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NON LINEAR STABILITY OF SPHERICAL GRAVITATIONAL
SYSTEMS DESCRIBED BY THE VLASOV-POISSON EQUATION

MOHAMMED LEMOU

Abstract. In this work, we prove the nonlinear stability of galaxy models de-
rived from the three dimensional gravitational Vlasov Poisson system, which is
a canonical model in astrophysics to describe the dynamics of galactic clusters.
The stability of the so-called spherical models (which are radially symmetric
steady states solutions) is a major question in astrophysics and, for decades, this
problem has been the subject of a considerable amount of works in both mathe-
matical and physics communities. A well known conjecture [6] is the stability of
spherical models which are nonincreasing functions of their microscopic energy.
This conjecture was proved at the linear level by several authors in the continu-
ation of the breakthrough work by Antonov [2] in 1961. In a previous work [30],
we proved the stability of anisotropic spherical models under radially symmetric
perturbations using fundamental monotonicity properties of the Hamiltonian un-
der suitable generalized symmetric rearrangements first observed in the physics
literature [36, 12, 50, 1]. In a more recent work [31], we show how this approach
combined with a new generalized Antonov type coercivity property implies the
orbital stability of spherical isotropic models under general perturbations. In
this paper, we summarize the results obtained in this work and give the main
lines of the proofs.

Joint work with Florian Méhats and Pierre Raphaël

1. Introduction and statement of the results

1.1. The gravitational Vlasov Poisson system. Kinetic theory is commonly
used to statistically describe galactic systems (such as stars clusters) since the N-
body description through Newton equations is not understood for systems with a
large number of components. In these gravitational systems the collisions between
the stars may be neglected and only long-range interactions due to the gravitational
field have to be taken into account. When relativistic effects do not enter in play,
such systems are commonly described by the three dimensional gravitational Vlasov-
Poisson system:





∂tf + v · ∇xf −∇φf · ∇vf = 0, (t, x, v) ∈ R+ × R3 × R3

f(t = 0, x, v) = f0(x, v) ≥ 0,
(1.1)

where
ρf (x) =

∫

R3

f(x, v) dv and φf (x) = − 1

4π|x| ∗ ρf (1.2)

are the density and the gravitational Poisson field associated to f . This nonlinear
transport equation is a well known model in astrophysics for the description of the
mechanical state of a stellar system subject to its own gravity, see for instance
[6, 11].
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The global Cauchy problem has been solved in [35, 42, 44] where unique global
classical solutions f(t) in C1c , the space of C1 compactly supported functions, are
derived. The nonlinear transport flow (1.1) satisfies the two following fundamental
properties:
(i) The preservation of the total Hamiltonian

H(f(t)) =
1

2

∫

R6

|v|2f(t, x, v)dxdv − 1

2

∫

R3

|∇φf (t, x)|2dx = H(f(0)), (1.3)

(ii) The preservation of all the so-called Casimir functions: ∀G ∈ C1([0,+∞),R+)
such that G(0) = 0,

∫

R6

G(f(t, x, v)) dxdv =

∫

R6

G(f0(x, v)) dxdv . (1.4)

This property is equivalent to the following conservation law:

∀t ≥ 0, µf(t) = µf0 , (1.5)

where µf is the distribution function associated to f :

∀s ≥ 0, µf (s) = meas
{

(x, v) ∈ R6 : f(x, v) > s
}
, (1.6)

In particular the system has an infinite and uncountable set of invariant quantities.

In this work, we will deal with weak solutions in the natural energy space

E =
{
f ≥ 0 with f ∈ L1 ∩ L∞(R6) and |v|2f ∈ L1(R6)

}
. (1.7)

For all f0 ∈ E , (1.1) admits a weak solution f(t), constructed for instance in [4, 22,
23], which is also a renormalized solution, see [7, 8]. Moreover, this solution still
satisfies (1.4), belongs to C([0,+∞), L1(R6)) and the energy conservation (1.3) is
replaced by an inequality:

∀t ≥ 0, H(f(t)) ≤ H(f0). (1.8)

This text is a summary of [31]. Here we just give the main steps of the proofs
and underline the main arguments. Complete and detailed proofs of our claims can
be found in [31].

1.2. Known results. Steady states solutions to (1.1) are functions Q(x, v) satis-
fying

v · ∇xQ−∇φQ · ∇vQ = 0. (1.9)
The complete determination of all the solutions to this equation is not known, but
a particular family of solutions can easily be exhibited. Indeed any function of the
form

Q(x, v) = F (e, `), (1.10)
where e, ` are respectively the microscopic energy and the kinetic momentum

e(x, v) =
|v|2
2

+ φQ(x), ` = |x ∧ v|2, (1.11)

is a solution to (1.9). Note that if we restrict ourselves to radially symmetric solu-
tions, the Jean’s theorem [5] gives a complete classification of the solutions to (1.9).
Recall that the radial symmetry in our context means that the distribution func-
tions have the form f(x, v) ≡ f(|x|, |v|, x · v). In this case the only solutions to (1.9)
are of the form (1.10). In fact the microscopic energy and the kinetic momentum
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(given by (1.11)) are the only invariants of the radially symmetric characteristic flow
associated with the transport operator τ = v · ∇x −∇φQ · ∇v.

