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Quasi-periodic solutions of PDEs

Massimiliano Berti

Abstract: The aim of this talk is to present some recent existence results about quasi-periodic solutions
for PDEs like nonlinear wave and Schrödinger equations in Td, d ≥ 2, and the 1-d derivative wave
equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.1

Keywords: KAM for PDE, Nash-Moser Theory, Quasi-Periodic Solutions, Small Divisors, Nonlinear
Schrödinger and wave equation, Infinite Dimensional Hamiltonian Systems.

2000AMS subject classification: 35Q55, 37K55, 37K50.

1 Introduction

In the last years important mathematical progresses have been achieved in the study of evolutionary
Partial Differential Equations (PDEs), like the nonlinear Schrödinger (NLS) and wave (NLW) equations,
adopting the “dynamical systems philosophy”, focusing, in particular, on the search of invariant tori of
the phase space filled by periodic and quasi-periodic solutions.

A natural setting concerns the bifurcation of quasi-periodic solutions close to linearly stable (elliptic)
equilibria of a PDE. The main difficulty for the existence proof is the presence of arbitrarily “small
divisors” in the perturbative expansion series of the expected solutions. Such small divisors arise by
complex resonance phenomena between the normal mode frequencies of the system.

The main strategies which have been developed to overcome the small divisors difficulty are based on
quadratic iterative scheme like:

1. KAM (Kolmogorov-Nash-Moser) theory,

2. Newton-Nash-Moser implicit function theorems.

The KAM approach consists in generating iteratively a sequence of transformations of the phase
space which bring the Hamiltonian system into a normal form with an invariant torus at the origin.
This iterative procedure requires, at each step, to invert the so called linear “homological equations”. In
the usual KAM scheme the normal form has constant coefficients (reducibility), hence the homological
equations have constant coefficients and can be solved by Fourier series imposing the “second order
Melnikov” non-resonance conditions. The final KAM torus is linearly stable.

This scheme was effectively implemented by Kuksin [24] and Wayne [31] to prove the existence of
quasi-periodic solutions for one dimensional (1-d) NLW and NLS equations. These pioneering results
were limited to Dirichlet boundary conditions because the eigenvalues of ∂xx had to be simple. Actually,
the required second order Melnikov non resonance conditions are violated in presence of multiple normal
frequencies (because differences of normal frequencies appear), for example, already for periodic boundary
conditions (two eigenvalues of ∂xx are equals).

Then a more direct bifurcation approach was proposed by Craig and Wayne [18] for 1-d NLS and NLW
with periodic boundary conditions. After a Lyapunov-Schmidt decomposition, the search of the invariant
torus is reduced to solve a functional equation in scales of Banach spaces, by some Newton-Nash-Moser
implicit function theorem.

The main advantage of this approach is to require only the so called “first order Melnikov” non-
resonance conditions for solving the linearized equations (homological equations) at each step of the

1Text of a conference held the 14 February 2012 at the Séminaire Laurent Schwartz, IHES, Paris.
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iteration. These conditions are essentially the minimal assumptions, and, in particular, do not involve
differences of normal frequencies. Translated in the KAM language this corresponds to allow a non-
constant coefficients normal form around the torus. The main difficulty of this strategy is that the
homological equations are PDEs with non-constant coefficients and are small perturbations of a diagonal
operator having arbitrarily small eigenvalues. Hence it is hard to estimate their inverses in high norms.
Craig-Wayne [18] solved this problem for periodic solutions of 1-d analytic NLS and NLW and Bourgain
[11] also for quasi-periodic solutions.

At present, the theory for 1-d NLS and NLW with semilinear nonlinearities has been sufficiently
understood (see e.g. [25]), but much work remains about quasi-periodic solutions of PDEs

1. in higher space dimensions, e.g. x ∈ Td, d ≥ 2,

2. with nonlinearities containing derivatives.

We shall first present in section 2 some new existence result of quasi-periodic solutions for NLW (and
NLS) on Td, d ≥ 2, via Nash-Moser theory, and, then, for 1-d Hamiltonian derivative wave equations via
KAM theory (section 3).

