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A NONLINEAR FOURIER TRANSFORM FOR
THE BENJAMIN–ONO EQUATION ON THE TORUS

AND APPLICATIONS

PATRICK GÉRARD

Abstract. The Benjamin-Ono equation was introduced by Ben-
jamin in 1967 as a model for a special regime of internal gravity
waves at the interface of two fluids. This nonlinear dispersive equa-
tion admits a Lax pair structure involving nonlocal operators of
Toeplitz type on the Hardy space. In the case of periodic bound-
ary conditions, the spectral study of these Lax operators allows
us to construct a nonlinear Fourier transform which conjugates
the Benjamin–Ono dynamics to advection with constant velocity
on tori. This construction has several applications: low regularity
well-posedness of the initial value problem, long time behaviour of
solutions and stability of traveling waves. This is a short report on
these results, recently obtained in collaboration with T. Kappeler
and P. Topalov.

1. Introduction

The Benjamin–Ono equation [5], [23], reads

(1) ∂tu = H∂2xu− ∂x(u2),
where u = u(t, x) is a real valued function and H denotes the Hilbert
transform. We refer to the recent survey by Saut [25] and to references
therein for a discussion of the origin of this equation as a model for
long, one-way internal gravity waves in a two-layer fluid, and for a
comprehensive bibliography. The two natural possible assumptions on
the unknown u as a function of the real variable x are either some
decay at infinity, for instance square integrability on the whole line,
or periodicity. Our results apply to the latter, so we shall assume
x ∈ T = R/2πZ, therefore H takes the form

Ĥf(n) = −i sign(n)f̂(n)

where f̂(n), n ∈ Z, denote the usual Fourier coefficients of the 2π–
periodic function f , and sign(0) := 0.
For Equation (1), the following issues naturally arise as relevant prob-
lems.
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• Wellposedness theory: on which Sobolev spaces Hs(T,R) does
(1) define a continuous flow map?
• Traveling waves: what are the traveling waves solutions of (1)?

Are they orbitally stable?
• Long time behaviour: what are the global properties of the tra-

jectories of (1)? In which Sobolev spaces are they bounded?
Relatively compact? Do they satisfy a Poincaré recurrence the-
orem?

These issues have been addressed for decades by using various methods.
Here our purpose is to show that an appropriate use of the integrability
of (1) leads to optimal answers to these three problems.

1.1. Sharp wellposedness theory. The wellposedness theory of the
initial value problem for (1) has been extensively studied for forty years.
The first results are due to Saut [24] and Abdelouhab, Bona, Felland
and Saut [1] and state that, for s large enough, for every u0 ∈ Hs(T,R),
there exists a unique solution u ∈ C(R, Hs(T,R)) of (1) satisfying
u(0, x) = u0(x). This result is based on the combination of energy esti-
mates and appropriate conservation laws and leads to the definition of
a continuous flow map S(t) : Hs(T,R)→ Hs(T,R) by S(t)u0 = u(t, .).
Then, by means of dispersive estimates and of a gauge transformation
introduced by Tao [28], several improvements were successively ob-
tained, establishing the continuous extension of S(t) to Hs for smaller
and smaller values of s. The best results in this direction are due to
Molinet [19] and Molinet and Pilod [20] and state that such a continu-
ous extension holds for every s ≥ 0. On the other hand, the equation
on the line enjoys a scaling symmetry which preserves the homogeneous
Hs norm for s = −1/2. This suggests that such a continuous extension
of S(t) does not hold for s < −1/2. This fact was proved by Angulo
Pava and Hakkaev in [4], using traveling wave solutions. The following
result fills the gap between s = −1/2 and s = 0.

Theorem 1. [14] For every s > −1/2, for every t ∈ R, S(t) extends
as a continuous map from Hs(T,R) to Hs(T,R), so that the mapping

(t, u) ∈ R×Hs(T,R) 7−→ S(t)u ∈ Hs(T,R)

is continuous. Furthermore, this property fails for s = −1/2 in the
following sense: there exists a sequence u(k) of smooth initial data,
converging to 0 in H−1/2(T,R), such that the sequence of functions
t 7→ 〈S(t)u(k)| eix〉 does not converge pointwise to 0 on any given time
interval of positive length.

