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CRIME PAYS; HOMOGENIZATION FOR LONG TIMES

GRÉGOIRE ALLAIRE1, AGNES LAMACZ2, AND JEFFREY RAUCH3

Abstract. This article examines the accuracy for large times of the asymptotic expan-
sions in periodic homogenisation of wave equations. Of particular interest is the precision
for anormally long times of approximations constructed from asymptotic crimes commit-
ted on the standard two-scale expansions. We first prove that the standard two-scale
asymptotic expansion provides an accurate approximation of the exact solution for all
times t less than Cε−2+δ for any C, δ > 0 where ε � 1 denotes the period of the co-
efficients. Second, for longer times, we show that the criminal two-scale asymptotic
expansion, first proposed by Bakhavalov and Panasenko in the elliptic setting because
they mix various powers of ε in the same equations, yields approximations of the exact
solution with error ≤ C εN for t ≤ ε−N with N as large as one likes.
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1. ε-periodic wave equation

Study the family uε of solutions to

(1) ρ(x/ε) ∂2t u
ε −

(
div a(x/ε) grad

)
uε = f(t, x),

uε = 0 for t < 0,

supp f ⊂
{

0 ≤ t ≤ T} and ∀α, ∂αt,xf ∈ L2(R1+d).

The solutions uε are real valued as is ρ ∈ L∞(Td) (Td := the unit torus). The coefficient

a ∈ L∞(Td) has values that are real symmetric matrices. The coefficients are positive

definite,

ρ(y) ≥ m1 > 0 , and, a(y)ξ · ξ ≥ m1|ξ|2.
1
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The parent operator on the left of (1) has ε-periodic coefficients. They vary rapidly

in x only. Order one oscillations in time on scale ε would lead to explosive growth.

2. The Homogenization Problem

The standard energy estimate implies that

(2) ∀j ≥ 0, sup
t

∥∥∂jt ∇t,x u
ε(t)
∥∥
L2(Rd)

< ∞.

PROBLEM. Describe the solutions for t ∼ ε−N without having to solve equations that

require discretization on scale ∼ ε.

The coefficients ρ(x/ε) and a(x/ε) tend weakly to their mean values. Even for times

t ∼ 1, the approximations do NOT simply replace ρ and a by their average values.

Example 1. Consider the simple problem

ρ(x/ε)uε = f, uε =
1

ρ(x/ε)
f ≈ Av(1/ρ) f := u .

u satisfies the homogenized equation

ρhu = f, ρh :=
1

Av(1/ρ)
6= Av(ρ) .

3. The two scale ansatz

Classical Answer. There is a constant coefficient homogenized wave operator ah2(∂t, ∂x) so

that on bounded time intervals uε differs by O(ε) from the solution of ah2(∂t, ∂x)w = f .

Bensoussan-Lions-Papanicolaou 1978 take as approximate solution, U(ε, t, x, x/ε), where

(3) U(ε, t, x, y) ∼
∞∑

n=0

εn un(t, x, y) , 1− periodic in y .

The right hand side is a formal power series in ε. It usually diverges.

Compute [
ρ(x/ε) ∂2t − div a(x/ε) grad

]
U(ε, t, x, x/ε) .

Use ∂x → ∂x + ε−1∂y. Introduce

Ayy := divy a(y) grady,

Axx := divx a(y) gradx,

Axy := divx a(y) grady + divy a(y) gradx .

Find, [
ρ(x/ε) ∂2t − div a(x/ε) grad

]
U(ε, t, x, x/ε) = W (ε, t, x, x/ε),
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where

W (ε, t, x, y) :=

[
ρ(y)∂2t −

1

ε2
Ayy −

1

ε
Axy −Axx

]
U(ε, t, x, y).

The profile W has the expansion,

W (t, x, y) ∼
∑

n≥−2
εnwn(t, x, y),

with

wk = ρ(y)∂2t uk − (Ayyuk+2 + Axyuk+1 + Axxuk).

Study map {un} 7→ {wn}.

4. Oscillator parts

The operator Ayy is a bijection from the mean zero elements of H1(Td) to mean zero

elements of H−1(Td). Its inverse is denoted A−1yy . The nullspace of Ayy acting on L2(Td)
consists of the constant functions. Denote by π the orthogonal projection of L2(Td) onto

the nullspace. Then

un(t, x, y) = πun + (I − π)un, (πun)(t, x) :=

∫

Td

un(t, x, y)
dy

|Td| .