2 PDEs in higher space dimension

The main difficulties for PDEs in higher space dimensions are that

1. the eigenvalues of −∆ + V (x) appear in clusters of unbounded sizes,

2. the eigenfunctions are, in general, “not localized with respect to the exponentials”.

Roughly speaking, property 2 means that, if we expand the eigenfunctions of −∆ +V (x) with respect
to the exponentials, the Fourier coefficients rapidly converge to zero. This property always holds in 1
space dimension (see [18]) but may fail for d ≥ 2, see [13]. This problem has been often bypassed consid-
ering pseudo-differential PDEs where the multiplicative potential V (x) is substituted by a “convolution
potential” V ∗ (eij·x) := mje

ij·x, mj ∈ R, j ∈ Zd (which acts diagonally on the exponentials). The scalars
mj are called the “Fourier multipliers” and play the role of “external parameters”.

The Newton-Nash-Moser approach is, in principle, very useful to overcome problem 1, because it
requires only the first order Melnikov non-resonance conditions and therefore does not exclude multiplicity
of normal frequencies. Actually, developing this perspective, Bourgain [13], [15] was able to prove the
existence of quasi-solutions for NLW and NLS with Fourier multipliers on Td, d ≥ 2.

More recently, also the KAM approach has been extended by Eliasson-Kuksin [20] for NLS on Td with
Fourier multipliers. The key issue is to control more accurately the perturbed frequencies after the KAM
iteration and, in this way, the difference of the normal frequencies, verifying the second order Melnikov
non-resonance conditions. A related technique is developed in section 3. We refer also to Procesi-Procesi
[29] and Wang [30] for completely resonant NLS. For the NLW equation on Td still no reducibility results
are available.

2.1 Quasi-periodic solutions of NLW on Td

As a model equation we consider d-dimensional nonlinear wave equations like

utt −∆u+ V (x)u = εf(ωt, x, u) , x ∈ Td , ε > 0 , (2.1)

where the multiplicative potential V is in Cq(Td;R), the nonlinearity is quasiperiodic-in-time with a
non-resonant frequency vector ω ∈ Rν (see (2.5), (2.6)), and

f ∈ Cq(Tν × Td × R;R) (2.2)

for some q ∈ N large enough (fixed in Theorem 2.1).
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Concerning the potential we suppose that

Ker(−∆ + V (x)) = 0 . (2.3)

In (2.1) we use only one external parameter, namely the length of the frequency vector (time scaling).
More precisely we assume that the frequency vector ω is co-linear with a fixed vector ω̄ ∈ Rν ,

ω = λω̄ , λ ∈ Λ := [1/2, 3/2] ⊂ R , |ω̄| ≤ 1 , (2.4)

where ω̄ is Diophantine, namely for some γ0 ∈ (0, 1),

|ω̄ · l| ≥ γ0

|l|ν , ∀l ∈ Zν \ {0} , (2.5)

and ∣∣∣
∑

1≤i≤j≤ν
ω̄iω̄jpij

∣∣∣ ≥ γ0

|p|τ0 , ∀p ∈ Z
ν(ν+1)

2 \ {0} . (2.6)

There exists ω̄ satisfying (2.5) and (2.6) at least for τ0 > ν(ν + 1)− 1 and γ0 small. For definiteness we
fix τ0 := ν(ν + 1).

Remark 2.1. Condition (2.6) is required for NLW (not for NLS), see the end of the section.

The dynamics of the linear wave equation

utt −∆u+ V (x)u = 0 (2.7)

is well understood. The eigenfunctions of

(−∆ + V (x))ψj(x) = µjψj(x)

form a Hilbert basis in L2(Td) and the eigenvalues µj → +∞ as j → +∞. By assumption (2.3) all the
eigenvalues µj are different from 0. We list them in non-decreasing order

µ1 ≤ . . . ≤ µn− < 0 < µn−+1 ≤ . . . (2.8)

where n− denotes the number of negative eigenvalues (counted with multiplicity).
All the solutions of (2.7) are the linear superpositions of normal mode oscillations, namely

u(t, x) =
n−∑

j=1

(β−j e
−
√
|µj |t + β+

j e
√
|µj |t)ψj(x) +

∑

j≥n−+1

Re(aje
i
√
µjt)ψj(x) , β±j ∈ R , aj ∈ C .