Notice that, if u is just Hs with s < 0, u2 may not be defined
as a distribution, and the formulation (1) may not have a meaning.
However, the above theorem states that, if s > −1/2, the evolution
S(t)u can be defined unambiguously as the limit in Hs of S(t)u(k), for
any sequence u(k) of sufficiently smooth data converging to u in Hs.
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1.2. Traveling waves and orbital stability. A traveling wave of (1)
is a solution of the form

u(t, x) = U(x− ct)

for some real number c called the velocity of the traveling wave. The
traveling wave profile U satisfies the elliptic equation

(2) HU ′′ − (U2)′ + cU ′ = 0

so that, if U ∈ L2(T), U is smooth. Benjamin observed that examples
of such profiles are Poisson kernels,

Ur(x) =
1− r2

1− 2r cos(x) + r2
, cr =

1 + r2

1− r2 ,

where r ∈ (0, 1) is arbitrary.
Using a formulation of Equation (2) as a nonlinear ODE in the complex
domain, Amick and Toland [2] classified the traveling wave profiles as

(3) U(x) = N Ur(Nx+ α) + a

for some positive integer N and some constant a ∈ R. Later, Angulo
Pava and Natali [3] proved that every such traveling wave is orbitally
stable in H1/2. We claim that these properties extend to Hs for any
s > −1/2. Again, notice that the profile equation (2) does not have a
meaning in negative regularity, so we prefer to define a traveling wave
profile as a distribution

U ∈
⋃

s>−1/2
Hs(T,R)

such that, for some c ∈ R,

∀t ∈ R, S(t)U = U(.− ct),

where S(t) is defined by Theorem 1.

Theorem 2. [14] The traveling wave profiles are given by (3) and are
orbitally stable in Hs for every s > −1/2. Namely, if U is given by (3),
for every ε > 0, there exists δ > 0 such that, for every u0 ∈ Hs(T,R),

‖u0 − U‖Hs ≤ δ =⇒ sup
t∈R

inf
α∈T
‖S(t)u0 − U(.+ α)‖Hs ≤ ε.

As usual in stability theory, the infimum on translations by α ∈ T
is necessary to ensure stability, since two trajectories with close initial
data cannot stay uniformly close, as shown by the example of two
traveling waves Ur(x− crt) associated to two close values of r.

Exp. no VIII— Fourier transform for the BO equation on the torus

VIII–3



1.3. Long time behaviour. We now come to the more general prob-
lem of describing long time behaviour of trajectories of the dynamical
system defined by the flow map S(t) associated to (1) thanks to The-
orem 1. Let u0 ∈ Hs(T,R).
The first natural question about the trajectory (S(t)u0)t∈R is its bound-
edness in Hs. If s = 0, this trivially holds since the L2 norm is a
conservation law for (1). More generally, it is known since Bock and
Kruskal [7] and Nakamura [22] that (1) enjoys a sequence of conser-
vation laws (Ek)k∈Z+ such that, for every k ∈ Z+, the boundedness
of Ej(u) for j = 0, . . . , k is equivalent to the boundedness of ‖u‖Hk/2 .
This implies boundedness of trajectories in Hs when s is half an inte-
ger. What about the other values of s ∈ (−1/2,+∞)? In the special
case s ∈ (1/2, 1), an attempt was made in [16] where polynomial up-
per bounds were derived for the Hs norm of S(t)u0, by using some
nonlinear smoothing property. In fact, we are going to prove that, for
any s ∈ (−1/2,+∞), the trajectory S(t)u0 is bounded in Hs. Let us
mention that Hs bounds for smooth solutions of (1) have been inde-
pendently derived by Talbut [27], using the method of perturbation
determinants of [17]. Combining this bound with Theorem 1 would
also lead to the boundedness of all trajectories in Hs.
Another natural issue is the Poincaré recurrence property: given u0 ∈
Hs(T,R), does there exist a sequence tn → +∞ such that S(tn)u0 → u0
in Hs? In a series of papers, [29], [30], [31], [32], [9], Tzvetkov, Vis-
ciglia and Deng constructed invariant measures by the flow of (1) with
decreasing regularity. As a consequence, they prove the recurrence
property for almost every data. Notice that the lowest regularity was
obtained in [9] and corresponds to the intersection of Sobolev spaces
with negative regularity. We shall extend this recurrence property to
all trajectories in Hs for every s > −1/2 by answering a question posed
in [31].

Theorem 3. [14] For every s > −1/2, for every u0 ∈ Hs(T,R), the
function

t ∈ R 7→ S(t)u0 ∈ Hs(T)

is almost periodic.

Recall that a continuous function f : R → E, where E is a Banach
space, is almost periodic if for every ε > 0, there exists ` > 0 such that
every interval of length ` contains some real τ such that

∀t ∈ R, ‖f(t+ τ)− f(t)‖E ≤ ε.

According to Bochner’s criterion [18], almost periodic functions are
characterized as those continuous functions f : R → E such that the
set of translations {f(.+ h), h ∈ R} is relatively compact for the norm
of uniform convergence on the space of bounded continuous functions
from R to E.
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Note that Theorem 3 not only implies the boundedness of Hs trajec-
tories, but their relative compactness in Hs.