A canonical problem which has attracted a considerable amount of works both
in the physical and the mathematical communities is the question of the nonlinear
stability of steady states models. We may summarize these stability issues in the
two following conjectures:

(i) Conjecture 1, anistropic steady states: Any steady state of the form
Q(x, v) = F (e(x, v), `(x, v)) which is nonincreasing with respect to the mi-
croscopic energy (∂eF < 0 on the support of Q) is stable under spherically
symmetric perturbations.

(ii) Conjecture 2, isotropic steady states: Any steady state of the form
Q(x, v) = F (e(x, v)) which is nonincreasing with respect to the microscopic
energy (F ′(e) < 0 on the support of Q) is stable under general perturbations.

At the linear level, these two conjectures have been proved by many authors
[10], [13, 24, 46], following the pioneering work by Antonov in the 60’s [2, 3]. This
analysis is based on some coercivity properties of the linearized Hamiltonian under
constraints formally arising from the linearization of the Casimir conservation laws
(1.4), see Lynden-Bell [36], known as Antonov’s coercivity property.

At the nonlinear level, the full orbital stability in the natural energy space E has
been obtained for specific subclasses of steady states using variational techniques
[51, 14, 16, 17, 18, 9, 45, 26, 27, 28, 43]. The key tool in such analyses is the Lions’
concentration compactness principle [33, 34]. This powerful strategy however only
applies to specific models which are global minimizers of the Hamiltonian (1.3)
under at most two Casimir type conservation laws, see [27, 28] for a more complete
introduction. Unfortunately, important physical models cannot be covered by such
variational methods.

A non variational approach has been explored as a first attempt to treat the
general case and to use the full rigidity provided by the continuum of conservation
laws (1.4) [19], [15]. The outcome of this approach is a first result of stability against
radially symmetric perturbations for the King model F (e) = (exp(e0 − e)− 1)+.
The method is based on Antonov’s coercivity property and a direct linearization of
the Hamiltonian near the King profile.

To completely solve conjecture 1, we proposed in [30] a different approach based
on fine monotonicity properties of the Hamiltonian under suitable generalized sym-
metric rearrangements as first observed in pioneering breakthrough works in the
physics literature, see in particular Lynden-Bell [36], Gardner [12], Wiechen, Ziegler,
Schindler [50], Aly [1]. This approach avoids the delicate step of linearization of the
Hamiltonian and reduces the stability problem for the full distribution function f
to a minimization problem for a generalized energy involving the Poisson field φf
only. The main outcome is the radial stability of nonincreasing anisotropic models,
solving in this way the first stability conjecture (see [30] for the proof):

Theorem 1.1 (Radial stability of nonincreasing anisotropic models, [30]). Let
Q(x, v) = F (e, `) be a continuous, nonnegative compactly supported steady state so-
lution to (1.1). Assume that Q is nonincreasing in the following sense: there exists
e0 < 0 such that F is C1 on O = {(e, `) ∈ R×R+ : F (e, `) > 0} ⊂ (−∞, e0)×R+
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and
∂F

∂e
< 0 on O.

Then Q is stable in the energy norm by radially symmetric perturbations, ie: for all
M > 0, for all ε > 0, there exists η > 0 such that given f0 ∈ C1c radially symmetric
with

‖f0 −Q‖L1 ≤ η, ‖f0‖L∞ ≤ ‖Q‖L∞ +M, |H(f0)−H(Q)| ≤ η, (1.12)

the corresponding global strong solution f(t) to (1.1) satisfies:

∀t ≥ 0, ‖(1 + |v|2)(f(t)−Q)‖L1 ≤ ε. (1.13)

Finally, let us also mention the recent and remarkable work by Mouhot and
Villani [39, 40] on the Landau damping, where asymptotic stability results have
been proved for spatially homogeneous steady states of the Vlasov-Poisson system.

1.3. Statement of the result. Our aim in this paper is to solve the second stability
conjecture (conjecture 2 above) by extending the stability result of Theorem 1.1 to
the full set of non radial perturbations of isotropic models. We recall that the
radial problem enjoys an additional rigidity because for f(x, v) radially symmetric,
the Casimir conservation laws (1.4) can be extended as follows: ∀G(h, `) ≥ 0, C1
with G(0, `) = 0,

∫

R6

G(f(t, x, v), |x ∧ v|2)dxdv =

∫

R6

G(f0(x, v), |x ∧ v|2)dxdv. (1.14)

This additional conservation law is fundamental in the proof of Theorem 1.1, and
at the linear level, it is intimately connected to Antonov’s coercivity property which
is essentially equivalent to the coercivity of the Hessian of the Hamiltonian (1.3)
under the full set of linearized constraints generated by (1.14).