The first n− eigenfunctions correspond to hyperbolic directions where the dynamics is attractive/repulsive.
The other infinitely many eigenfunctions correspond to elliptic directions.

• Question: for ε small enough, do there exist quasi-periodic solutions u(ωt, x) of the nonlinear
wave equation (2.1) for positive measure sets of λ ∈ [1/2, 3/2]?

Note that, if f(ϕ, x, 0) 6≡ 0 then u = 0 is not a solution of (2.1) for ε 6= 0.

The above question amounts to look for (2π)d+ν-periodic solutions u(ϕ, x) of

(ω · ∂ϕ)2u−∆u+ V (x)u = εf(ϕ, x, u) (2.9)

in the Sobolev space

Hs := Hs(Tν × Td;R) :=
{
u(ϕ, x) :=

∑

(l,j)∈Zν×Zd
ul,je

i(l·ϕ+j·x) : ‖u‖2s :=
∑

i∈Zν+d
|ui|2〈i〉2s < +∞ ,

u−i = ui , where i := (l, j) , 〈i〉 := max(|l|, |j|, 1)
}

(2.10)
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for some (ν + d)/2 < s ≤ q.
The above question turns into a bifurcation problem for equation (2.9) from the trivial solution

(u, ε) = (0, 0). The main difficulty is that the unperturbed linear operator

(ω · ∂ϕ)2 −∆ + V (x)

possesses arbitrarily small eigenvalues −(ω ·l)2 +µj , called “small divisors”. As a consequence, its inverse
operator, if any, is unbounded and the standard implicit function theorem can not be applied.

The following theorem is proved in [8] by a Nash-Moser implicit function iterative scheme.

Theorem 2.1. ([8]) Assume (2.5)-(2.6).

Existence: There are s := s(d, ν), q := q(d, ν) ∈ N, such that: ∀f ∈ Cq, ∀V ∈ Cq satisfying (2.3),
∀ε ∈ [0, ε0) small enough, there is a map

u(ε, ·) ∈ C1(Λ;Hs) with sup
λ∈Λ
‖u(ε, λ)‖s → 0 as ε→ 0 , (2.11)

and a Cantor like set Cε ⊂ Λ := [1/2, 3/2] of asymptotically full Lebesgue measure, i.e.

|Cε| → 1 as ε→ 0, (2.12)

such that, ∀λ ∈ Cε, u(ε, λ) is a solution of (2.9) with ω = λω̄.

Regularity: If V, f are of class C∞ then u(ε, λ) ∈ C∞(Td × Tν ;R).

An analogous result holds for the Hamiltonian NLS equation

iut −∆u+ V (x)u = εf(ωt, x, u, ū) , x ∈ Td ,

see [6]-[7]. Condition (2.6) is not required for NLS.

Remark 2.2. It is clear that the existence of quasi-periodic solutions for just a Cantor like set of param-
eters Cε is not a technical restriction! In a complementary region, chaotic motions and Arnold diffusion
phenomena shall occur. In some sense Theorem 2.1 is complementary to the results in [16].

The novelties of Theorem 2.1 are that we prove the existence of quasi-periodic solutions with:

1. finitely differentiable nonlinearities, see (2.2),

2. a multiplicative (finitely differentiable) potential V (x),

3. a pre-assigned (diophantine) direction of the tangential frequencies, see (2.4).

