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ELLIPTIC PROBLEMS WITH INTEGRAL DIFFUSION

YANNICK SIRE

Abstract. In this paper, we review several recent results dealing with
elliptic equations with non local diffusion. More precisely, we investigate
several problems involving the fractional laplacian. Finally, we present a
conformally covariant operator and the associated singular and regular
Yamabe problem.
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1. Fractional powers of elliptic operators

For an operator L, self-adjoint, non negative, one can define its fractional
powers by means of spectral theory, namely

∀ s ∈ (0, 1), Lsf =
1

Γ(1− s)

∫ ∞

0
t−s Le−Ltf dt.

or

∀ s ∈ (0, 1), Lsf =
sin(π(1− s))

π

∫ ∞

0
λs−1 L (L+ λ Id)−1f dλ.

We now give two examples. In Rn, we consider the Fourier multiplier of
symbol |ξ|2s which is the fractional laplacian, denoted (−∆)s for s ∈ (0, 1).
In a bounded open (Lipschitz) set Ω, we define powers of the Dirichlet
laplacian by means of spectral theory. More precisely, let {ϕk}∞k=1 denote
an orthonormal basis of L2(Ω) consisting of eigenfunctions of −∆ in Ω with
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homogeneous Dirichlet boundary conditions, associated to the eigenvalues
{µk}∞k=1, i.e. {

−∆ϕk = µkϕk in Ω
ϕk = 0 on ∂Ω.

For any u ∈ C∞c (Ω), we define

(−∆)su =
∞∑

k=1

µskukϕk,

where

u =

∞∑

k=1

ukϕk, and uk =

∫

Ω
uϕk dx.

One can extend by density the previous definition to the Hilbert space

H = {u ∈ L2(Ω) : ‖u‖2H =
∞∑

k=1

µsk|uk|2 < +∞}.

The operator (−∆)s in Rn is non local. For this reason, it might be diffi-
cult to analyse it. Fortunately, Caffarelli and Silvestre (see [CS07]) proved
the following fact: let s ∈ (0, 1) and v ∈ H1(x1−2s) given by

v := arg min

{∫

R+×Rn
x1−2s |∇w|2 dx dy : w|Rn×{0} = u

}

Then v solves {
div (x1−2s∇v) = 0 in R+ × Rn

v = u on Rn.

and one has for the Diriclet-to-Neumann map

Γs :

{
Hs(Rn)→ H−s(Rn)

v 7→ Γs(v) = f := −x1−2sux|Rn = (−∆)sv

up to some multiplicative constant.

2. Symmetry and Liouville results for fractional non local
equations

A well-known conjecture by De Giorgi was stated as follows thirty years
ago: consider a smooth bounded solution of

−∆u = u− u3 in Rn

such that ∂nu > 0. Then all the level sets of u, i.e. {u = c}, are hyper-
planes for n ≤ 8 or equivalently: there exists a function u0 and ω ∈ Sn−1

such that
u(x) = u0(ω · x).

The conjecture was solved by Ghoussoub and Gui [GG98] for n = 2,
Ambrosio and Cabré [AC00] (and Alberti for general nonlinearities [AAC01])
for n = 3. For 4 ≤ n ≤ 8, one major progress has been performed by Savin
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[Sav09] with an additional (natural) assumption. Finally, there exists a non
flat bounded smooth solution for n ≥ 9 and it has been constructed by Del
Pino, Kowalczyk and Wei in [dKW11].

The goal is now to see what remains of the De Girogi conjecture symmetry
result if we change the laplace operator in the fractional laplacian and the
ambient space Rn into a manifold.

2.1. Symmetry results. We prove the following theorem in [SV09a] and
[CS10].

Theorem 2.1. Let s ∈ (0, 1). Let u be a bounded smooth solution of (f is
C1)

(1) (−∆)su = f(u) in R2.

such that

∂x2u > 0.

Then there exists ω ∈ S1 and uo : R→ R such that

u(x) = uo(ω · x).

The previous theorem holds in two dimensions. For n = 3, sharp energy
inequalities and symmetry result for s ≥ 1/2 have been obtained by Cabré et
Cinti (see [CC10]). For n ≥ 4, the problem is completely open. One crucial
question is the critical dimension in connection with a non local version of
De Giorgi conjecture. The results in [SV10a] allow to think that the critical
dimension for s ≥ 1

2 is 8, as in the standard De Giorgi conjecture. For

s < 1
2 , this is completely unsettled and would require to develop Bernstein

type theorems for fractional minimal surfaces (see [CRS10]).
We now provide a sketch of the proof of Theorem 2.1 as written in [SV09a].
We denote by Ps the Poisson kernel of the operator div (x1−2s∇). The

extension u = Ps ∗ v solves

(2)

{
div (x1−2s∇u) = 0 in Rn+1

+

∂νu = f(u) on ∂Rn+1
+ .