For the full non radial problem, (1.14) is lost. However, we claim that the strat-
egy developed in [30] coupled with a new generalized Antonov coercivity property
allows us to derive the classical conjecture (conjecture 2) of orbital stability of non-
increasing isotropic models.

Theorem 1.2 (Orbital stability of nonincreasing isotropic models). Let Q be a
continuous, nonnegative, non zero, compactly supported steady solution to (1.1).
Assume that Q is a nonincreasing spherical model in the following sense: there
exists a continuous function F : R→ R+ such that

∀(x, v) ∈ R6, Q(x, v) = F

( |v|2
2

+ φQ(x)

)
, (1.15)

and there exists e0 < 0 such that F (e) = 0 for e ≥ e0, F is C1 on (−∞, e0) and

F ′ < 0 on (−∞, e0). (1.16)

Then Q is orbitally stable in the energy norm by the flow (1.1): for all M > 0, for
all ε > 0, there exists η > 0 such that, given f0 ∈ E with

‖f0 −Q‖L1 ≤ η, H(f0) ≤ H(Q) + η, ‖f0‖L∞ ≤ ‖Q‖L∞ +M, (1.17)

for any weak solution f(t) to (1.1), there exists a translation shift z(t) such that
∀t ≥ 0,

‖(1 + |v|2)(f(t, x, v)−Q(x− z(t), v))‖L1(R6) ≤ ε. (1.18)
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We can see that the assumptions we make on Q are very general. Note that we
allow F ′ to blow up on the boundary e → e0 which is known to happen for many
standard models. We in particular extract from [6] two models of physical relevance
which fit into our analysis:

– The generalized polytropic models:

F (e) =
∑

0≤i≤N
αi(e0 − e)qi+, 0 < qi <

7

2
, αi ≥ 0.

– The King model:

F (e) = (exp(e0 − e)− 1)+ for some e0 < 0.

1.4. Strategy of the proof. We first give a brief insight into the strategy of the
proof of Theorem 1.2 which extends the approach introduced in [30]. More details
are given in the next sections but the complete proofs are not addressed here and
can be found in [31].

Step 1. Monotonicity of the Hamiltonian under generalized symmetric rearrange-
ments.

We recall that the standard Schwarz symmetrization of f is defined by

f∗(s) = inf{τ ≥ 0 : µf (τ) ≤ s}, (1.19)

where µf is defined by (1.6). The rearrangement f∗ is also the unique nonincreasing
function on R+ satisfying the equimeasurability property:

µf = µf∗ .

Given a potential φ in a suitable "Poisson field" class, we define the generalized
symmetric nonincreasing rearrangement of f , denoted by f∗φ, with respect to the
microscopic energy e = |v|2

2 +φ(x) as the unique function of e which is equimeasur-
able to f , explicitely

f∗φ(x, v) = f∗ ◦ aφ(e(x, v)), aφ(e) = meas{(x, v) ∈ R6,
|v|2
2

+ φ(x) < e}. (1.20)

Any nonincreasing spherical steady state solution to (1.1) is a fixed point of this
transformation when generated by its own Poisson field:

Q∗φQ = Q. (1.21)

Moreover, the Hamiltonian (1.3) enjoys a nonlinear monotonicity property which
was first observed in the physics literature, see in particular Aly [1]:

H(f) ≥ H(f∗φf ). (1.22)

For perturbations which are equimeasurable to Q ie

f∗ = Q∗, (1.23)

we can more precisely lower bound the Hamiltonian by a functional which depends
on the Poisson field only:

H(f)−H(Q) ≥ J (φf )− J (φQ) (1.24)

where J can be interpreted as a generalized energy, [36]:

J (φf ) = H(Q∗φf ) +
1

2

∫

R3

|∇φ
Q
∗φf −∇φf |2.
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Step 2. Coercivity of the Hessian: a Poincaré inequality.

The first step shows that the Hamiltonian controls a functional J of the potential
field only. Therefore we are led to study this reduced functional and analyse how
it controls the potential field itself. We then linearize this functional J at φQ. The
linear term drops thanks to the Euler-Lagrange equation (1.21) and the Hessian
takes the following remarkable form

D2J (φQ)(h, h) =

∫

R3

|∇h|2dx−
∫

R6

|F ′(e)|(h−Πh)2dxdv (1.25)

where Π, defined by (3.6), denotes after a suitable phase space change of variables
the projection of h onto the functions which depend only on the microscopic energy
e. A similar structure occured in [30] where the corresponding quadratic form was

∫

R3

|∇h|2 −
∫

R6

∣∣∣∣
∂F

∂e
(e, `)

∣∣∣∣ (h−Πe,`h)2dxdv (1.26)

and where Πe,` corresponds to the projection onto functions which depend on (e, `)
only (e and ` being defined by (1.11)). The strict coercivity of the quadratic form
(1.26) was then equivalent to Antonov’s stability result, but this statement is no
longer sufficient in our setting as (1.26) is lower bounded by (1.25).