1. Finitely differentiable PDEs. Theorem 2.1 (and the analogous in [6] for NLS) confirms the
natural conjecture about the persistence of quasi-periodic solutions for Hamiltonian PDEs into a setting of
finitely many derivatives. Actually almost all the previous literature was valid for analytic nonlinearities
(actually polynomials in [13], [15]). The nonlinearity in Theorem 2.1, as well as the potential, is sufficiently
many times differentiable, depending on the dimension and the number of the frequencies. Of course we
can not expect the existence of quasi-periodic solutions under too weak regularity assumptions: for finite
dimensional systems, it has been rigorously proved that, if the vector field is not sufficiently smooth, then
all the invariant tori could be destroyed and only discontinuous Aubry-Mather invariant sets survive.

2. Multiplicative potential. Theorem 2.1 (and the anologous for NLS in [6]) is the first existence
result of quasi-periodic solutions with a multiplicative potential V (x) on Td, d ≥ 2. We never exploit
properties of “localizations” of the eigenfunctions of −∆ + V (x) with respect to the exponentials, that
actually might not be true, see [13]. Along the multiscale analysis we use the exponential basis which
diagonalizes −∆ +m where m is the average of V (x) and not the eigenfunctions of −∆ + V (x). Further
properties of the eigenfunctions of the Laplacian with a periodic potential seem to be unavoidable to
prove also reducibility.
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3. Parameter dependence. For finite dimensional systems, the existence of quasi-periodic solutions
with tangential frequencies constrained along a fixed direction has been proved by Eliasson [19] and Bour-
gain [12]. The main difficulty clearly relies in satisfying the Melnikov non-resonance conditions, required
at each step of the iterative process, using only one parameter. Bourgain raised in [12] the question if a
similar result holds true also for infinite dimensional Hamiltonian systems. This has been recently proved
in [4] for 1-dimensional PDEs, verifying the second order Melnikov non-resonance conditions of KAM
theory. Theorem 2.1 answers positively to Bourgain’s question also for PDEs in higher space dimension.

4. PDEs defined on more general manifolds. Finally we mention that the previous results
(valid for PDEs on flat tori Td) should generalize to NLS and NLW defined on more general manifolds.
The dynamics of a PDE on a compact Riemannian manifold strongly depends on its geometry, via the
properties of the eigenvalues and the eigenfunctions of the Laplace-Beltrami operator. In [9]-[10] we proved
the existence of periodic solutions of NLS and NLW defined on compact Zoll manifolds (i.e. spheres),
Lie groups and homogeneous spaces. In these cases, the eigenvalues are highly degenerate and only weak
properties of localization of the eigenfunctions hold. Interestingly, many tools in [9]-[10] resemble the
Birkhoff normal form techniques developed by Bambusi, Delort, Grebért, Szeftel [2] for PDEs on spheres
and Zoll manifolds.

Ideas of proof. Theorem 2.1 is proved by a Nash-Moser iteration. The main step concerns the
invertibility of (any finite dimensional restriction of) the linearized operator

L(u) := L(ω, ε, u) := Lω − εg(ϕ, x) (2.13)

where
Lω := (ω · ∂ϕ)2 −∆ + V (x) and g(ϕ, x) := (∂uf)(ϕ, x, u) , (2.14)

obtained linearizing (2.9) at a non zero approximate solution u (defined iteratively along the scheme).
The function g depends also on λ through u.

Remark 2.3. The main difficulty is that L(u) has non constant coefficients in both (ϕ, x) and then
Fourier decomposition does not apply. Moreover, since L−1

ω is unbounded, the zero-order perturbative
term εg(ϕ, x) acts as a “singular perturbation” of Lω.