πun := the non oscillating part. (I − π)un := the oscillating part.

Characterize power series U so that the corresponding W has no oscillatory part, that is,

(I − π)wn = 0 for all n ≥ −2. This is equivalent to the sequence of equations,

(I − π)
[
ρ(y)∂2t uk −Ayyuk+2 − Axyuk+1 −Axxuk

]
= 0.(4)

Solve for (I − π)uk+2 in terms of earlier profiles. Find that (I − π)wn = 0 for all n ⇐⇒
(I − π)uk+2 = −A−1yy

(
I − π

)[
Axyuk+1 + (Axx − ρ(y)∂2t )uk

]
.

The oscillatory part of uk+2 is expressed in terms of earlier profiles.

Write each earlier profile as uj = πuj + (1− π)uj.

Express their oscillatory (1 − π)uj parts in terms of still earlier profiles. The oscillatory

parts are eliminated entirely.

Definition 2. Set χ−1 := 0, χ0 := I. For k ≥ 1 define partial differential operators

mapping functions of t, x to functions of t, x, y by

χk(y, ∂t, ∂x) := −A−1yy (I − π)
[
Axyχk−1 + (Axx − ρ(y)∂2t )χk−2

]
,

χk(y, ∂t, ∂x) =
∑

|β|=k
cβ,k(y) ∂βt,x, cβ,k ∈ (I − π)H1(Td).

In particular, χk is a homogeneous operator of degree k in ∂t,x.
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Theorem 3. The following are equivalent.

i. For all j

(5) (I − π)wj = 0 .

ii. As formal power series in ε, one has
∞∑

n=0

εn un =
( ∞∑

`=0

ε` χ`

)( ∞∑

k=0

εk π uk

)
.

5. The nonoscillatory hierarchy

With the oscillatory parts controlled turn to the nonoscillatory parts that must satisfy,

(6) πwk = π
[
ρ(y)∂2t uk − Axyuk+1 − Axxuk

]
.

Definition 4. For n ≥ 2, the nth order homogenized operator is

(7) ahn(∂t, ∂x) := π
((
ρ(y)∂2t −Axx

)
χn−2 −Axyχn−1

)
.

Theorem 5.

(8) πwj =

j∑

n=0

ahn+2(∂t, ∂x) π uj−n .

Theorem 6. (Leap Frog Theorem) For odd n ≥ 1, ahn = 0.

Bahkvalov and Panasenko 1989 found the elliptic versions of the hierarchies. The hyper-

bolic versions have striking consequences.

6. Classical homogenisation and secular growth

For the approximation to be infinitely accurate for all sufficiently small ε, the coefficients

of all powers of ε must vanish. Yields the classical algorithm, πw0 = f and πwj = 0. for

j 6= 0.
ε0 : ah2(∂)πu0 = f

ε1 : ah2(∂)πu1 = 0

ε2 : ah2(∂)πu2 = −ah4(∂)πu0

ε3 : ah2(∂)πu3 = −ah4(∂)πu1

ε4 : ah2(∂)πu4 = −ah4(∂)πu2 − ah6(∂)πu0

ε5 : ah2(∂)πu5 = −ah4(∂)πu3 − ah6(∂)πu1

ε6 : ah2(∂)πu6 = −ah4(∂)πu4 − ah6(∂)πu2 − ah8(∂)πu0

ε7 : ah2(∂)πu7 = −ah4(∂)πu5 − ah6(∂)πu3 − ah8(∂)πu1

Odd and even decouple. πuj = 0 for j odd. The first line is a recipe for πu0.
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7. Homogenization 101

• The operator ah2(∂t, ∂x) is not obvious.

• Even though πu1 = 0, u1(t, x, y) has an oscillating part. ε u1(t, x, x/ε) is small in Hs(Rd)

for all s < 1 but is O(1) in H1.

Need u1 to describe the energy. The function u1 is given by u1 = (1 − π)u1 = χ1πu0 in

terms of πu0.

8. Secular growth

The nth term is εn un. For large times the un can grow. Their rate of growth determines

for how long the term εn un remains small.