We now claim the positivity of (1.25) for spherical models

D2J (φQ)(h, h) =

∫

R3

|∇h|2 −
∫

R6

|F ′(e)|(h−Πh)2dxdv ≥ 0, (1.27)

and in fact the quadratic form is coercive up to the degeneracy induced by transla-
tion invariance1. For this, we reinterpret (1.27) as a generalized Poincaré inequality,
and we claim that the classical approach developed by Hörmander [20, 21] for the
proof of weighted L2 Poincaré inequalities:

dµ = e−V (x)dx,

∫

RN
(f − f)2dµ .

∫

RN
|∇f |2dµ, f =

∫
RN fdµ∫
RN dµ

under the convexity assumption ∇2V & 1, can be adapted to our setting.

Step 3. Compactness up to translations.

From standard continuity arguments, the conservation law (1.5) and the inequality
(1.8) ensure that Theorem 1.2 is now equivalent to the relative compactness in the
energy space up to translation of generalized minimizing sequences:

f∗n → Q∗ in L1 and lim sup
n→+∞

H(fn) ≤ H(Q).

The two last steps yield the control of the potential in terms of the functional J .
A slight improvement of the inequality (1.24) now gives

H(fn)−H(Q) + ‖φfn‖∞‖f∗n −Q∗‖L1 ≥ J (φfn)− J (φQ). (1.28)

This implies the relative compactness up to translations

∇φfn(·+ xn)→ ∇φQ in L2(R3).

1see Proposition 3.2 for precise statements
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The strong convergence in the energy norm of the full distribution function now
follows from a further use of the extra terms in the monotonicity property (1.22)
which yields:∫

(1 + |v|2)|fn(x+ xn, v)−Q(x, v)|dxdv → 0 as n→ +∞

and enables to conclude the proof of Theorem 1.2.

Now we give a more detailed summary of the main steps of the proof and underline
the main arguments. Complete and detailed proofs of our claims are not given here,
and we refer the reader to [31] for a complete presentation.

2. Generalized symmetrization and reduction to a functional of
the gravitational potential

In this section, we construct the new rearrangement f∗φ with respect to a given
Poisson type field, and show the monotonicity of the Hamiltonian under the corre-
sponding transformation. This allows to find out a new functional of the potential
field only (to be analyzed later on) which is controlled by the Hamiltonian. Our
approach extends the one we developed in [30] to the case of non radial potentials,
and most arguments are in fact simplified by the absence of kinetic momentum.

2.1. Symmetrization with respect to the microscopic energy. We start by
defining a suitable convex set of "Poisson type" potentials:

X =

{
φ ∈ C(R3) such that φ ≤ 0, lim

|x|→+∞
φ(x) = 0, ∇φ ∈ L2(R3) and m(φ) > 0

}

where
m(φ) := inf

x∈R3
(1 + |x|)|φ(x)|. (2.1)

Note that if f ∈ E is nonzero and φf is its Poisson field given by (1.2), then φf ∈ X .
We associate to any φ ∈ X the following Jacobian function aφ : R∗− → R+ as:

∀e < 0, aφ(e) = meas
{

(x, v) ∈ R6 :
|v|2
2

+ φ(x) < e

}
.

This may also be explicited by the formula

∀e < 0, aφ(e) =
8π
√

2

3

∫

R3

(e− φ(x))
3/2
+ dx. (2.2)

In particular, aφ(e) = 0 for all e < minφ; Moreover aφ is C1 on (−∞, 0) and is a
strictly increasing C1 diffeomorphism from [minφ, 0) onto R+.

We then introduce the generalized rearrangement of f with respect to a Poisson
field φ ∈ X . For given f ∈ L1

+ ∩ L∞ and φ ∈ X , we define the rearrangement of f
with respect to the microscopic energy |v|

2

2 + φ(x) as follows:

f∗φ(x, v) =





f∗
(
aφ

( |v|2
2

+ φ(x)

))
if

|v|2
2

+ φ(x) < 0

0 if
|v|2
2

+ φ(x) ≥ 0

(2.3)

on R6, where aφ is defined by (2.2). Then:
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(i) f∗φ is equimeasurable with f , i.e.

f∗φ ∈ Eq(f) = {g ∈ L1
+ ∩ L∞ with µf = µg}. (2.4)

(ii) f∗φ belongs to the energy space, i.e. f∗φ ∈ E with
∫

R6

|v|2
2
f∗φdxdv ≤ C‖∇φ‖4/3

L2 ‖f‖7/9L1 ‖f‖2/9L∞ . (2.5)

We now reinterpret the assumptions on Q in Theorem 1.2 and claim that spherical
models are fixed points of the f → f∗φf transformation2.