We decompose the multiplicative potential as V (x) = m+ V0(x) where m is the average of V (x) and
V0(x) has zero mean value. Then we write

Lω = Dω + V0(x) where Dω := (ω · ∂ϕ)2 −∆ +m (2.15)

has constant coefficients. In the Fourier basis (ei(l·ϕ+j·x)), the operator L(u) is represented by the infinite
dimensional self-adjoint matrix

A(ω) := A(ω, ε, u) := D + T

where
D := diag(l,j)∈Zν×Zd − (ω · l)2 + ‖j‖2 +m := diagi∈Zbδi ,

‖j‖2 := j2
1 + . . .+ j2

d , i := (l, j) ∈ Zb := Zν × Zd , δi := −(ω · l)2 + ‖j‖2 +m (2.16)

and
T := T2 − εT1 , T := (T i

′
i )i,i′∈Zb , T i

′
i := (V0)j−j′ − εgi−i′ (2.17)

represents the multiplication operator by V0(x)− εg(ϕ, x). The off-diagonal matrix T is Töplitz, namely

T i
′
i depends only on the difference of the indices i− i′, and, since the functions g, V ∈ Hs, then T i

′
i → 0

as |i− i′| → ∞ at a polynomial rate. In other words, T is “polynomially localized close to the diagonal”.

Remark 2.4. Since g(ϕ, x) is real valued, the operator L(u) is self-adjoint, and the eigenvalues of all its
finite dimensional restrictions vary smoothly with respect to the one dimensional parameter λ ∈ [1/2, 3/2].
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We construct inductively better and better approximate solutions

un ∈ Hn :=
{
u ∈ Hs : u =

∑

|(l,j)|≤Nn
ul,j e

i(l·ϕ+j·x)
}

of the NLW equation (2.9), solving by a Nash-Moser iteration, the “truncated” equations

(Pn) Pn

(
Lωu− εf(u)

)
= 0 , u ∈ Hn ,

where Pn : Hs → Hn denote the orthogonal projectors onto Hn and Nn := N2n

0 . The Pn are smoothing
operators.

The main step is to prove that the finite dimensional matrices Ln := Ln(un−1) := PnL(un−1)|Hn are
invertible for “most” parameters λ ∈ Λ and satisfy the interpolation estimates

‖L−1
n h‖s ≤ C(s)(Nτ ′+δs

n ‖h‖s0 +Nτ ′+δs0
n ‖h‖s) , ∀s ≥ s0 , (2.18)

which are sufficient for the Nash-Moser convergence. Note that the exponent τ ′ + δs in (2.18) grows
with s, unlike the usual Nash-Moser theory where the “tame” exponent is s-independent. Actually the
conditions (2.18) are optimal for the convergence, as a famous counter-example of Lojasiewicz-Zehnder
[27] shows: if δ = 1 the Nash-Moser iterative scheme does not converge.

L2-bounds. The first step is to show that, for “most” parameters λ ∈ Λ, the eigenvalues of Ln are in
modulus bounded from below by O(N−τn ) (1th order Melnikov non-resonance conditions) and so

‖L−1
n ‖0 = O(Nτ

n) . (2.19)

The proof is based on an eigenvalue variation argument. We explain it in the simplest case that −∆ +
V (x) ≥ β0I > 0 is positive definite. Dividing Ln by λ2, and setting ξ := 1/λ2, we observe that the
derivative with respect to ξ satisfies

∂ξ(ξLn) = Pn(−∆ + V (x))|Hn +O(ε‖T1‖0 + ε‖∂λT1‖0) ≥ β0

2
,

for ε small, i.e. it is positive definite. So, the eigenvalues µl,j(ξ, ε) (which depend C1-smoothly on ξ for
fixed ε, see remark 2.4) of the self-adjoint matrix ξLn satisfy

∂ξµl,j(ξ, ε) ≥
β0

2
, ∀|(l, j)| ≤ Nn ,

which easily implies (2.19) except in a set of λ’s of measure O(N−τ+d+ν
n ).

Remark 2.5. The above excision of the parameters λ is the origin of the Cantor set Cε in Theorem 2.1.