1.4. The nonlinear Fourier transform. In fact, Theorems 1, 2
and 3 are easy consequences of the existence of a non linear Fourier
transform for (1). Before stating this result, let us introduce some
more notation. Firstly, we observe that, if u is a solution of (1) and
a ∈ R, then

(4) ua(t, x) := a+ u(t, x+ 2at)

is a solution of (1). Since, moreover, the average of u is conserved
along the trajectories of (1), we may reduce the study to solutions of
average 0. Given s ∈ R, we define

Hs
r,0 :=

{
u ∈ Hs(T,R) :

∫

T

u(x) dx = 0

}
.

On the other hand, given σ ∈ R, we define

hσ+ :=

{
(ζn)n≥1 : ζn ∈ C,

∞∑

n=1

n2σ|ζn|2 < +∞
}
.

Our main result can now be stated.

Theorem 4. [14] There exists a mapping

Φ :
⋃

s>−1/2
Hs
r,0 −→

⋃

s>−1/2
h
1/2+s
+

u 7−→ (ζn(u))n≥1

with the following properties.

(i) For every s > −1/2, Φ : Hs
r,0 → h

s+1/2
+ is a homeomorphism ex-

changing bounded subsets.
(ii) For every u0 ∈ Hs

r,0 with s large enough,

∀n ≥ 1, ζn(S(t)u0) = eitωn(u0)ζn(u0),

ωn(u0) := n2 − 2
∞∑

k=1

min(k, n)|ζk(u0)|2.

(iii) For every τ ∈ T, for every u ∈ ⋃s>−1/2H
s
r,0,

∀n ≥ 1, ζn(u(.+ τ)) = einτζn(u).

Note that every u ∈ Hs
r,0 is characterized by the sequence

ξn(u) := n−1/2û(n), n ≥ 1

which belongs to h
s+1/2
+ . Furthermore, the map u 7→ (ξn(u))n≥1 is an

isomorphism between Hs
r,0 and h

s+1/2
+ satisfying property (iii) above
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and property (ii) when replacing S(t) by the linear evolution

etH∂
2
x

obtained by neglecting the nonlinear term in (1), and replacing ωn
by n2. The map Φ of Theorem 4 can therefore be considered as a
nonlinear version of the Fourier transform, adapted to the flow S(t).
In fact, its similarity with the Fourier transform also appears in the
Parseval formula for every u ∈ L2(T,R) with average 0,

1

2π

∫

T

|u(x)|2 dx = 2
∞∑

n=1

n|ξn(u)|2,

which has the following nonlinear version

(5)
1

2π

∫

T

|u(x)|2 dx = 2
∞∑

n=1

n|ζn(u)|2.

The latter identity is a special case of a family of identities which
express the conservation laws Ek(u) in terms of the |ζn(u)|2.
As we will see in the next section, the Benjamin–Ono equation (1) is
Hamiltonian with the energy E1 for some symplectic structure on H0

r,0 ,

which is sent through Φ to the Kähler structure on h
1/2
+ induced by the

h0+ inner product. This explains the choice of the unusual normalisation

Φ : Hs
r,0 → h

s+1/2
+ . Then quantities |ζn|2 can be seen as actions, and Φ

conjugates the dynamics of (1) to advection with constant velocity on
tori given by the equations |ζn|2 = γn, n ≥ 1. For this reason, Φ is
called a Birkhoff map in [13], [14]. Theorem 4 expresses integrability
of the Benjamin–Ono equation in the strongest sense. We refer to
the introduction of [14] for a comparison with other integrable partial
differential equations.
In the next section, we review the main steps of the proof of Theorem 4.
Then we explain how this theorem implies Theorems 1, 2 and 3. Finally
we mention some topics and results in the continuation of our results.

2. Lax operators and construction of the nonlinear
Fourier transform

2.1. The Lax pair structure. A crucial property of the Benjamin–
Ono dynamics is the existence of a Lax pair, discovered by Naka-
mura [22], see also Fokas and Ablowitz [10]. In order to describe this
structure, we introduce some notation. We denote by L2

+(T) the closed
subspace of L2(T) consisting of square integrable functions f satisfying

∀n < 0, f̂(n) = 0,
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and by Π the orthogonal projector from L2(T) to L2
+(T), which extends

as a linear map on D′(T),

Π̂f(n) = 1n≥0 f̂(n), n ∈ Z.

If b ∈ L∞(T), we denote by Tb the Toeplitz operator of symbol b defined
on L2

+(T) by

Tbf = Π(bf), f ∈ L2
+(T).

Note that Tb is a bounded operator, and that its adjoint is T ∗b = Tb.
Let u be a solution of (1) of regularity Hs with s large enough. For
every time t ∈ R, the operator

Lu(t) = D − Tu(t)
where D := −i∂x, is an unbounded selfadjoint operator on L2

+, with
domain H1

+ := H1 ∩ L2
+. The Lax pair identity is then1

(6)
d

dt
Lu(t) = [B(t), Lu(t)], B(t) := i(T|D|u(t) − T 2

u(t)),

where |D| denotes the Fourier multiplier of symbol |n|. Since B(t) is
a continuous family of bounded antiselfadjoint operators, the initial
value problem

dU

dt
(t) = B(t)U(t), U(0) = Id

leads to a continuous family of unitary operators U(t) on L2
+, and (6)

implies

(7) ∀t ∈ R, Lu(t) = U(t)Lu(0)U(t)∗.

