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Averaging and mixing for random perturbations

of elliptic equilibria

Sergei Kuksin∗

1 Introduction

Consider a small perturbation of an elliptic equilibrium:

ẋj − λjyj = ε . . . , j = 1, . . . , n,

ẏj + λjxj = ε . . . , j = 1, . . . , n,
(1.1)

where {λj} are non-zero real numbers. The problem to study the behaviour
of solutions for various perturbations ε . . . , is a classical question of Dynamical
Systems. For analytical Hamiltonian perturbations which are O|(x, y)|3 and
when all λj ’s are of the same sign the stability of the actions Ij = (x2

j + y2
j )/2

during exponentially long (in terms of ε) time is a result of L. Niederman [5],
while for non-Hamiltonian perturbations the behaviour of solutions for (1.1)
is prescribed by the Krylov–Bogolyubov theory, but only for time-intervals of
order ε−1, see [2, 1]. The behaviour of solutions for non-Hamiltonian equations
(1.1) during time-intervals significantly longer that ε−1 is a hard problem with
only a few isolated results available. The goal of my lecture is to discuss the
long-time behaviour of solutions for eq. (1.1) when ε . . . stands for a stochastic
perturbation, following the recent review-paper [3]. I will explain that:
– the theory of stochastic equations (1.1) is “more final” then its deterministic
counterpart, with easier and more general proofs;
– the property of mixing in stochastic equations (1.1) (which allows a convenient
sufficient condition) helps to explain and understand the nature of long-time
behaviour of its solutions;
– an analogous theory is available for stochastic PDEs, with similar proofs.

Let us start with an example:

Example 1.1. Consider system (1.1) with n = 1, when the perturbation is a
Hamiltonian term plus a noise:

ẋ− λy = −εhy(x, y) +
√
ε (d/dt)β1(t),

ẏ + λx = εhx(x, y) +
√
ε (d/dt)β2(t),

(1.2)
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where β1, β2 are standard independent Wiener processes and h is a C2-function,
whose C2-norm is bounded by 1. Denote (x, y) = z. The non-stochastic part of
the equation above is Hamiltonian with the Hamiltonian H = −|z|2/2 + εh(z).
Applying the Ito formula to −H(z(t)) and taking the expectation we find that
for small ε, (d/dt)E(−H(z(t))) ≥ ε/4. So

E|z(t)|2 ≥ E(−H(z(t)))− ε ≥ 1
4εt− Const.

We conclude that:
1) using perturbative methods we can study solutions of general stochastic

equations (1.1) only for t . ε−1;
2) in order to be able to examine perturbativly such equations for t � ε−1

we must add friction to the system.
But the added friction “stabilises everything” and thus simplifies the problem

of studying stochastic equations (1.1) for long time.

2 Averaging

Denote xj + iyj = vj . Then R2n w Cn and stochastic eq. (1.1) with (the easiest
possible) additive noise reeds

d

dt
vk + iλkvk = εPk(v) +

√
ε
d

dt
bk(β1

k + iβ2
k)(t), k = 1, . . . , n,

where bk are some real numbers and β1
k, β

2
k are standard independent Wiener

processes. What I will say below stays true for equations with general additive
noises on the price of heavier formulas; and – with minimal changes - for equa-
tions with non-additive noises, depending on v; see [3, Section 8]. The processes
βck := β1

k + iβ2
k are called standard complex Wiener processes. Passing to the

slow time
τ = εt

we re-write the system as

v̇k(τ) + iε−1λkvk = Pk(v) + bkβ̇
c
k(τ), k = 1, . . . , n, v(0) = v0. (2.1)

Here and below the upper dot stands for d/dτ , and we denoted by the same
notation βck another set of standard independent complex Wiener processes,
obtained by a proper scaling of the original processes.

Below we assume that eq. (2.1) satisfies the following assumption, where
T > 0 is fixed:

(A1) 1) the mapping P : Cn → Cn is locally Lipschitz, and

|P (v)| ≤ CP (1 + |v|)m0 ,

Lip(P|{|v|≤R}) ≤ CP (1 +R)m0 ∀R > 0,
(2.2)

for some m0 ∈ N and CP > 0.
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2) Eq. (2.1) has a unique solution vε(τ ; v0), 0 ≤ τ ≤ T , and

E sup
τ∈[t,(t+1)∧T ]

|vε(τ ; v0)|2m′ ≤ Cm′(|v0|) ∀ 0 ≤ t ≤ T − 1, (2.3)

for some m′ > m0.

2.1 Interaction representation

Denote Λ = (λ1, . . . , λn) ∈ Rn, and for t ∈ R consider the linear operators

eitΛ = diag{eitλj , 1 ≤ j ≤ n} : Cn → Cn.

They form a group of linear unitary transformations of Cn. Substituting in (2.1)

v(τ) = e−iτε
−1Λa(τ)

we get for a(τ) the equation

ȧ(τ) = eiτε
−1ΛP (e−iτε

−1Λa(τ)) + diag{bk}β̇c(τ), a(0) = v0, (2.4)

where βc = (β1, . . . , βn) is yet another set of standard independent complex
Wiener processes. Obviously |aj(τ)| ≡ |vj(τ)| for each j, but the angles of aj(τ)
and vj(τ) differ by τε−1λj .

