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MODULATED FREE ENERGY AND MEAN FIELD LIMIT

DIDIER BRESCH, PIERRE-EMMANUEL JABIN, AND ZHENFU WANG

Abstract. This is the document corresponding to the talk the first author gave at

IHÉS for the Laurent Schwartz seminar on November 19, 2019. It concerns our recent
introduction of a modulated free energy in mean-field theory in [4]. This physical object
may be seen as a combination of the modulated potential energy introduced by S. Serfaty
[See Proc. Int. Cong. Math. (2018)] and of the relative entropy introduced in mean
field limit theory by P.–E. Jabin, Z. Wang [See Inventiones 2018]. It allows to obtain,
for the first time, a convergence rate in the mean field limit for Riesz and Coulomb

repulsive kernels in the presence of viscosity using the estimates in [8] andÂ [20]. The
main objective in this paper is to explain how it is possible to cover more general repulsive
kernels through a Fourier transform approach as announced in [4] first in the case σN → 0
when N → +∞ and then if σ > 0 is fixed. Then we end the paper with comments on
the particle approximation of the Patlak-Keller-Segel system which is associated to an
attractive kernel and refer to [C.R. Acad Science Paris 357, Issue 9, (2019), 708–720]
by the authors for more details.

1. Introduction

This paper concerns interaction particles system and quantitative estimates in mean
field limit theory in the spirit of [20], [8] and [15]. Namely we consider N particles,
identical and interacting two by two through a kernel K. For simplicity, we consider
periodic boundary conditions and we assume the position of the i-th particle Xi(t) ∈ Πd

evolves through as follows

dXi =
1

N

∑

j 6=i
K(Xi −Xj)dt+

√
2σdWi

for N independent Brownian motions Wi with a gradient flow hypothesis K = −∇V where
V ∈ L1(Πd) will be discussed later-on: For possible vanishing viscosity with respect to N
namely σN → 0 when N → +∞ we consider singular repulsive kernels with some pointwise
and Fourier controls (including Riesz and Coulomb Kernels) and for σ > 0 we consider
more general singular repulsive kernels with Fourier control and then we conclude with
some comments on the Patlak-Keller-Segel attractive kernel. The main objective in this
document is to give some details in the repulsive case to complete the note written by the
authors [C.R. Acad Sciences 357, Issue 9, (2019), 708–720] which focused on the attractive
Patlak-Keller-Segel kernel. A full paper is still in progress to propose a single complete
document, see [5]. Readers interested by some reviews on mean field limit for stochastic
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particle systems are referred to [16], [18] and on mean field limit for deterministic particle
systems are referred to [11], [14], [20].

As usually, we introduce ρN the joint law of the process (X1, · · · , XN ) which satisfies the
Liouville equation

∂tρN +
N∑

i=1

divxi

(
ρN

1

N

N∑

j 6=i
K(xi − xj)

)
= σ

N∑

i=1

∆xiρN .

The main objective is to obtain a rate of convergence with respect to the number of
particles N from ρN to ρN = ρ⊗N = ΠN

i=1ρ with

∂tρ+ div(ρu) = σ∆ρ, u = −∇V ?x ρ

where ρ is a 1-particle distribution namely ρ ≥ 0 and
∫
ρ = 1. More precisely, the main

objective is to prove (for σ > 0 fixed) that there exists constants CT,ρ,k > 0 and θ > 0
such that

‖ρN,k −Πk
i=1ρ(t, xi)‖L1(Πkd) ≤ CT,ρ,kN−θ

where ρN,k is the marginal of the system at a fixed rank k,

ρN,k(t, x1, . . . , xk) =

∫

T (N−k) d

ρN (t, x1, . . . , xN ) dxk+1 . . . xN .

under assumptions of global existence of entropy-weak solutions ρN of the Liouville equa-
tion and global existence of classical solution ρ of the limiting system. Due to the Csiszár-
Kullback-Pinsker Inequality, it suffices to control the quantity

1

k

∫

Πkd
ρN,k log

ρN,k

ρ⊗k

and therefore
1

N

∫

ΠNd
ρN log

ρN
ρN

due to the inequality

1

k

∫

Πkd
ρN,k log

ρN,k

ρ⊗k
≤ 1

N

∫

ΠNd
ρN log

ρN
ρN

.

In the case σN → 0 whenN → +∞, the information will be related to a rescaled modulated
potential energy similar to the one introduced by S. Serfaty.