Consequently, the spectrum of Lu(t) is conserved along the Benjamin–
Ono trajectories. Since Lu(t) has compact resolvent and is bounded
from below, this spectrum is made of a sequence of eigenvalues tending
to +∞, and each eigenvalue provides a conservation law for (1).

2.2. The Lax operator. Let u ∈ Hs
r,0 with s > −1/2. Let us con-

struct a selfadjoint realisation of

(8) Lu = D − Tu
on L2

+. If s = 0, namely u ∈ L2(T,R), then

‖Π(uf)‖L2 ≤ ‖u‖L2‖f‖L∞ ≤ ε‖Df‖L2 + C(ε, ‖u‖L2)‖f‖L2

for every ε > 0, and the selfadjointness of Lu with domain H1
+ is a direct

consequence of the Kato–Rellich criterion. If s < 0, the argument
has to be modified as follows. If f, g ∈ Hσ, with 1/4 < σ < 1/2,

1The operator B(t) was found in [13] and differs from the one in the original
papers by a polynomial of Lu(t). It presents the advantages of being bounded if u

is smooth enough.
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it is classical — see e.g. [6]—that fg ∈ H2σ−1/2. Consequently, if
−1/2 < s < 0, we have, for f, g ∈ Hσ

+ := Hσ ∩ RanΠ,

(9) |〈Π(uf)|g〉| = |〈u|fg〉| ≤ C‖u‖Hs‖f‖Hσ‖g‖Hσ

with

σ :=
|s|
2

+
1

4
<

1

2
.

Therefore the Hermitian form on H
1/2
+

(10) Q(f, g) = 〈Df |g〉 − 〈Π(uf)|g〉 = 〈Df |g〉 − 〈u|fg〉
is a perturbation of 〈Df |g〉 and, by the general theory of selfadjoint
operators associated to Hermitian forms, one constructs a semibounded

selfadjoint operator Lu by defining its domain as the space of f ∈ H1/2
+

such that, for some C > 0,

∀g ∈ H1/2
+ , |Q(f, g)| ≤ C‖g‖L2 ,

and by setting 〈Luf |g〉 := Q(f, g) (see [14] for more detail). Further-
more, since 1 + s > 1/2, Lu extends as a continuous mapping from
H1+s

+ to Hs
+. In particular,

Lu(1) = −Πu.

2.3. The spectral study of the Lax operator. Since its domain is

included in H
1/2
+ — in fact in H1+s

+ —, the operator Lu defined by (8)
has a compact resolvent, and its spectrum consists of a sequence of
eigenvalues which tends to +∞.
Our next step is the following gap property for these eigenvalues.

Lemma 1 ([13]). The eigenvalues of Lu are simple and the gap between
two of them is at least 1.

Proof. The key ingredient is an identity involving the form Q defined
by (10) and the shift operator on L2

+ defined by

Sf(x) := eixf(x).

Using the Leibniz formula, one easily checks that

(11) Q(Sf, Sg) = Q(f, g) + 〈f |g〉.
Denote by λ0(u) ≤ λ1(u) ≤ · · · the eigenvalues of Lu. The classical
max–min formula yields

λn(u) = sup{m(F ), F ⊂ L2
+, dimF = n},

m(F ) := inf{Q(f, f), f ∈ H1/2
+ , f ⊥ F, ‖f‖L2 = 1}.

Given a subspace F of L2
+ such that dimF = n, consider the subspsace

G(F ) := C1⊕ S(F ).

Then G(F ) is (n+ 1) dimensional and

G(F )⊥ = S(F⊥).
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Consequently,

m(G(F )) = inf{Q(Sf, Sf), f ∈ H1/2
+ , f ⊥ F, ‖f‖L2 = 1}

which, in view of (11), leads to m(G(F )) = m(F ) + 1. From the above
max–min formula, we infer

λn+1(u) ≥ sup{m(G(F )), F ⊂ L2
+, dimF = n} = λn(u) + 1.

�

For every n ≥ 1, we define the n-th gap of Lu as

γn(u) = λn(u)− λn−1(u)− 1 ≥ 0.

As we will see later, these quantities turn out to be the crucial action
variables for the Benjamin–Ono dynamics.

2.4. The generating functional. Reformulating identity (11) yields

(12) S∗LuS = Lu + Id .