We are concerned with the distributions of solutions aε(τ) for equations (2.4)
and of (2.1), i.e. with measures D(aε(τ)) ∈ P(Cn), 0 ≤ τ ≤ T , and D(aε(·)) ∈
P(C(0, T ;Cn)), and with similar objects for solutions vε(τ) of eq. (2.1). Here
and below D(·) signifies the distribution of a random variable, and P(M) – a
set of probability Borel measures on a metric space M .

Since due to the form of eq. (2.1) derivatives in τ of solutions aε are of order
one uniformly in ε, then evoking the Prokhorov theorem we easily get

Lemma 2.1. The set of measures {D(aε(·)), 0 < ε ≤ 1} is precompact in
P(C(0, T ;Cn)) with respect to the weak topology.

So every sequence ε′j → 0 contains a subsequence εj → 0 such that

D(aεj ) ⇀ Q0 as εj → 0, (2.5)

for some measure Q0 ∈ P(C(0, T ;Cn)) (here ⇀ signifies the weak convergence
of measures). Our first goal is to show that the measure Q0 does not depend
on the sequence εj → 0 and explain how to find it.

2.2 Resonant averaging

Motivated by the form of the non-autonomous vector field in (2.4), for any
a ∈ Cn let us consider the limit

lim
T→∞

1

T

∫ T

0

eitΛP (e−itΛa) = 〈〈P 〉〉(a). (2.6)
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Lemma 2.2. The limit 〈〈P 〉〉(a) exists. This is a locally Lipschitz vector field
on Cn, satisfying (2.2) with the same m0 and CP as P .

The operator P 7→ 〈〈P 〉〉 possesses many nice and natural properties; see [3,
Section 3].

Now we define an effective equation for eq. (2.4) as the stochastic differential
equation

ȧ(τ) = 〈〈P 〉〉(a) + diag{bk}β̇c(τ), a(0) = v0. (2.7)

(Due to the simplicity of the noice term in eq. (2.4) it stays the same in the
effective equation. More complicated noises are transformed under transition to
an effective equation by an averaging, similar to (2.6), see in [3, Section 8].)

Due to the lemma above a solution of (2.7), if exists, is unique. Let us find
any random process a0(τ) ∈ Cn, 0 ≤ τ ≤ T}, such that its distribution equals
to the measure Q0 in (2.5).

Theorem 2.3. Let (A1) holds (for some T > 0). Then a0(τ) is a unique weak
solution of (2.7). So

D(aε(τ)) ⇀ D(a0(τ)) for 0 ≤ τ ≤ T, as ε→ 0. (2.8)

Due to this results the actions 1
2 |vk|2(τ) of solutions for eq. (2.1) converge

in distribution to those of effective equation (2.7).
Assumption (A1) is fulfilled for many equation (2.1). In particular, it holds

for any T > 0 if vector field P is coercitive in the sense that

〈P (v), v〉 ≤ −α1|v|+ α2 ∀v ∈ Cn, (2.9)

for some α1 > 0 and α2 ∈ R. This also is a result of Khasminskii; see in [3,
Section 9]. Relation (2.9) qualifies the “friction, added to the system” (see the
end of Introduction).

3 Properties of convergence (2.8)

We recall that eq. (2.1) is mixing if there exists a measure µε ∈ P(Cn), called a
stationary measure for the equation, such that for any v0 ∈ Cn

D(vε(τ ; v0)) ⇀ µε as τ →∞,

where vε(τ ; v0) is a solution of (2.1). Khasminskii proved that if (2.9) holds
and bk 6= 0 for all k, then eq. (2.1) is mixing (see [3] for references). In this case
eq. (2.7) is mixing as well, see [3].

Theorem 3.1. Let (A1) holds for each T > 0 and equations (2.1) and (2.7)
are mixing with stationary measures µε and µ0. Then

µε ⇀ µ0 as ε→ 0.
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Note that this result relates with the effective equation not the limiting as
ε → 0 behaviour of solutions for a-equation (2.4), but that of the original v-
equation (2.1). Also note that due to the example of equation (1.2) for the
assumption of the theorem to hold, equation (2.1) must contain dissipation.

Let us provide the space of measures P(Cn) with any distance dist which
makes it a complete metric space and defines there a convergence, equivalent
to the weak convergence of measures (there are many distances like that). We
have:

Theorem 3.2. Let (A1) holds for each T > 0 and equation (2.7) is mixing.
Then for any v0 ∈ Cn the convergence (2.8) is uniform in time:

lim
ε→0

sup
τ≥0

dist (Daε(τ ; v0),Da0(τ ; v0)) = 0.

Finally we note that close analogies of the three theorem above hold for
stochastic PDEs with similar proofs. See [4] and references in that work.
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