The monotonicity assumption in the theorem reads as stability in one
more dimension (see [SV09b]), i.e.

∫

Rn+1
+

x1−2s|∇ξ|2 −
∫

Rn
f ′(u)ξ2 ≥ 0

for any ξ ∈ C∞0 (Rn+1
+ ). We plug |∇yu|ψ into the stability to get the geomet-

ric following Poincaré inequality:

∫

Rn+1
+

x1−2s ψ2
(
K2|∇yu|2 +

∣∣∇L|∇yu|
∣∣2
)
≤
∫

Rn+1
+

x1−2s |∇yu|2|∇ψ|2
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where K is the length of the second fundamental form of a level set of u.
We then take ψ to be a capacitory function and we use energy estimates
(holding only in R2) to make K = 0, hence the result.

In [CS10], we provide an alternative proof based on a characterization of
the stability and a Liouville theorem à la Bérestycki-Caffarelli-Nirenberg.

As previously proved, everything boils down to a one-dimensional profile.
The following existence theorem can be find in [CS10]

Theorem 2.2. Let f ∈ C1,β with 0 < β < 1. Then there exists a bounded
solution connecting −1 to 1, nondecreasing of

(−∂xx)su = f(u)

if and only if (G′ = −f)

G′(−1) = G′(1) = 0 and G > G(−1) = G(1) in (−1, 1).

2.2. Liouville result. In order to understand better what is the influence
of the power s ∈ (0, 1), we have the following theorem (see [DS10]).

Theorem 2.3. Let β ∈ (0, 1) and f ∈ C1,β(R) function such that f ≥ 0.
Let v ∈ C2(Rn) be a stable bounded solution of

(−∆)sv = f(v).

Then

• If s ∈ [1
2 , 1], v is constant for n ≤ 3.

• If s ∈ (0, 1
2), v is constant for n ≤ 2.

We however do not know if the dimensions in the previous theorem are
sharp.

2.3. The case of manifolds. We now turn to fractional Allen-Cahn equa-
tions on Riemannian manifolds. Let (M, g) be a complete, connected,
smooth Riemannian manifold without boundary. We denote ∆g the Laplace-
Beltrami operator on M . We want to study the properties of special solu-
tions of s ∈ (0, 1)

(−∆g)
su = f(u) on M.

We will be considering stable solutions, i.e. for any ξ smooth on M

∫

M
|(−∆g)

s/2ξ|2 − f ′(u)ξ2 ≥ 0.

We prove the following theorems (see [SV10b])

Theorem 2.4. Let (M, g) be a compact manifold and v : M → R be a
smooth stable bounded solution of

(3) (−∆g)
1/2v = f(v),

Assume furthermore that
Ricg ≥ 0

and Ricg does not vanish identically.
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Then v is constant.

Theorem 2.5. Assume that the metric on M = M × R+ is given by ḡ =
g + |dx|2, that M is complete, and

Ricg ≥ 0,

with Ricg not vanishing identically.
Assume also that, for any R > 0, the volume of the geodesic ball BR in M

(measured with respect to the volume element dVg) is bounded by C(R+ 1)2,
for some C > 0.

Then every bounded stable weak solution u is constant.

Theorem 2.6. Assume that the metric on M = M × R+ is given by ḡ =
g + |dx|2 and Ricg vanishes identically.

Assume also that, for any R > 0, the volume of the geodesic ball BR in M
(measured with respect to the volume element dVg) is bounded by C(R+ 1)2,
for some C > 0.

Then for every x > 0 and c ∈ R, every connected component of the
submanifold

Sx = {y ∈M, u(x, y) = c}
is a geodesic.

We refer to [BM09] for results in negatively curved framework (hyperbolic
space). For the case s = 1 (the standard laplacian), we refer the reader to
[FSV11].

3. Regularity of radial extremal solutions

3.1. Introduction. Consider

(4)

{
(−∆)su = λf(u) in Ω

u = 0 on ∂Ω

• Ω: smooth bounded set of Rn, n ≥ 2
• f is smooth, nondecreasing such that

(5) f(0) > 0, and lim
u→+∞

f(u)

u
= +∞.

We define in the following way weak solutions for equation (4).

Definition 3.1. A measurable function u in Ω such that
∫

Ω |u|ϕ1 dx < +∞
and

∫
Ω f(u)ϕ1 dx < +∞, is a weak solution if

(6)

∫

Ω
uψ dx = λ

∫

Ω
f(u)(−∆)−sψ dx,

for all ψ ∈ C∞c (Ω) and where ϕ1 is the first eigenfunction of −∆ with
homogeneous boundary conditions.
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3.2. Existence of solutions. We prove the following theorem see [CDDS11].