Equation (12) implies the following identity for the resolvent of Lu,

(13) S∗(Lu + λ Id)−1S − (Lu + (λ+ 1) Id)−1 =
〈. |S∗wλ〉
〈wλ|1〉

S∗wλ

where wλ := (Lu + λ Id)−11 and where the vector 1 arises because of

SS∗ = Id−〈. |1〉1.
Here λ is a large enough real parameter. The quantity

(14) Hλ(u) := 〈wλ|1〉 = 〈(Lu + λ Id)−11|1〉
is called the generating functional and will play a fundamental role in
what follows. Taking the traces of both sides of (13), we obtain

− d

dλ
logHλ(u) =

1

λ0(u) + λ
−
∞∑

n=1

γn
(λn(u) + λ)(λn−1(u) + 1 + λ)

.

Integrating from λ to +∞, we infer the following factorization formula,

(15) Hλ(u) =
1

(λ0(u) + λ)

∞∏

n=1

(
1− γn(u)

λn(u) + λ

)

which, by analytic continuation, is valid for every complex number λ
different from −λn(u), n ≥ 0.
Formula (15) has many consequences. By inspecting the behavior of
both sides as λ → +∞, one first infers that the series of γn(u) is
convergent and

λ0(u) +
∞∑

n=1

γn(u) = −〈u|1〉 = 0.

Exp. no VIII— Fourier transform for the BO equation on the torus
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Consequently,

(16) ∀n ≥ 0, λn(u) = n−
∞∑

k=n+1

γk(u).

Then, if u ∈ L2, one can push the expansion one step further and
obtain

(17)
1

2
‖u‖2L2 = ‖Lu(1)‖2L2 =

∞∑

n=1

nγn(u).

More generally, if u is smooth enough, pushing the expansion leads to
the expression of

Ej(u) := 〈Lj+2
u (1)|1〉, j = 0, 1, . . .

in terms of the sequence (γn(u))n≥1. For instance, if u ∈ H1/2
r,0 ,

(18) E1(u) =
1

2
〈|D|u, u〉 − 1

3
〈u3|1〉 =

∞∑

n=1

n2γn(u)−
∞∑

n=1

( ∞∑

k=n

γk(u)

)2

.

The second set of consequences of (15) relies on the identification of
the residue of the meromorphic function λ 7→ Hλ(u) at the pole λ =
−λn(u). Denoting by (fn)n≥1 any orthonormal basis of L2

+ made of
eigenfunctions of Lu, we have

Hλ =
∞∑

n=1

|〈1|fn〉|2
λ+ λn

and consequently, comparing with (15),

(19) |〈1|f0〉|2 = κ0, |〈1|fn〉|2 = κnγn, n ≥ 1,

where

κ0(u) :=
∞∏

n=1

(
1− γn(u)

λn(u)− λ0(u)

)
,

κn(u) :=
1

(λn(u)− λ0(u))

∞∏

1≤p6=n

(
1− γp(u)

λp(u)− λn(u)

)
, n ≥ 1.

Note that κn(u) > 0 for every n ≥ 0. Consequently, (19) implies that

(20) 〈1, f0〉 6= 0 and ∀n ≥ 1, 〈1|fn〉 = 0 ⇐⇒ γn = 0.

2.5. The definition of Φ. The definition of Φ relies on an appropri-
ate choice of an orthonormal basis (fn) of eigenfunctions of Lu. The
starting point is a more precise form of (12),

(21) LuSf = S(Luf + f)− 〈uSf |1〉.
Applying this identity to f = fn and taking the inner product with
fn+1, we infer

γn+1〈fn+1|Sfn〉 = 〈fn+1|1〉〈1|uSfn〉.
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Consequently, if 〈fn+1|Sfn〉 = 0, then

• Either 〈1|uSfn〉 = 0, so that, coming back to (21), Sfn is an
eigenfunction of Lu with the eigenvalue λn + 1, which must be
λn+1 because of Lemma 1.
• Or 〈fn+1|1〉 = 0, in which case γn+1 = 0 from (20), and fn+1 =
Sgn where, from (21), Lugn = λnfn.

In both cases, this implies that fn+1 is collinear to Sfn, which contra-
dicts 〈fn+1|Sfn〉 = 0.
We conclude that, for every n ≥ 0, 〈fn+1, Sfn〉 6= 0. By an easy induc-
tion, we infer

Lemma 2. For every u, there exists a unique choice of the orthonormal
basis (fn)n≥0 of L2

+ such that

〈1|f0〉 > 0 and ∀n ≥ 0, Lufn = λnfn, 〈fn+1, Sfn〉 > 0.

We denote by (fn[u])n≥0 the basis provided by Lemma 2. For every
n ≥ 1, we define

(22) ζn(u) :=
〈1|fn[u]〉√
κn(u)

.