F (e) = Q∗ ◦ aφQ(e), ∀e ∈ [φQ(0), 0), and Q∗φQ = Q on R6. (2.6)

2.2. Monotonicity of the Hamiltonian under symmetric rearrangement.
We are now in position to derive the monotonicity of the Hamiltonian under the
generalized rearrangement which is the first key to our analysis and was already
observed in the physics literature, see [1] and references therein. Given f ∈ E \ {0},
we have φf ∈ X and we will note to ease notation:

f̂ = f∗φf . (2.7)

Given φ ∈ X , we define the functional

Jf∗(φ) = H(f∗φ) +
1

2
‖∇φ−∇φf∗φ‖2L2 (2.8)

which is well defined from (2.5). We claim:

Proposition 2.1 (Monotonicity of the Hamiltonian under the f∗φf rearrangement).
Let f ∈ E \ {0} and f̂ given by (2.7), then:

H(f) ≥ Jf∗(φf ) ≥ H(f̂). (2.9)

Moreover, H(f) = H(f̂) if and only if f = f̂ .

Proof. First compute for all f, g ∈ E :

H(f) =
1

2

∫

R6

|v|2f − 1

2

∫

R3

|∇φf |2

=

∫

R6

( |v|2
2

+ φf

)
(f − g) +

1

2

∫

R6

|v|2g +

∫

R3

φfg +
1

2

∫
|∇φf |2

= H(g) +
1

2
‖∇φf −∇φg‖2L2 +

∫

R6

( |v|2
2

+ φf (x)

)
(f − g). (2.10)

Replacing g by f̂ = f∗φf yields from (2.8):

H(f) = Jf∗(φf ) +

∫

R6

( |v|2
2

+ φf (x)

)
(f − f∗φf ) dxdv, (2.11)

and hence (2.9) follows from
∫

R6

( |v|2
2

+ φf (x)

)
(f − f̂) dxdv ≥ 0, (2.12)

2Note that this is essentially a characterization of spherical models
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with equality if and only if f = f̂ . The proof of (2.12) is reminiscent from a
standard inequality for symmetric rearrangement, see [32]. Indeed, use the layer
cake representation

f(x, v) =

∫ ‖f‖L∞

t=0
1t<f(x,v)dt

and Fubini to derive:∫

R6

( |v|2
2

+ φf

)
(f − f̂) dxdv

=

∫ ‖f‖L∞

t=0
dt

∫

R6

(
1t<f(x,v) − 1

t<f̂(x,v)

)( |v|2
2

+ φf

)
dxdv

=

∫ ‖f‖L∞

t=0
dt

∫

R6

(
1
f̂(x,v)≤t<f(x,v) − 1

f(x,v)≤t<f̂(x,v)

)( |v|2
2

+ φf

)
dxdv

=

∫ ‖f‖L∞

t=0
dt

(∫

S1(t)

( |v|2
2

+ φf

)
dxdv −

∫

S2(t)

( |v|2
2

+ φf

)
dxdv

)
(2.13)

with

S1(t) = {f̂(x, v) ≤ t < f(x, v)}, S2(t) = {f(x, v) ≤ t < f̂(x, v)}.
Observe from f̂ ∈ Eq(f) that:

for a.e. t > 0, meas(S1(t)) = meas(S2(t)). (2.14)

Thus: ∀t ∈ (0, ‖f‖L∞),
∫

S2(t)

( |v|2
2

+ φf (x)

)
dxdv ≤ meas(S2(t))(f∗◦aφf )−1(t) =

∫

S1(t)
(f∗◦aφf )−1(t)dxdv,

where f∗ ◦ a−1φf is a pseudo-inverse of the nonincreasing function f∗ ◦ aφf . Injecting
this into (2.13) yields:

∫

R6

( |v|2
2

+ φf

)
(f − f̂) dxdv ≥

∫ ‖f‖L∞

0
dt

∫

S1(t)

( |v|2
2

+ φf (x)− (f∗ ◦ aφf )−1(t)
)
dxdv ≥ 0

and (2.12) is proved. We also have the analogous inequality for S2(t). From this
chain of inequalities one may easily derive the case of equality and concludes the
proof of Proposition 2.1. �

3. Study of the reduced functional J
In this section, we study the following functional J defined on X :

J (φ) = JQ∗(φ) = H(Q∗φ) +
1

2
‖∇φ−∇φQ∗φ‖2L2 . (3.1)

We claim that locally near φQ, J (φ)− J (φQ) is equivalent to the distance of φ to
the manifold of translated Poisson fields φQ(·+ x), x ∈ R3.

We first recall the definition of the homogeneous Sobolev space Ḣ1, which is the
completion of the space of functions of C∞0 (R3) with respect to the norm ‖∇φ‖L2 ,
and define Ḣ1

rad as the subset of radial functions of Ḣ1.
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Proposition 3.1 (Coercive behavior of J near φQ). There exist universal constants
c0, δ0 > 0 and a continuous map φ 7→ zφ from (Ḣ1, ‖ · ‖Ḣ1) → R3 such that the
following holds true. Let φ ∈ X with

inf
z∈R3

(‖φ− φQ(· − z)‖L∞ + ‖∇φ−∇φQ(· − z)‖L2) < δ0, (3.2)

then:
J (φ)− J (φQ) ≥ c0‖∇φ−∇φQ(· − zφ)‖2L2 . (3.3)

This section will be devoted to a sketched proof of Proposition 3.1. This proof
relies first on the second order Taylor expansion of J at φQ, and then on the
coercivity of the Hessian which is the second main key to our analysis, Proposition
3.2, and corresponds to a generalized Antonov’s coercivity property. Again the
detailed proof can be found in [31]. We present the main lines of the proof in
several steps.