Theorem 3.2. Let s ∈ (0, 1). There exists λ∗ > 0 such that

• for 0 < λ < λ∗, there exists a minimal solution uλ ∈ H ∩L∞(Ω). In
addition, uλ is semi-stable and increasing with λ.
• for λ = λ∗, the function u∗ = limλ↗λ∗ uλ is a weak solution. We call
λ∗ the extremal value of the parameter and u∗ the extremal solution.
• for λ > λ∗, there is no solution u ∈ H ∩ L∞(Ω).

It is proved in [CDDS11] that bounded solutions to the equation are
smooth. The remaining question is the regularity of the extremal solution
u∗, hence its L∞ bound.

3.3. Regularity of extremal solutions. The following theorem provides
an anwser (see [CDDS11])

Theorem 3.3. Assume n ≥ 2 and let u∗ be the extremal solution when
Ω = B1 and u∗ is radial. We have that:

• (a) If n < 2(s+ 2 +
√

2(s+ 1)) then u∗ ∈ L∞(B1).

• (b) If n ≥ 2(s+2+
√

2(s+ 1)), then for any µ < n/2−1−
√
n− 1−s,

there exists a constant C > 0 such that u∗(x) ≤ C|x|−µ for all
x ∈ B1.

(1) We do not know if the bound n < 2(s + 2 +
√

2(s+ 1)) is optimal
for the regularity of u∗. We note however that lims→1− 2(s + 2 +√

2(s+ 1)) = 10, and that the extremal solution of
{−∆u = λf(u) in Ω

u = 0 on ∂Ω.
(7)

is singular when Ω = B1, f(u) = eu, and n = 10 (see [JL73]).
(2) In particular, for any 2 ≤ n ≤ 6, any s ∈ (0, 1), and any smooth

nondecreasing f with the suitable assumptions, the extremal solution
is always bounded, hence smooth.

4. Conformal geometry and fractional covariant operators

This section is devoted to the study of conformally covariant operators of
fractional type. We will focus on singular fractional Yamabe problem. We
first recall what is the singular Yamabe problem.

Let (Mn, ḡ) be a compact Riemannian manifold, n ≥ 3. If Λ ⊂ M is
any closed set, then the ‘standard’ singular Yamabe problem concerns the

existence and geometric properties of complete metrics g = u
4

n−2 ḡ with
constant scalar curvature, i.e.

(8) ∆ḡu+
n− 2

4(n− 1)
Rḡu = Rg u

n+2
n−2 , u > 0, lim

x→Λ
u = +∞
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Several well-known results deal with the singular Yamabe problem. If
Rg < 0 we have existence quite generally if Λ is sufficiently large in a ca-
pacitary sense (see [Lab03]). If Rg > 0 existence is only known when Λ is a
smooth submanifold (possibly with boundary) of dimension k < (n − 2)/2
(see [MP96]).

A geometric counterpart of the previous results is the following theorem
by Schoen and Yau (see [SY88]).

Theorem 4.1. If (M,h) is a compact manifold with locally conformally flat
metric h with positive scalar curvature, then the developing map D from the

universal cover M̃ to Sn is injective, and moreover, Λ := Sn \ D(M̃) has
Hausdorff dimension less than or equal to (n − 2)/2. More generally, they

also showed that if Ω = Sn \ Λ carries a complete metric g = u
4

n−2 ḡ (where
ḡ is the standard round metric) with positive scalar curvature and bounded
Ricci curvature, then dim Λ ≤ (n− 2)/2.

4.1. Construction of conformally covariant operators. The conformal
Laplacian, which is the operator appearing as the linear part of (8), fits
into a holomorphic family of conformally covariant elliptic pseudodifferential
operators. The operators in this family of positive even integer order are
the GJMS operators, and these have a central role in conformal geometry.
We first define the family of fractional conformal powers of the Laplacian.
As we have already indicated, the linear operator which appears as the first
two terms on the left in (8) is known as the conformal Laplacian associated
to the metric ḡ, and denoted P ḡ1 . It is conformally covariant in the sense

that if f is any (smooth) function and g = u
4

n−2 ḡ for some u > 0, then

(9) P ḡ1 (uf) = u
n+2
n−2P g1 (f).

Setting f ≡ 1 in (9) yields the familiar relationship (8) between the scalar
curvatures Rḡ and Rg. P1 is the first in a sequence of conformally covariant
elliptic operators, Pk, which exist for all k ∈ N if n is odd, but only for
k ∈ {1, . . . , n/2} if k is even. The first construction of these operators, by
Graham-Jenne-Mason-Sparling [GJMS92] (for which reason they are known
as the GJMS operators), proceeded by trying to find lower order geometric
correction terms to ∆k in order to obtain nice transformation properties
under conformal changes of metric. Beyond the case k = 1 which we have
already discussed, the operator

P2 = ∆2 + δ anRg + bnRic d+ n−4
2 Q2,

called the Paneitz operator (here Q2 is the standard Q-curvature), had also
been discovered much earlier than the operators Pk with k > 2.