Because

Lu(.+τ)[f(.+ τ)] = (Luf)(.+ τ),

the definition of fn[u] according to Lemma 2 combined with (22) easily
imply property (iii) of Theorem 4.
Furthermore, in view of(19), we have

|ζn(u)|2 = γn(u)

so that, if u ∈ H0
r,0, (17) becomes the claimed nonlinear version (5) of

the Parseval identity, which implies that Φ sends H0
r,0 into h

1/2
+ , and

that B is bounded in H0
r,0 if and only if Φ(B) is bounded in h

1/2
+ .

Proving a similar property for the map Φ : Hs
r,0 → h

s+1/2
+ requires sig-

nificantly more work. Let us sketch the proof in the case s ∈ (−1/2, 0).
Firstly, the product estimate (9) implies that Lu is uniformly bounded
from below if u belongs to a bounded subset of Hs. Consequently, in
view of (16), we have

∞∑

n=1

γn(u) ≤ Cs(R)

if ‖u‖Hs ≤ R. Then the main step consists in using the information
about the domain of Lu and some complex interpolation to conclude
that the linear mapping

Ku,t : f ∈ H t
+ → 〈(f |fn[u]〉)n≥0 ∈ ht≥0
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is bounded for t ∈ [−1 − s, 1 + s], with a uniformly bounded norm if
‖u‖Hs ≤ R. Applying this to t = s and observing that

∀n ≥ 1, 〈Πu|fn[u]〉 = −λn(u)κn(u)1/2ζn(u)

one eventually concludes that, if ‖u‖Hs ≤ R,

∞∑

n=1

n1+2s|ζn(u)|2 ≤ Cs(R).

As for the reverse inequality, it is based on

‖f‖2L2≤〈(Lu−λ0(u)+1)f |f〉≤Mu‖f‖2H1/2 , Mu := Cs‖u‖Hs+2−λ0(u),

which again comes from (9). Duality and interpolation lead to

‖f‖2H−θ/2 ≤M θ
u ‖(Lu − λ0(u) + 1)−θ/2f‖2L2

for every θ ∈ [0, 1]. Applying this estimate to f = Πu with θ = −2s
eventually yields

‖u‖Hs ≤ Ns

( ∞∑

n=1

n1+2s|ζn(u)|2
)

for some nondecreasing function Ns.
Let us come briefly to continuity properties. The weak sequential con-

tinuity of Φ : Hs
r,0 → h

s+1/2
+ is a consequence of the above estimates

and of the weak sequential continuity of the maps u 7→ Hλ(u) and
u ∈ Hs

r,0 7→ fn[u] ∈ H1+s for each n. The strong continuity requires a
little more work, using again interpolation arguments and the operator
Ku,s above. We refer to [14] for detailed proofs.

2.6. The inverse spectral formula. The next crucial step is the
injectivity of Φ, which is based on some inverse spectral formula. The
starting point is the definition of Fourier coefficients in terms of S,

(23) ∀k ≥ 0, û(k) = 〈(S∗)kΠu|1〉.
Expressing the inner product in the right hand side with components
in the basis (fn[u])n≥0, one obtains

(24) ∀k ≥ 0, û(k) = 〈MkX|Y 〉,
where X := (〈Πu|fn[u]〉n≥0, Y := (〈1|fn[u])n≥0 and

Mnp := 〈S∗fp[u]|fn[u]〉.
A careful calculation [13] shows that the infinite sequences X, Y and
the infinite matrix M only depend on the sequence (ζn(u))n≥0. This
immediately implies that Φ is one to one.
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2.7. The case of finite gap potentials. In order to complete the
proof of Theorem 4, we need to establish that Φ is surjective and re-
duces the Benjamin–Ono evolution according to property (ii). This
will be a consequence of the action of Φ on the symplectic form

ω(h1, h2) = 〈h1|∂−1x h2〉

defined on H
−1/2
r,0 .

Then the Benjamin–Ono equation formally reads as the Hamiltonian
evolution associated to the densely defined energy

E1(u) =
1

2
〈|D|u|u〉 − 1

3
〈u3|1〉 =

∞∑

n=1

[
n2|ζn(u)|2 −

( ∞∑

k=n

|ζk(u)|2
)2]

The crucial point will be that Φ is a symplectic map in the following
sense,

Φ∗ω = i
∞∑

n=1

dζn ∧ dζn.

In fact, we are going to prove this identity on a sequence of finite
dimensional symplectic submanifolds whose union is dense in Hs

r,0 for
every s > −1/2.

Definition 1. Let N be a positive integer. A fonction u ∈ ⋃s>−1/2H
s
r,0

is a N-gap potential if it satisfies

γN(u) > 0 and ∀n > N, γn(u) = 0.