The growth is slower than one might suspect because ahodd = 0.

Classic energy estimate shows that ∂αu0(t) = ∂απu0(t) is uniformly bounded in L2(Rd)

for all α 6= 0. Therefore the source term for πu2 is bounded as t→∞. Duhamel’s formula

shows that πu2 grows at most linearly. Then πu4 grows at most quadratically. Continuing

yields the following result. Note especially the 2k on the left and the k on the right.

Theorem 7. For |α| ≥ 1,
∥∥∂αt,x πu2k(t)

∥∥
L2(Rd×Td)

≤ C(α, k) 〈t〉k , 〈t〉 := (1 + t2)1/2.

9. The classical ansatz for long times

Theorem 8. Define profiles, constructed from the first k + 1 non oscillating profiles

πu0, πu2, . . . , πu2k by

Uk(ε, t, x, y) :=
2k∑

n=0

εnun + ε2k+1(I − π)u2k+1 + ε2k+2(I − π)u2k+2.

The approximate solution is Uk(ε, t, x, x/ε). Then
∥∥∇t,x

[
uε(t, x) − Uk(ε, t, x, x/ε)

]∥∥
L2(Rd

x)
≤ C ε2k+1〈t〉k+1 .

Discussion i. The (2n)th term in the ansatz (3) is of size ε2n tn. t ∼ 1/ε2 is a critical

time scale.

Discussion ii. For any N, δ > 0 choosing a sufficiently large number of terms in the

traditional ansatz guarantees that the error is O(εN) for times t ≤ 1/ε2−δ. The standard

assertion is that it is this accurate on bounded time intervals.
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Discussion iii. πun grows no faster than tn/2. Without the leap frog structure one would

have found tn. For systems of conservative wave equations one finds non zero odd order

homogenized operators and this faster secular growth. The critical time scale is t ∼ ε−1.

Discussion iv. That ah3 can be non zero had not, to our knowledge, been observed before.

10. The first asymptotic crime for longer times

For critical times and beyond, abandon the classical ansatz.

Main (criminal) idea. Change the choice of the nonoscillatory parts πun. For each

ε, construct a different πun. The oscillatory parts (1 − π)un are given in terms of the

nonoscillatory parts from the classical hierarchy.

The profiles are NOT those of classical homogenisation. The new ε-dependent un are

denoted vn(ε, t, x, y) and

V (ε, t, x, y) ∼
∞∑

n=0

εn vn(ε, t, x, y) .

Letting vn depend on ε is our first asymptotic crime. When the vn depend on ε one loses

unique determination of expansions.

11. The second asymptotic crime

The residual
∑
εnwn is computed as before. We do not set the wn = 0. This is the

second asymptotic crime.

We set (1− π)wn = 0 for all n. That choice yields the oscillatory hierarchy determining

(1− π)vn from the πvn. Next choose the πvn.

The nonoscillatory hierachy implies that W − f = π(W − f) is equal to the sum of the

lines
ε0
[
ah2(∂)πv0 − f

]

ε1
[
ah2(∂)πv1

]

ε2
[
ah2(∂)πv2 + ah4(∂)πv0

]

ε3
[
ah2(∂)πv3 + ah4(∂)πv1

]

ε4
[
ah2(∂)πv4 + ah4(∂)πv2 + ah6(∂)πv0

]

ε5
[
ah2(∂)πv5 + ah4(∂)πv3 + ah6(∂)πv1

]

To avoid secular growth, set πvn = 0 for n ≥ 1.

With that choice, the sum of the lines vanishes if and only if

(9)
[
ah2(∂t,x) + ε2ah4(∂t,x) + ε4ah6(∂t,x) + · · ·

]
π v0 = f .
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Bad news 1. The terms ε2j−2 ah2j(∂t,x) are typically of order 2j in ∂t. The more terms

one keeps the higher order is the equation.