3.1. Taylor expansion for J . In this step, we proved that the functional J de-
fined on X satisfies the following properties.

(i) Differentiability of J . Let φ, φ̃ ∈ X , then the function

λ 7→ J (φ+ λ(φ̃− φ))

is twice differentiable on [0, 1].
(ii) Taylor expansion of J near φQ. There holds the Taylor expansion near φQ:

∀φ ∈ X ,

J (φ)−J (φQ) =
1

2
D2J (φQ)(φ−φQ, φ−φQ)+η (‖φ− φQ‖L∞) ‖∇φ−∇φQ‖2L2 (3.4)

where
η(δ)→ 0 as δ → 0.

Moreover, the second derivative of J at φQ in the direction h is given by

D2J (φQ)(h, h) (3.5)

=

∫

R3

|∇h|2 dx−
∫

R6

∣∣∣∣F ′
( |v|2

2
+ φQ(x)

)∣∣∣∣ (h(x)−Πh(x, v))2 dxdv ,

where Πh is the projector:

Πh(x, v) =

∫

R3

( |v|2
2

+ φQ(x)− φQ(y)

)1/2

+

h(y)dy

∫

R3

( |v|2
2

+ φQ(x)− φQ(y)

)1/2

+

dy

. (3.6)

3.2. A new Antonov type inequality. Now we come to an important step in
our analysis which is the coercivity of the Hessian D2J (φQ) up to the degeneracies
induced by the translation invariance. This can be seen as a generalization of the
celebrated Antonov’s stability property –see Proposition 4.1 in [30] for a precise
statement–:

Proposition 3.2 (Generalized Antonov’s stability property). Let Q satisfy the as-
sumptions of Theorem 1.2 and consider the linear operator generated by the Hessian
(3.5):

Lh = −∆h−
∫

R3

|F ′(e)|(h−Πh)dv.
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Then L is a compact perturbation of the Laplacian operator on Ḣ1 and is positive:

∀h ∈ Ḣ1, (Lh, h) = D2J (φQ)(h, h) ≥ 0. (3.7)

Moreover,

Ker(L) = {h ∈ Ḣ1 with Lh = 0} = Span(∂xiφQ)1≤i≤3.

In particular, there exists c0 > 0 such that

∀h ∈ Ḣ1, (Lh, h) ≥ c0‖∇h‖2L2 −
1

c0

3∑

i=1

(∫

R3

h∆(∂xiφQ)dx

)2

. (3.8)

We sketch the proof of this result in few steps.

Step 1. Positivity away from radial modes.

Let h ∈ Ḣ1, and let h0 be its orthogonal projection (in L2) onto the space of radial
functions Ḣ1

rad. We write the decomposition

h = h0 + h1, h0 ∈ Ḣ1
rad, h1 ∈ (Ḣ1

rad)
⊥.

The angular integration in (3.6) ensures Πh1 = 0 and thus

(Lh, h) = (Lh0, h0) +

∫

R3

|∇h1|2 −
∫

R3

VQ h
2
1

with

VQ(r) =

∫

R3

|F ′(e)|dv = 4π
√

2

∫ 0

φQ(0)
|F ′(e)| (e− φQ(r))1/2+ de.

Since VQ is continuous and compactly supported, the Schrödinger operator −∆−VQ
is a compact perturbation of the Laplacian on Ḣ1.

Now the space-translation invariance of L attests that its kernel is non trivial and
that

L(∂xiφQ) = 0, i = 1, 2, 3. (3.9)
We now deduce from standard argument (based on spherical harmonics expansion
and the monotonicity of the radial function φQ) that this implies the positivity of
L away from radial modes, see [49] for related statements:

∀h ∈
(
Ḣ1
rad

)⊥
, (Lh, h) ≥ 0, (3.10)

and
{h ∈ (Ḣ1

rad)
⊥ with Lh = 0} = Span(∂xiφQ)1≤i≤3. (3.11)

This classically yields the coercivity of D2J (φQ) on (Ḣ1
rad)

⊥∩ [Span(∂xiφQ)1≤i≤3]
⊥.

Step 2. Coercivity on the radial modes: A new Antonov-Poincaré inequality.