We denote by UN the set of N -gap potentials. For convenience, we
set U0 := {0}.
Theorem 5. The set UN consists of functions of the form

(25) u(x) =
N∑

j=1

(
1− r2j

1− 2rj cos(x+ αj) + r2j
− 1

)

where rj ∈ (0, 1), αj ∈ T are arbitrary. Furthermore, endowed with ω,
UN is a symplectic manifold of dimension 2N , and

Φ : u ∈ UN −→ (ζn(u))1≤n≤N ∈ CN−1 × C∗

is a diffeomorphism such that

Φ∗ω = i

N∑

n=1

dζn ∧ dζn.

For the proof, see [13]. Identity (25) in Theorem 5 identifies N–gap
potentials to sums of N Poisson kernels — up to the additive con-
stant N , in order to guarantee mean zero. An important ingredient in
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this identification is the inverse spectral formula derived in the previous
subsection, which, for a N -gap potential, can be rewritten as

∞∑

k=1

û(k)zk = 〈(Id−zMN)−1XN |YN〉CN+1×CN+1 , |z| < 1,

where MN is a (N + 1) × (N + 1) matrix the last row of which is
identically zero, so that

Q(z) := det(Id−zMN)

is a polynomial of degree N with no zeroes in the closed unit disc.
Eventually one gets

∞∑

k=1

û(k)zk = −zQ
′(z)

Q(z)

which is equivalent to (25). The coefficients of Q provide us with a
global system of complex coordinates, which makes UN isomorphic to
a Kähler manifold.
The symplectic properties of Φ are equivalent to the following Poisson
bracket identities,

{ζn, ζp} = 0, {ζn, ζp} = −iδnp.
A crucial step in the proof of these identities is the following Lax pair
identity along the Hamiltonian evolution with energyHλ for every num-
ber λ > 0 large enough,

d

dt
Lu(t) = [Bλ(t), Lu(t)],

where
Bλ(t) := iTwλ(t)Twλ(t), wλ := (Lu + λ Id)−11.

2.8. Completing the proof of Theorem 4. Consider ζ := (ζn)n≥1 ∈
h
s+1/2
+ with s > −1/2. If ζn = 0 for n large enough, we already know

from Theorem 5 that ζ = Φ(u) for some finite gap potential u. Other-
wise, for every N ≥ 1 such that ζN 6= 0, Theorem 5 provides us with
uN ∈ UN such that

ζn(uN) = ζn, 1 ≤ n ≤ N.

As N → +∞, uN is bounded in Hs
r,0, hence, up to a subsequence,

weakly converges to some u ∈ Hs
r,0. By the sequential weak continuity

of Φ, we infer Φ(u) = ζ. Hence Φ : Hs
r,0 → h

s+1/2
+ is surjective.

As for property (ii), we first prove it if u is a N–gap potential. Since E1
is a function of γn = |ζn|2, n = 1, . . . , N , we infer from Theorem 5
that the corresponding Hamiltonian evolution can be written in the
coordinates ζn,

ζ̇n = i
∂E1
∂γn

ζn, n = 1, . . . , N.
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In view of the expression of E1 on UN ,

E1(u) =
N∑

n=1

[
n2γn(u)−

( N∑

k=n

γk(u)

)2]
,

we infer property (ii) for finite gap potentials. The case of Hs solu-
tions for s large enough follows from a density argument and from the
continuity properties of the flow S(t) on Hs.

3. Sketch of the proof of Theorems 1, 2, 3

3.1. Wellposedness, traveling waves and almost periodicity.
Using Theorem 4, it is easy to extend continuously S(t) to Hs

r,0 for
every s > −1/2. Indeed, by applying Φ, this is equivalent to extend

continuously to h
s+1/2
+ the mapping

(ζn)n≥1 7−→ (ζn eitωn)n≥1

where

ωn := n2 − 2
∞∑

k=1

min(k, n)|ζk|2.

Such an extension is trivial. The case of a solution with a non zero
mean follows after applying a transformation (4).
As for traveling waves, in view of property (iii) and of property (ii)
extended to Hs

r,0 for every s > −1/2, U is a traveling wave profile with
velocity c if and only if

∀n ≥ 1, ∀t ∈ R, ζn(U)e−inct = ζn(U)eitωn(U).

Since, for U 6= 0, the sequence n 7→ ωn(U)/n is increasing, this imposes
ζn(U) = 0 for all n except one value N . Applying the inverse spectral
transform then leads to (3). Orbital stability of such traveling waves
is then easily proved in coordinates (ζn).
Almost periodicity of the trajectories easily follows from the Bochner
criterion and the formula S(t)u = Φ−1 [ζ(u, tΩ)], with

Ω := (ωn(u))n≥1, ζ(u, θ) :=
(
ζn(u) eiθn

)
n≥1 , θ = (θn)n≥1 ∈ (R/2πZ)∞ .

3.2. Illposedness on H−1/2. Finally, let us discuss the proof of the
last part of Theorem 1. We consider potentials of the form

u(x) = v(eix) + v(eix),

where v is the holomorphic function defined in the unit disc by

v(z) =
εqz

1− qz , 0 < ε < q < 1, |z| < 1.

