¢ solves the elliptic equation

A¥q=—-V¥.(v-V*).
Moreover, by using the second boundary condition, we get that on the boundary
q/2—0 = 2eS%vn - n+ gh,

where n is the unitary outward normal to €2;. We shall thus decompose the pressure into an
"Euler” part and a ”"Navier-Stokes” part by setting ¢ = ¢ + ¢™° with

AfqP = —V¥? - (v-V¥v), ql._g=gh

and
APGNS =0, q/z 2o =2e5%vn - n.

The main idea is that the part ¢V which is small can be always controlled by using the energy
dissipation of the Navier-Stokes equation while ¢” which is of order one is the part which
should converge to the pressure of the Euler equation when ¢ goes to zero. Consequently,
the Taylor sign condition has to be imposed on ¢”. After the change of coordinates, this
becomes

(4.3) g— 8fq/EZ:0 > ¢o > 0.
Our main result reads.

Theorem 4.2. For m > 6, assuming that the above Rayleigh condition is matched att =0,
then for sufficiently smooth initial data, there exists T > 0 and C' > 0 independent of € such
that the solution of (4.1), (4.2) satifies :

s (o, + A€, + 102012 + 19017 ) + 10:00 1) <

Moreover, we also have the estimates

T
Sup (elhly s +elldzzvliz) + 8/0 (IVolls, + 1Vovll,_2) < C

The first estimate in the above result is weaker than in Theorem 2.1 since we have a
control of [|0,v| ym-1 which is only L* in time and not L>. This is linked to the regularity
of the pressure in our problem as we shall see below.

By using the above uniform estimates, one can justify the inviscid limit from standard
(strong) compactness arguments. The above result does not rely on the construction of an
asymptotic expansion under the form (2.3) and allows to recover the local well-posedness of
the free surface Euler equation (in conormal Sobolev spaces) as a corollary.
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The complete proof of this result can be found in [30]. The aim of the next section is to
describe the main steps of the proof.

5. SKETCH OF THE PROOF

Since local existence results are classical for the Navier-Stokes equation, the main difficulty
is to prove that the solution can be continued on an interval of time independent of . We
thus need to prove that the quantities that appear in the statement of Theorem 4.2 can be
controlled on an interval of time independent of ¢. We can get an estimate in closed form
through four steps. Note that in the following, we shall work on an interval of time for
which we assume that the Taylor sign condition is verified and the map ®(¢,) is indeed a
diffeomorphism.

Step 1: Estimates of v and h. The starting point is the energy identity for the system which
reads:

Proposition 5.1. For any smooth solution, we have the energy identity:

d
d—(/ |v|2th+g/ |h|2dy> +4g/ 1S0]2 dV, = 0.
1\ Js 2=0 S

Here dV; stands for the natural volume element induced by the change of variable (4.1):
AV, = 0,¢(t,y, z) dydz.

The next step is to estimates higher order conormal derivatives: we want to estimate Z%v
and Z%h for 1 < |a| < m. The difficulty here is that the coefficients in the equation (4.1)
are not smooth enough (even with the use of the smoothing diffeomorphism that we have
taken) to neglect the commutators in an usual way. For example, for the transport term
which reads,

1
820 +v- V<P = (9,5 + ?}yay + %('U -N — @n)@z, N = (—81@7 —8%0, 1)t
the commutator between Z¢ and this term in the equation involves in particular the term
(v Z*N)0,v which can be estimated only with the help of | Z*N|| ~ |h|m+%. This yields a

loss of 1/2 derivative. We also get similar problems when we compute for the pressure term
the commutator between Z¢ and V¥q. The way to solve this difficulty was pointed out by
Alinhac in [3], one can use the good unknown V¢ = Z% — 0%vZ“n. Indeed, let us set

N(v,q,¢) =0fv+ (v-V?)v+ VPq—2eV% - (S0).
Then, if N'(v,q,p) = 0, the linearized equation can be written under the form
DN(U7Q7SO> : (lbaq.a 90) -
(OF + (v-V¥) =2V (S9-)) (0= 0%v¢) + V(¢ — 07q¢)
+(0 - V?)v — p(0v - V).
This means that the fully linearized equation has the same structure as the equation lin-
earized with respect to the v variable only thanks to the introduction of the good unknown.

By using this crucial remark, we get that the equation for (Z%v, Z%q, Z*n) can be written
as

OV +v - VAV + V2Q" —2eV? - S¥V* = Lot
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with V& = Z% —0%vZ°%, Q® = Z°q— 09qZ*n and hence we can perform an L? type energy
estimate for this equation.
The main conclusion of this step will be that

t
(270 = o0z n) ()| + [h()[3, < Co+ tA(R) + / l0.vll2,_,
0

where Cjy depends only on the initial data as soon as
Qu(t) = [[vll5, + R[5, + [10:0[7 o + [[v]300 + 10:0]17 o + €[0T < R
for t € [0,7°].