As explained in [19] (and commented by F. Golse during the talk) the keys of the paper
by S. Serfaty is to introduce a clever truncation of the kernel at a length-scale ri depending
on the point i and equal to a minimal distance from xi to its nearest neighbors. Using
such truncation it is possible to prove that the truncated energy can be controlled by the
full energy and conversely. The next crucial result is that, even though positivity is lost,
when using the ri as truncation parameters she can still control for each time slice the
expression by the modulated energy itself, up to a small error , and provided the limiting
solution is regular enough. This, which is the most difficult part of her proof, uses two
ingredients: the first is to re-express as a single integral in terms of a stress-energy tensor,
and the second is to show that the expression is in fact close to the same expression with
truncated fields.

In this document, we will explain how to construct an appropriate regularized kernel
(Lemma 4.1) which in some sense play the role of the appropriate truncation in [20]. In the
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case σN → 0, it will be used to control the contribution to the potential energy for close
particles switching between the kernel and its regularization. It will also be used coupled
with a Fourier transform property to get rid of the re-expression as a single integral in
terms of a stress-energy tensor. In the case σ > 0 fixed the Fourier transform hypothesis
may be relaxed playing with the classical convexity inequality (6.5) and large deviation
type estimates.

The paper is divided in nine sections. Section 1 is the present introduction. Section 2
is dedicated to the modulated free energy (2.1) (with GN and GρN defined respectively by
(2.2) and (2.3)) introduced by the authors in [5] which allows to make the link between
[20] and [15]. The analysis is based on the important inequality (2.6) with (2.7) with
Gronwall Lemma and some appropriate estimates. Section 3 concerns the assumptions
(3.1)–(3.7) on the kernels and the main results Theorem 3.1 and Theorem 3.2. We focus
on repulsive kernels and provide Theorems first in the case σN → 0 when N → +∞
and secondly when σ is fixed. We provide simple comments for the attractive kernel
corresponding to the Patlak-Keller-Segel system and refer to [4] for more details. Section 4
is dedicated to an important regularization lemma which will helpful to switch between
the kernel and an appropriate regularized one. Section 5 and Section 6 concern the proofs
of different controls from below and above coupled with inequality (2.6) with (2.7) firstly
when σN → 0 when N → +∞ and secondly when σ is fixed. Section 7 concludes the proofs
of Theorem 3.1 and Theorem 3.2 from Gronwall arguments. In Section 8, we provide
comments on the interesting attractive case corresponding to the particle approximation
of the Patlak-Keller-Segel system. We end the paper by Section 9 with some comments
and open problems.

2. Physics provides the right mathematical object

As firstly introduced by the authors in [4], keeping advantage of the idea to introduce
appropriate weights from [3], we define the following modulated free energy

E
( ρN
GN
| ρN
GρN

)
=

1

N

∫

ΠdN
ρN (t,XN ) log

(
ρN (t,XN )

GN (XN )

GρN (t,XN )

ρN (t,XN )

)
dXN . (2.1)

where the Gibbs equilibrium GN of the system and GρN the corresponding distribution
where the exact field is replaced by the mean field limit according to the law ρ are given
by

GN (t,XN ) = exp

(
− 1

2Nσ

∑

i 6=j
V (xi − xj)

)
(2.2)

and

GρN (t,XN ) = exp

(
− 1

σ

N∑

i=1

V ? ρ(xi) +
N

2σ

∫

Πd
V ? ρρ

)
(2.3)

It may be written

E
( ρN
GN
| ρN
GρN

)
= HN (ρN |ρN ) +KN (GN |GρN )

where

HN (ρN |ρN ) =
1

N

∫

ΠdN
ρN (t,XN ) log

(
ρN (t,XN )

ρN (t,XN )

)
dXN (2.4)
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is exactly the relative entropy introduced by Jabin-Wang and

KN (GN |GρN ) = − 1

N

∫

ΠdN
ρN (t,XN ) log

(
GN (XN )

GρN (t,XN )

)
dXN (2.5)

is the expectation of the modulated potential energy introduced by S. Serfaty multiplied
by 1/σ. It is then possible to show that the free energy has the right algebraic structure for
any V even. More precisely, using smoothing properties and definition of global entropy-
weak solution of the Liouville system and global classical solution of the limit system, we
get the inequality

EN

(
ρN
GN
| ρN
GρN

)
(t) +

σ

N

∫ t

0

∫

ΠdN
dρN

∣∣∣∣∇ log
ρN
ρN
−∇ log

GN
GρN

∣∣∣∣
2

≤ EN
(
ρN
GN
| ρN
GρN

)
(0) + IN

(2.6)

where

IN = −1

2

∫ t

0

∫

ΠdN

∫

Π2 d∩{x 6=y}
∇V (x− y) ·

(
∇ log

ρ

Gρ
(x)−∇ log

ρ

Gρ
(y)

)