First we have the relative compactness of L with respect to ∆ in Ḣ1 (see [31] for
the proof). Hence, it is sufficient to prove that

∀h ∈ Ḣ1
rad, h 6= 0, (Lh, h) > 0. (3.12)

Our main observation is now from (3.5) that (3.12) is nothing but a Poincaré in-
equality, and we now claim that we can adapt the celebrated proof by Hörmander
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[20, 21] to our setting. Hörmander’s approach involves two key steps: the intro-
duction of a self-adjoint operator adapted to the projection involved, and a suitable
convexity property. The operator will be given by

Tf(e, r) =
1

r2
√

2(e− φQ(r))
∂rf (3.13)

which essentially satisfies the requirement

Πh = 0 implies h ∈ Im(T ),

and the convexity will correspond to the lower bound:

−T
2g

g
≥ 3

(r
√

2(e− φQ(r)))4

(
ρQ(r) +

φ′Q(r)

r

)
(3.14)

with

g(r, e) =

(
r
√

2(e− φQ(r))

)3

.

Note that the original proof of Antonov’s stability criterion can be revisited as well
using the transport operator τ = v ·∇x−∇xφQ ·∇v in the radial case as differential
operator and whose image can be realized in the radial setting as the kernel of the
full projection including the kinetic momentum `, see [19], [30] for more details.

For a detailed proof of this new Antonov inequality (3.12), we refer to [31] .

Step 3. End of the proof of Proposition 3.1

This step is a classical consequence of the modulation theory coupled with the
coercivity estimate (3.8). It consists in adjusting the translation parameter in space
in order to satisfy the orthogonality conditions that are necessary to get the coer-
civity of Hessian D2J (φQ). An implicit function theorem is used in this step from
which the continuity φ→ zφ is derived. This, combined with the Taylor expansion
(3.4) ends the proof of Proposition 3.1. We again refer to [31] for a detailed proof.

4. Compactness of local minimizing sequences of the Hamiltonian

The aim of this section is to prove the following compactness result which is the
heart of the proof of Theorem 1.2.

Proposition 4.1 (Compactness of local minimizing sequences). Let δ0 > 0 be as in
Proposition 3.1. Let φ 7→ zφ the continuous map from (Ḣ1, ‖ · ‖Ḣ1) → R3 build in
Proposition 3.1. Let fn be a sequence of functions of E, bounded in L∞, such that

inf
z∈R3

(‖φfn − φQ(· − z)‖L∞ + ‖∇φfn −∇φQ(· − z)‖L2) < δ0, (4.1)

and
lim sup
n→+∞

H(fn) ≤ H(Q), f∗n → Q∗ in L1(R+) as n→ +∞. (4.2)

Then ∫
(1 + |v|2)|fn −Q(x− zφfn )| → 0 as n→ +∞. (4.3)
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Proof. Step 1: Compactness of the potential

We first claim the following quantitative lower bound which generalizes the mono-
tonicity formula (2.9): let f ∈ E such that φf satisfies (3.2), let zφf given by
Proposition 3.1, then

H(f)−H(Q) + ‖φf‖L∞‖f∗ −Q∗‖L1 ≥ c0‖∇φf −∇φQ(· − zφf )‖2L2 . (4.4)

Indeed,

H(f)−H(Q) ≥ Jf∗(φf )− J (φQ) = Jf∗(φf )− J (φf ) + J (φf )− J (φQ), (4.5)

where we have used that H(Q) = J (φQ). Now, we recall that

Jf∗(φ) =

∫

R6

( |v|2
2

+ φ

)
f∗φ(x, v)dxdv +

1

2

∫

R3

|∇φ|2dx.,

and deduce from a suitable change of variables that

Jf∗(φf )− J (φf ) =

∫ +∞

0
a−1φf (s) (f∗(s)−Q∗(s)) ds.

Since |a−1φf (s)| ≤ −min φf = ‖φf‖L∞ , we have

Jf∗(φf )− J (φf ) ≥ −‖φf‖L∞‖f∗ −Q∗‖L1 .

Inserting this estimate into (4.5) and using Proposition 3.1 yields (4.4) .
Let us now consider a sequence fn ∈ E satisfying the assumptions of Proposition

4.1, then (4.4) applied to fn ensures:

‖∇φfn(.+ zφfn )−∇φQ‖L2 → 0, as n→∞. (4.6)

Step 2: Strong convergence of fn to Q

To ease notations, we shall still denote by fn the translated function fn(.+ zφfn , v).
We then observe the identity:

H(fn)−H(Q) +
1

2
‖∇φfn −∇φQ‖2L2 =

∫

R6

( |v|2
2

+ φQ(x)

)
(fn −Q)dxdv (4.7)

which implies, from (4.2) and (4.6), that
∫

R6

( |v|2
2

+ φQ(x)

)
(fn −Q)dxdv → 0, as n→∞. (4.8)

Since we have ‖f∗n −Q∗‖L1 → 0 from (4.2), we derive the following convergence

0 ≤ Tn =

∫

R6

( |v|2
2

+ φQ(x)

)
(fn − f∗φQn )dxdv → 0, as n→∞. (4.9)

This positive quantity Tn is then shown to control the norm ‖f∗φQn − fn‖L1 in some
sense, and then ‖f∗φQn −fn‖L1 goes to 0, see [31] for the detailed proof of this claim.
Using again the convergence ‖f∗n −Q∗‖L1 → 0 and the fact that Q is a fixed point
of our rearrangement, we finally deduce that ‖fn−Q‖L1 → 0. Combining this with
the boundeness of the Hamiltonian and the strong convergence of the potential, we
also deduce that

∫

R6

|v|2|fn −Q|dxdv → 0.