This leads naturally to the question whether there exist any confor-
mally covariant pseudodifferential operators of noninteger order. The break-
through result, by Graham and Zworski [GZ03], was that if (M, [ḡ]) is a
smooth compact manifold endowed with a conformal structure, then the op-
erators Pk can be realized as residues at the values γ = k of the meromorphic
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family S(n/2+γ) of scattering operators associated to the Laplacian on any
Poincaré-Einstein manifold (X,G) for which (M, [ḡ]) is the conformal infin-
ity. These are the ‘trivial’ poles of the scattering operator, so-called because
their location is independent of the interior geometry; One obtains a holo-
morphic family of elliptic pseudodifferential operators P ḡγ (which patently
depends on the filling (X,G)). An alternate construction of these operators
has been obtained by Juhl, and his monograph [Juh09] describes an intrigu-
ing general framework for studying conformally covariant operators, see also
[Juh].

For various technical reasons, we focus here only on the operators Pγ
when γ ∈ R, |γ| ≤ n/2. These have the following properties: first, P0 = Id,
and more generally, Pk is the kth GJMS operator, k = 1, . . . , n/2; next, Pγ
is a classical elliptic pseudodifferential operator of order 2γ with principal
symbol σ2γ(P ḡγ ) = |ξ|2γḡ , hence (since M is compact), Pγ is Fredholm on L2

when γ > 0; if Pγ is invertible, then P−γ = P−1
γ ; finally,

(10) if g = u
4

n−2γ ḡ, then P ḡγ (uf) = u
n+2γ
n−2γP gγ (f)

for any smooth function f . Generalizing the formulæ for scalar curvature
(γ = 1) and the Paneitz-Branson Q-curvature (γ = 2), we make the defini-
tion that for any 0 < γ ≤ n/2, Qḡγ , the Q-curvature of order γ associated to
a metric ḡ, is given by

(11) Qḡγ = P ḡγ (1).

Generalizing (8), consider the “fractional Yamabe problem”: given a met-

ric ḡ on a compact manifold M , find u > 0 so that if g = u4/(n−2γ)ḡ, then
Qgγ is constant. This amounts to solving

(12) P ḡγ u = Qgγu
n+2γ
n−2γ , u > 0,

for Qgγ = const. More generally, we can simply seek metrics g which are
conformally related to ḡ and such that Qgγ ≥ 0 or Qgγ < 0 everywhere.

This fractional Yamabe problem has now been solved in many cases where
the positive mass theorem is not needed [QG10], and further work on this
is in progress.

As described earlier, it is is also interesting to construct complete metrics
of constant (positive) Qγ curvature on open subdomains Ω = M \ Λ, or in

other words, to find metrics g = u4/(n−2γ)ḡ which are complete on Ω and
such that u satisfies (12) with Qgγ a constant. This is the fractional singular
Yamabe problem. In the first few integer cases it is known that the positivity
of the curvature places restrictions on dim Λ (see [SY88], [MP96] for the case
γ = 1, [CHY04] for γ = 2, and [Gon05] for the analogous problem for the
closely related σk curvature).

4.2. Results. The following results can be found in [dMMS10].
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Theorem 4.2. Suppose that (Mn, ḡ) is compact and g = u
4

n−2γ ḡ is a com-
plete metric on Ω = M \ Λ, where Λ is a smooth k-dimensional subman-
ifold and u is polyhomogeneous along Λ with leading exponent −n/2 + γ.
If 0 < γ ≤ n

2 and Qgγ > 0 everywhere for any choice of Poincaré-Einstein
fillings, then n, k and γ are restricted by the inequality

(13) Γ(
n

4
− k

2
+
γ

2
)/Γ(

n

4
− k

2
− γ

2
) > 0.

Remark: k < (n−2γ)/2→ Γ(n4− k
2 + γ

2 )/Γ(n4− k
2−

γ
2 ) > 0 and equivalence

for γ = 1.

Theorem 4.3. Let Γ be a discrete subgroup of SO(n + 1, 1) which acts
discretely and properly discontinuously on Hn+1. Suppose that the Poincaré
exponent δ(Γ) lies in the interval (0, n/2), and let Λ = Λ(Γ) be the limit
set of Γ in Sn. If dim Λ < 1

2(n − 2γ), then Ω = Sn \ Λ admits a complete
conformally related metric g with Qgγ > 0.

Theorem 4.4. Let X be any n-manifold with nonnegative Yamabe constant
and Λ a k-dimensional submanifold with k < 1

2(n − 2). Then for all γ in
some range (1− ε, 1 + ε), there exists a solution to

P ḡγ u = Qgγu
n+2γ
n−2γ , u > 0.
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