We are interested in the asymptotics ε→ 0, q → 1. Note that

‖u‖2H−1/2 = −2ε2 log(1− q2).
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On the other hand, the eigenvalue equation Luf = λf reads as a dif-
ferential equation in the complex domain,

zf ′(z)−
(

εqz

1− qz +
εq

z − q − µ
)
f(z) = f(q)

εq

q − z , |z| < 1,

where we have set µ := −λ, and f is holomorphic in the unit disc. A
careful study of this first order linear differential equation around the
singular points z = 0 and z = q leads to a characterization of negative
eigenvalues through the following equation for µ > 0,

F (µ, ε, q) :=

q∫

0

tε+µ(1− qt)ε
(q − t)ε

(
µ

t
− εq

1− qt

)
dt = 0.

From this equation, one infers the following elementary properties.

• If F (µ, ε, q) = 0, then ∂µF (µ, ε, q) > 0.
• For every µ > 0, F (µ, ε, q)→ −∞ if ε log(1− q2)→ −∞.

From formula (16) for n = 0, we know that Lu has at least one negative
eigenvalue. Using the first property above, we know that this eigenvalue
is unique. Furthermore, in view of the second property above, it is
possible to choose two sequences εk → 0, qk → 1 such that

ε2k log(1− q2k)→ 0, εk log(1− q2k)→ −∞,
and such that the corresponding unique solution µk > 0 of the equation

F (µk, εk, qk) = 0

satisfies µk → +∞. In other words, if we denote by u(k) the correspond-
ing potential, u(k) tends to 0 in H−1/2 and Lu(k) has only one negative
eigenvalue λ0(u

(k)) = −µk , which moreover tends to −∞. The inverse
spectral formula (24) and property (ii) of Theorem 4 then yield

〈S(t)u(k)|eix〉 = ak eit(1−2µk) +
∞∑

n=1

bn,k eit(1+2λn,k)

with λn,k ≥ 0 and

|ak| →
√

2, sup
k

∞∑

n=1

|bn,k| <∞.

Consequently, the function t 7→ 〈S(t)u(k)|eix〉 is uniformly bounded,
and, given an interval I of positive length,

∣∣∣∣
∫

I

〈S(t)u(k)|eix〉 eit(2µk−1) dt
∣∣∣∣→
√

2|I|,

which contradicts 〈S(t)u(k)|eix〉 → 0 on I, in view of the dominated
convergence theorem.
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4. Some perspectives

Let us mention some topics in the continuation of our results.

4.1. The Benjamin–Ono hierarchy. As we already noticed, the
Benjamin–Ono equation is the Hamiltonian evolution associated to the
energy E1. For every j ≥ 2, it is possible to study the Hamiltonian evo-
lution associated to the energy Ej by using the same nonlinear Fourier
transform Φ. In [11], the third-order equation, which corresponds to E2,
is studied in detail. In particular, though the critical scaling exponent
is still s = −1/2, wellposedness is proved to hold in Hs if and only if
s ≥ 0. Furthermore, new traveling waves are found for this equation,
which turn out to be orbitally unstable.

4.2. More about the nonlinear Fourier transform. A natural
continuation of Theorem 4 would be to prove that Φ is a real analytic
diffeomorphism. This would be useful for studying Hamiltonian per-
turbations of the Benjamin–Ono equations by KAM methods. A first
result in this direction is [15], which proves that the moment map
u 7→ (γn(u))n≥1 is real analytic from Hs

r,0 to the `1 space with weight

n1+2s for s > −1/2.

4.3. The damped Benjamin–Ono equation. Our nonlinear Fou-
rier transform was also recently used in [12] to find new Lyapunov func-
tionals and to study the long time behaviour of the following weakly
damped Benjamin–Ono equation,

∂tu+ α(〈u| cos〉 cosx+ 〈u| sin〉 sinx) = H∂2xu− ∂x(u2),

where α > 0.

4.4. The quantum Benjamin–Ono equation. Our nonlinear Fou-
rier transform was recently used in [21] for establishing Bohr–Som-
merfeld conditions for the quantum Benjamin–Ono equation. We refer
to [21] for more references on this topic.

4.5. The Benjamin–Ono equation on the line. As we mentioned
in the beginning of this paper, the Benjamin–Ono equation (1) can be
studied on the line as well. Though it satisfies the same Lax pair struc-
ture, the inverse spectral theory is still to be completed. Let us mention
the special case of small and sufficiently decaying data, for which the
inverse scattering transform was performed in [8]. Some general results
on the spectral properties of the Lax operator are available in [33], [34].
More recently, the nonlinear Fourier transform for multisolitons — the
analogous of finite gap potentials on the line — was constructed in [26].
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