This concludes the proof of Proposition 4.1.
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5. Non linear stability of Q

We now turn to the proof of the nonlinear stability result stated in Theorem 1.2,
which is a direct consequence of Proposition 4.1 and the known regularity of weak
solutions to the Vlasov-Poisson system.

Proof of Theorem 1.2.

Step 1. Continuity claim for weak solutions

Let f0 ∈ E and let f(t) ∈ E be a corresponding weak solution to (1.1). By the
properties of weak solutions of the Vlasov-Poisson system [7, 8], we have

∀t ≥ 0, f(t) ∈ Eq(f0), H(f(t)) ≤ H(f0), (5.1)

and we may prove that

φf ∈ C([0,+∞), L∞(R3) ∩ Ḣ1(R3)). (5.2)

Now this implies from Proposition 3.1 that

t 7→ zφf(t) is continuous. (5.3)

Step 2: Conclusion.

An equivalent reformulation of Proposition 4.1 is the following: for all ε > 0 small
enough, there exists η > 0 such that if f ∈ E with

‖f∗ −Q∗‖L1 ≤ η, ‖f‖L∞ ≤ ‖Q‖L∞ +M, H(f) ≤ H(Q) + η (5.4)

and
inf
z∈R3

(‖φf − φQ(· − z)‖L∞ + ‖∇φf −∇φQ(· − z)‖L2) < δ0, (5.5)

then
‖(1 + |v|2)(f −Q(· − zφf ))‖L1 ≤ ε. (5.6)

Let ε > 0 and let η > 0 be the associated constant. We consider an initial data
f0 ∈ E with

‖f0 −Q‖L1 < η, ‖f0‖L∞ ≤ ‖Q‖L∞ +M and H(f0) ≤ H(Q) + η

and a corresponding weak solution f(t) of (1.1). Observe that, by the contractivity
of the symmetric rearrangement in L1 (see [32]), we have

‖f∗0 −Q∗‖L1 ≤ ‖f0 −Q‖L1 ≤ η. (5.7)

This implies from interpolation inequalities that, for η small enough,

‖∇φf0 −∇φQ(· − zφf0 )‖L2 + ‖φf (0)− φQ(· − zφf0 )‖L∞ ≤
δ0
2
.

From (5.1), we first deduce that the corresponding solution f(t) of (1.1) satisfies
(5.4) for all t ≥ 0. Hence, if we prove that

∀t ≥ 0, ‖∇φf (t)−∇φQ(· − zφf (t))‖L2 + ‖φf (t)− φQ(· − zφf (t))‖L∞ < δ0, (5.8)

then (5.6) holds true for all t ≥ 0, which is nothing but (1.18). Now (5.8) follows for
η > 0 small enough from a straightforward bootstrap argument using the continuity
(5.2), (5.3) and an interpolation inequality. This ends the proof of Theorem 1.2. �
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6. Some perspectives

There are many open questions after this work. We list some of them below:

(i) Quantitative stability results. A natural first question is to see whether is it
possible or not to quantify all the estimates and the compactness arguments
we have used in our proof of the nonlinear stability. We believe that this
is possible to do and a work in this question is currently investigated. In
particular, the compactness step described in section 4, may be completely
reformulated in a quantified functional inequality. This inequality provides
a quantitative control of the distance between f and the steady state Q by
the difference between the two Hamiltonians H(f) and H(Q) and the distance
between the two rearrangements f∗ and Q∗.

(ii) Extension to relativistic systems. A second natural question is to explore the
applicability of our strategy to relativistic Vlasov models. There are several
kinds of relativistic models depending to which type of force fields the Vlasov
equation is coupled: coupling with a wave equation on the potential, with the
so-called Nördstrom equation or with the Einstein equations. While the most
physically relevant model (Vlasov-Einstein) seems to be difficult to deal with
at the present time, the two others are more reachable and the stability issues
for these models may be directly explored using the present approach.

(iii) Non monotonic steady states. Of course, the monotonicity condition on the
steady states is only a sufficient (but not necessary) to guarantee its stability.
A natural question (which is an open problem) is therefore to analyze the
stability or the instability of non monotonic steady states.

(iv) Fluid mechanics. The application of our strategy to the 2D Euler equation
in fluid mechanics is also another interesting question. The problem in this
context is to analyze the stability of the steady states of this system which
are monotonic functions of the courant profiles. If one tries to follow the
same algorithm as it is described in this paper, then one may reduce the
stability analysis to the validity of certain Poincaré inequality. Unfortunately,
the validity of such an inequality is still an open question.
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