Tame estimate for L−1
n . The L2-estimate (2.19) alone implies only a bound like (2.18) with δ = 1. In

order to prove the sublinear decay (2.18) for the Green functions we have to exploit (mild) “separation
properties” of the small divisors: not all the eigenvalues of Ln are O(N−τn ) small. We have to worry only
about the singular sites (l, j) such that

| − (ω · l)2 + ‖j‖2 +m| ≤ ρ . (2.20)

Heuristically, the key is to show that, as ρ→ 0 the singular sites become “more and more rare”, decom-
posing is separated huge clusters. This is the hard part of the analysis. This is obtained by a multiscale
procedure, assuming the non-resonance condition

∣∣∣n+
∑

1≤i≤j≤ν
pijωiωj

∣∣∣ ≥ γ

1 + |p|τ0 , ∀(n, p) ∈ Z1+
ν(ν+1)

2 \ {0} , γ > 0 , (2.21)

which is satisfied by ω = λω̄ for most λ ∈ Λ (thanks to (2.6)). A condition like (2.21) is necessary because
the singular sites are integer points near a cone, see (2.20), and not a paraboloid like for NLS. Then it is
necessary to assume an irrationality condition on the “slopes” of this cone. Assumption (2.21) is weaker
than in [15]. It seems to be the weakest possible.
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3 KAM theory for 1-d derivative NLW

KAM theory for PDEs with nonlinearities containing derivatives has been first extended by Kuksin [25]
and Kappeler-Pöschel [23] for KdV equations, and, for the 1d-derivative NLS (DNLS) and Benjiamin-Ono
equations, by Liu-Yuan [26]. The key idea of these results is again to provide only a non-reducible normal
form around the torus. However, in this cases, the homological equations with non-constant coefficients
are only scalar (not an infinite system as in the previous section). We remark that the KAM proof is
more delicate for DNLS and Benjiamin-Ono, because these equations are less “dispersive” than KdV, i.e.
the eigenvalues of the principal part of the differential operator grow only quadratically at infinity, and
not cubically as for KdV. As a consequence of this difficulty, the quasi-periodic solutions in [25], [23] are
analytic, in [26], only C∞. Actually, for the applicability of these KAM schemes, the more dispersive the
equation is, the more derivatives in the nonlinearity can be supported. The limit case of the derivative
nonlinear wave equation (DNLW) -which is not dispersive at all- is excluded by these approaches.

In the paper [12] (which proves the existence of quasi-periodic solutions for semilinear 1d-NLS and
NLW), Bourgain claims, in the last remark, that his analysis works also for the Hamiltonian “derivation”
wave equation

ytt − yxx + g(x)y =
(
− d2

dx2

)1/2

F (x, y) ,

see also [14], page 81. Unfortunately no details are given. However, Bourgain [14] provided a detailed
proof of the existence of periodic solutions for the non-Hamiltonian equation

ytt − yxx + my + y2
t = 0 , m 6= 0 ,

(for m = 0 it is easy to see that non trivial periodic solutions do not exist).
These kind of problems have been then reconsidered by Craig in [17] for more general Hamiltonian

derivative wave equations like

ytt − yxx + g(x)y + f(x,Dβy) = 0 , x ∈ T ,

where g(x) ≥ 0 and D is the first order pseudo-differential operator D :=
√
−∂xx + g(x). The pertur-

bative analysis of Craig-Wayne [18] for the search of periodic solutions works when β < 1. The main
reason is that the wave equation vector field gains one derivative and then the nonlinear term f(Dβu)
has a strictly weaker effect on the dynamics for β < 1. The case β = 1 is left as an open problem.
Actually, in this case, the small divisors problem for periodic solutions has the same level of difficulty of
quasi-periodic solutions with 2 frequencies.

The next theorem extends KAM theory to deal with the Hamiltonian derivative wave equation

ytt − yxx + my + f(Dy) = 0 , m > 0 , D :=
√
−∂xx + m , x ∈ T , (3.1)

with real analytic nonlinearities

f(s) = as3 +
∑

k≥5

fks
k , a 6= 0 . (3.2)

Theorem 3.1. ([5]) For all m > 0, for every choice of the tangential sites

I := {j1, . . . , jn} ⊂ Z , n ≥ 2 , (3.3)

the equation (3.1)-(3.2) admits families of small-amplitude, analytic, quasi-periodic solutions of the form

y(t, x) =
∑

j∈I

√
ξj cos(ω∞j (ξ) t+ ϕj + jx) + o(

√
ξ) , ω∞j (ξ)