Bad news 2. When one keeps only a finite number of terms, the truncated operators

usually define ill posed initial value problems.

i. Equation (9) is a sort of exact solution recipe. To the extent that one finds a πv0 that

solves with small error, that generates a good approximation to uε.

ii. The ε2k−2ah2k(∂t,x) are dispersive correctors. The correctors improve the approximation

to uε. For ah4 , Santosa-Symes 1991 showed improved numerics and Lamacz 2011 proved

L2-error ≤ ε for t ∼ ε−2.

iii. A very interesting approach to long times is pursued by Gloria et.al 2017-2020 in ran-

dom media. They construct approximate solutions from high order accurate eigenvalues

of the elliptic part. The analogue of secular growth is that their corrector terms grow as

|x| → ∞. When that growth can be controlled they construct waves in higher dimensions

that do not have Anderson localisation.

12. An elimination algorithm to make sense of (9)

Eliminate time derivatives other than those in ah2(∂t,x).

Proposition 9. There are uniquely determined homogeneous partial differential operators

R2j(∂t,x) and ã2j(∂x) of degree 2j, the latter involving only ∂x, so that in the sense of formal

power series,

[
1 +

∞∑

j=1

R2j

(
∂t,x
)][ ∞∑

j=1

ah2j
(
∂t,x
)]

= ah2
(
∂t,x
)

+
∞∑

j=2

ã2j
(
∂x
)
.

Multiplying (9) by 1 +
∑∞

j=1R2j

(
ε∂t,x

)
yields

[
ah2(∂t,x) +

∞∑

j=2

ε2j−2 ã2j(∂x)
]
π v0 =

[
1 +

∞∑

j=1

ε2jR2j

(
∂t,x
)]
f.

This equation for πv0 is second order in time.

13. Truncation to a finite number of terms

Drop all but a finite number of terms. The unknown function is denoted π vk0. The

truncated equation is, with Rk :=
∑k

j=1R2j,

(10)
[
ah2(∂t,x) +

k+1∑

j=2

ε2j−2 ã2j(∂x)
]
π vk0 =

[
1 +Rk

(
ε∂t,x

)]
f.
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Bad news 3. The initial value problem (10) is usually ill posed.

Good news. f is smooth. The Fourier transform of the right hand side decays rapidly.

14. Filtering

Choose cutoffs ψj ∈ C∞0 (Rd), j = 1, 2, with ψ1 = 1 on a neighborhood of the origin and

ψ2 = 1 on a neighborhood of suppψ1. Define D := (1/i)∂x. Choose 0 < α < 1. Filter the

right hand side to obtain,
[
ah2(∂t, ∂x) + ε2ã4(∂x) + · · ·+ ε2kã2k+2(∂x)

]
π vk0 = ψ1(ε

αD)
(
1 +Rk(ε∂t,x)

)
f.

Fourier transformation shows that there are tempered solutions with transform supported

in ε−α{suppψ1}. Such a solution satisfies ψ2(ε
αD)vk0 = vk0. This yields

[
ah2(∂t, ∂x) +

(
ε2ã4(∂x) + · · ·+ ε2kã2k+2(∂x)

)
ψ2(ε

αD)
]
π vk0 = ψ1(ε

αD)
(
1 +Rk(ε∂t,x)

)
f.

15. Criminal Approximation

The last section derived the recipe,

(11)
(
ah2(∂t, ∂x) +M(ε, k, ∂x)

)
πvk0 = ψ1(ε

αD)
(
1 +Rk(ε∂t,x)

)
f,

M :=
k+1∑

j=2

ε2j−2 ã2j(∂x)ψ2(ε
αD).

The filtered operator M is small and real. Equation (11) generates uniformly stable initial

value problems. Solving determines π vk0 and therefore V k(ε, t, x, y). This can be done

efficiently by FFT. Even for t � 1. The approximate solution is V k(ε, t, x, x/ε). This is

the Criminal Algorithm.

Having sidestepped secular growth, this algorithm constructs approximate solutions with

residuals smaller than any desired power of ε uniformly in time. The standard duhamel

arguement yields error estimates εn〈t〉 with n as large as one likes. That yields the

following theorem.

Theorem 10. The error in energy satisfies
∥∥∇t,x

(
uε(t, x) − V k(ε, t, x, x/ε)

)∥∥
L2(Rd

x)
≤ C ε2k+1 〈t〉 .

Example 11. Choose k with 2k + 1 ≥ 2N . Then the error is ≤ Ck ε
N for t ≤ ε−N .

Algorithm summary. Two asymptotic crimes. Eliminate time derivatives. Filter.

Solve for πv0. Add the oscillatory parts.
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