Step 2: Normal derivative estimates I. In order to close the argument, we need to have
estimates on 0,v. We shall first estimate |0, v]| Leo(um-2)- This is not sufficient to control
the right hand side in the above estimate, but this will be important in order to get L>
estimates. The main idea is to use the equivalent quantity

Sy =1IS?v N

which vanishes on the boundary. This allows to perform conormal estimates on the
convection-diffusion type equation with homogeneous Dirichlet boundary condition satisfied
by Sn. This yields again an estimate under the form

t
100D, < Co + tAR) + / 1.l .

Step 3: L estimates. We also have to estimate the L* norms that occur in the definition
of Q. The estimate of ||v]|2, is & consequence of the anisotropic Sobolev estimate:

11300 SN0 Fllk—2 1 fllis & >5.

Consequently, the difficult part is to estimate ||0,v]|1 . Again, it is more convenient to
estimate the equivalent quantity ||Sn||1,. since Sy solves a convection diffusion equation
with homogeneous boundary condition. The estimate of ||Sx|/z~ is a consequence of the
maximum principle for this equation. The estimates for ||Z;Sy||~ are more difficult to
obtain. The main reason is that a crude estimate of the commutator between Z; and the
variable coefficient operator A¥ involves terms with two normal derivatives of Sy and hence
three normal derivatives of v. To fix this difficulty, we note that at this step, the regularity of
the surface is not really a problem: we want to estimate a fix low number of derivatives of v
in L* while m can be considered as large as we need. Consequently, the idea is to change the
coordinate system into a normal geodesic one in order to get the simplest possible expression
for the Laplacian. By neglecting all the terms that can be estimated by the previous steps,
we get a simple one-dimensional equation under the form

8,531\; + z@zwg(t, Yy, O)@ZSN + wh(t, Yy, O) . vth - 882251\[ =l.0t

where S ~n stands for Sy expressed in the new coordinate system and w is the vector field
that we obtain from v by the change of variable. This is a one-dimensional Fokker Planck
type equation for which the Green function is explicit and hence, we can use it to estimate
| Z:Sn || oe-
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Again the conclusion of this step is an estimate under the form
t
10:0]1% oo + €[102:0][Te < Co + tA(R) +/ 100171
0

Step 4: Normal derivative estimate I1. In order to close our estimate, we still need to estimate
|0.v]|m—1. For this estimate it does not seem a good idea to use Sy as an equivalent quantity
for 0,v. Indeed, the equation for Z™~1Sy involves Z™ 'D?p as a source term and we note
that since the Euler part of the pressure involves an harmonic function that verifies p = gh
on the boundary, we have that

Zm—1D2pE ~ Zm—lD%h ~ |h|m+%

and hence we do not have enough regularity of the surface. For a better treatment of the
pressure, it is natural to try to use the vorticity w = V¥ x v in place since we have the
equation.
WZm w4V -VZ™" lw —eAPZ = Lot

Nevertheless, note that while for the Euler equation the vorticity which solves a transport
equation with characteristic boundary is very easy to estimate, for the Navier-Stokes equation
in domain with boundaries it is much more difficult. The difficulty in the case of the Navier-
Stokes equation is that we need an estimate of the value of the vorticity on the boundary to
estimate it in the interior. Since on the boundary we have roughly Z™ 'w ~ Z™v + Z™h,
we only have by using a trace estimate a (uniform) control by known quantities (and in
particular the energy dissipation of the Navier-Stokes equation) of

t
\/E/O |Zm71w/z:0‘%2(R2)'

To guess what is the best estimate that we can expect, we can study a similar situation
for the heat equation

atf_gAf:O7Z<O7 f/z:():fb

where we assume that the boundary value f° is such that

T
b 2
Ve [ [ ittpaay <c.

By using a Laplace-Fourier transform, we get that
1
~ . 2, .
f — 6(7+Z7—+e|§\2) %fby 2 <0

and hence we get

~

‘f(%ﬂf: )

£
o VE

: PP
(7 + 7] + <léf?)?

This yields
+00 +oo
| e o a < ve [ e par
0 0

Consequently, we see that we get a control of f in H i((O,T), L?) which gives by Sobolev
embedding an estimate of f in L*([0,T], L?(2)) only.

Motivated by this computation on the heat equation, we shall get an estimate of
|1 Z™ wl| La¢o,1),12) by using a microlocal energy estimate. Note that the transport term in
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the equation has an important effect. Indeed, in the previous example of the heat equation,
if we add a constant drift ¢ - Vf in the equation, we obtain a smoothing effect under the
form

+o0 1
| e+ ok e e a
0

Consequently, we first switch into Lagrangian coordinates in order to eliminate the transport

term and we look for an estimate of ||(Z™'w) o X|| 1 . For this estimate, we use
H4([0,T],L2)

a microlocal symmetrizer based on a ”partially” semiclassical paradifferential calculus i.e.
based on the weight (72 + |7|2 4|2 £[*)1). The main properties of this calculus can be seen
as a consequence of the general quasihomogeneous calculus studied in [32].

This finally allows to get an estimate of || Z™10.v|| La(0,r),12)-

The general estimate follows by combining the estimates of the four steps. Note that in
the end, we also have to check that the Taylor sign condition and the condition that ®(t, -)
is a diffeomorphism remain true.
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