ξ→0→
√
j2 +m,

for a Cantor like set of parameters ξ with asymptotically full measure as ξ → 0. Such quasi-periodic
solutions have zero Lyapunov exponents and the linearized equation is reducible to constant coefficients.
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Ideas of proof. For proving Theorem 3.1 we write the equation (3.1) as the infinite dimensional
Hamiltonian system

ut = −i∂ūH , ūt = i∂uH ,

with Hamiltonian

H(u, ū) :=

∫

T
ūDu+ F

(u+ ū√
2

)
dx , F (s) :=

∫ s

0

f , (3.4)

in the complex unknown

u :=
1√
2

(Dy + iyt) , ū :=
1√
2

(Dy − iyt) , i :=
√
−1 .

Then, setting u =
∑

j∈Z
uje

ijx, ū =
∑

j∈Z
ūje
−ijx we obtain the Hamiltonian in infinitely many coordinates

H =
∑

j∈Z
λjuj ūj +

∫

T
F
( 1√

2

∑

j∈Z
(uje

ijx + ūje
−ijx

)
dx (3.5)

where
λj :=

√
j2 + m (3.6)

are the eigenvalues of the diagonal operator D.

Remark 3.1. The nonlinearity in (3.1) is x-independent implying, for (3.4), the conservation of the

momentum −i

∫

T
ū∂xu dx. This symmetry simplify somehow the KAM proof (see also Geng-You [21]).

For every choice of the tangential sites I := {j1, . . . , jn} ⊂ Z as in (3.3) the integrable Hamiltonian∑

j∈Z
λjuj ūj has the invariant tori

{
uj ūj = ξj > 0 , for j ∈ I , uj = ūj = 0 for j 6∈ I

}
(3.7)

parametrized by the actions ξ = (ξj)j∈I ∈ Rn+ (these tori correspond to the solutions of the linear wave
equation). The goal of the KAM iteration is prove the existence of nearby invariant tori for the complete
Hamiltonian H in (3.5).

After a Birkhoff normal form step (which depends on the term as3 of the nonlinearity in (3.2)), we
introduce action-angle coordinates on the tangential variables:

uj =
√
ξj + yje

ixj , ūj =
√
ξj + yje

−ixj , |yj | < ξj , j ∈ I , (uj , ūj) = (zj , z̄j) , j /∈ I . (3.8)

Then we reduce to consider a parameter dependent family of analytic Hamiltonians of the form

H = ω(ξ) · y + Ω(ξ) · zz̄ + P (x, y, z, z̄; ξ) (3.9)

where the frequencies Ωj(ξ) are close to the unperturbed frequencies λj in (3.6).

KAM theorem. The goal of the KAM iteration is to continue the torus {x ∈ Tn, y = 0, z = z̄ = 0}
(which is (3.7) in the coordinates (3.8)) when the perturbation P 6= 0 is sufficiently small. This is achieved
finding a change of variables Φ∞ close to the identity which transforms the Hamiltonian (3.9) into

H∞ := H ◦ Φ∞ = ω∞(ξ) · y + Ω∞(ξ) · zz̄ + P∞(x, y, z, z̄; ξ) (3.10)

whose perturbation satisfies

(
∂yizj1 z̄j2P

∞
)

(x, 0, 0, 0; ξ) = 0 , 0 ≤ 2i+ j1 + j2 ≤ 2 .
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As well known, the main difficulty is to fulfill, at each iterative step, the second order Melnikov non-
resonance conditions. Actually it is sufficient to verify

|ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ)| ≥ γ

1 + |k|τ , γ > 0 , (3.11)

only for the “final” frequencies ω∞(ξ) and Ω∞(ξ) and not along the inductive iteration (see the formulation
of the KAM theorem given in [5], [4]).

The application of the usual KAM theory (see e.g. [25], [28]), to the DNLW equation provides only
the asymptotic decay estimate

Ω∞j (ξ) = j +O(1) for j → +∞ . (3.12)

Such a bound is not enough: the set of parameters ξ satisfying (3.11) could be empty. Note that for
the semilinear NLW equation (see e.g. [28]) the frequencies decay asymptotically faster, namely like
Ω∞j (ξ) = j +O(1/j).

The key idea for verifying the second order Melnikov non-resonance conditions (3.11) for DNLW is to
prove the higher order asymptotic decay estimate

Ω∞j (ξ) = j + a+(ξ) +
m

2j
+O(

γ2/3

j
) for j ≥ O(γ−1/3) (3.13)

where a+(ξ) is a constant independent of j (an analogous expansion holds for j → −∞ with a possibly
different limit constant a−(ξ)). In this way infinitely many conditions in (3.11) are verified by imposing
only first order Melnikov conditions like |ω∞(ξ) · k + h| ≥ 2γ2/3/|k|τ , h ∈ Z. Indeed, for i > j >
O(|k|τγ−1/3), we get

|ω∞(ξ) · k + Ω∞i (ξ)− Ω∞j (ξ)| = |ω∞(ξ) · k + i− j +
m(i− j)

2ij
+O(γ2/3/j)|

≥ 2γ2/3|k|−τ −O(|k|/j2)−O(γ2/3/j) ≥ γ2/3|k|−τ

noting that i− j is integer and |i− j| = O(|k|) (otherwise no small divisors occur).

Quasi-Töplitz perturbations. The asymptotic decay (3.13) for the perturbed frequencies Ω∞(ξ) is
achieved thanks to the “quasi-Töplitz” property of the perturbation. Let us roughly explain this notion.
The new normal frequencies after each KAM step are Ω+

j = Ωj + P 0
j where the corrections P 0

j are the
coefficients of the quadratic form

P 0zz̄ :=
∑

j

P 0
ijziz̄j , P 0

j :=

∫

Tn
(∂2
zj z̄jP )(x, 0, 0, 0; ξ) dx .

We say that a quadratic form P 0 is quasi-Töplitz if it has the form

P 0 = T +R

where T is a Töplitz matrix (i.e. constant on the diagonals) and R is a “small” remainder satisfying
Rjj = O(1/j) Then (3.13) follows with a := Tjj which is independent of j.

Since the quadratic perturbation P 0 along the KAM iteration does not depend only on the quadratic
perturbation at the previous steps, we need to extend the notion of quasi-Töplitz to general (non-
quadratic) analytic functions.

The preservation of the quasi-Töplitz property of the perturbations P at each KAM step (with just
slightly modified parameters) holds in view of the following key facts:

1. the Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz (Proposition 3.1 of [5]),

2. the Lie transform of a quasi-Töplitz function is quasi-Töplitz (Proposition 3.2 of [5]),
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3. the solution of the homological equation with a quasi-Töplitz perturbation is quasi-Töplitz (Propo-
sition 5.1 of [5]).

We note that, in [20], the analogous properties 1 (and therefore 2) for Töpliz-Lipschitz functions is
proved only when one of them is quadratic.

Remark 3.2. We also mention the recent KAM theorem of Grebért-Thomann [22] for the quantum
harmonic oscillator with semilinear nonlinearity. Also here the eigenvalues grow to infinity only linearly.

Finally, we plan to extend these results also to derivative wave equations

ytt − yxx + my = g(x, y, yx, yt)

under the reversibility assumptions

g(x, y, yx,−v) = g(x, y, yx, v) , g(−x, y,−yx, yt) = g(x, y, yx, yt) .

The algebraic scheme employs the ideas of reversible KAM theory. The asymptotic analysis of the
perturbed frequencies after the KAM iteration is obtained as before.
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[23] Kappeler T., Pöschel J., KAM and KdV, Springer, 2003.

[24] Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum,
Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987.

[25] Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19,
Oxford University Press, 2000.

[26] Liu J., Yuan X., A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded
Perturbations, Comm. Math. Phys, 307 (3), 629-673, 2011.

[27] Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-
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