(dµN − dρ)⊗2dρN ,

(2.7)

where µN =
∑N

i=1 δ(x− xi)/N is the empirical measure. It is important to note that the
right-hand side is exactly the expectation of the quantity obtained by S. Serfaty with the
modulated potential energy when σ = 0 and to remark that the parasite terms involving
divK in the work by P.–E. Jabin and Z. Wang have disappeared. In order to use Gronwall
Lemma, the previous expression leaves two main points in the proof namely the existence
θ > 0 and C > 0 such that we have
I) An upper bound of IN given by (2.7). If the viscosity σ > 0 is fixed namely

IN ≤
∫ t

0
EN

(
ρN
GN
| ρN
GρN

)
(s) ds+

C

N θ

and if σN → 0 when N → +∞

σNIN ≤ CσN
∫ t

0
KN

(
ρN
GN
| ρN
GρN

)
(s) ds+

C

N θ

II) A control from below on modulated quantities. For σ > 0 fixed, the modulated free
energy EN is almost positive or more specifically that for some constant

EN

(
ρN
GN
| ρN
GρN

)
(t) ≥ 1

C
HN (ρN |ρN )(t)− C

N θ

and, for σN → 0 when N → +∞, the rescaled modulated potential energy is almost
positive namely

σNKN ≥ −
C

N θ
.

Remark 2.1. Combining the relative entropy with a modulated energy has bee successively
used for various limit in kinetic theory such as quasi neutral limit (see [12], [17]) or Vlasov-
Maxwell-Boltzmann to incompressible viscous EMHD (see [1]).

Didier Bresch, Pierre-Emmanuel Jabin and Zhenfu Wang

II–4



Remark 2.2. Note the presence of modulated Fisher type information

D =
σ

N

∫ t

0

∫

ΠdN
dρN

∣∣∣∣∇ log
ρN
ρN
−∇ log

GN
GρN

∣∣∣∣
2

(2.8)

in the inequality (2.7).

3. Assumptions and main results

We will split the discussions in three parts. The first part concerns the case with
viscosity σ → 0 when N → +∞. We show how to consider more general singular kernels
than in [19], [8] extending their methods. The second part concerns a fixed viscosity σ > 0
using the modulated free energy where we indicate kernels that may be considered. In the
last part, we give comments regarding the Patlak-Keller-Segel system which concerns an
attractive kernels and viscosity 2dσ > λ where λ measures the intensity of the kernel.

I) Repulsive Kernels. In this part, the first assumptions on V are

V (−x) = V (x), V ∈ Lp(Πd) for some p > 1 (3.1)

with following Fourier sign

V̂ (ξ) ≥ 0 for all ξ ∈ Rd (3.2)

and the following pointwise controls for all x ∈ Td: There exists constants k and C > 0
such that

|∇V (x)| ≤ C

|x|k , |∇2V (x)| ≤ C

|x|k′ for some k, k′ > 1/2 (3.3)

and

|∇V (x)| ≤ C V (x)

|x| . (3.4)

We also assume that

lim
|x|→0

V (x) = +∞, V (x) ≤ C V (y) for all |y| ≤ 2|x| (3.5)

and

|∇ξV̂ (ξ)| ≤ C

1 + |ξ|

(
V̂ (ξ) + f(σ)

1

1 + |ξ|d−α
)

with 0 < α < d for all ξ ∈ Rd (3.6)

where
f(σ) = 0 if σ → 0 and f(σ) = 1 if σ is fixed. (3.7)

Remark 3.1. Remark that Riesz and Coulomb kernels perturbed to get periodic kernels
satisfy hypothesis (3.1)–(3.7). Note that constraints k, k′ > 1/2 are chosen for simplicity
in the argument: the results cover any k and k′.

I-1) Case σN → 0 and repulsive kernels. The convergence rate theorem reads as follows

Theorem 3.1. Assume K = −∇V with V satisfying (3.1)–(3.7) with f(σ) = 0. Con-
sider ρ a smooth enough solution with inf ρ > 0. There exists constants C > 0 and a
function η(N) with η(N) → 0 as N → ∞ s.t. for ρN = ΠN

i=1ρ(t, xi), and for the joint
law ρN on ΠdN of any entropy-weak solution to the SDE system,

σN KN (t) ≤ eCρ ‖K‖ t (σN KN (t = 0) + σN HN (t = 0) + η(N)) ,

Exp. no II— Modulated free energy and mean field limit
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Hence if σN K0
N + σN H0

N ≤ η(N), for any fixed marginal ρN,k

W1(ρN,k, Πk
i=1ρ(t, xi)) ≤ CT,ρ,k η(N),

where W1 is the Wasserstein distance.

I-2) Case σ > 0 fixed with respect to N and repulsive kernels. The convergence rate
theorem reads as follows

Theorem 3.2. Assume K = −∇V with V satisfying (3.1)–(3.7) with f(σ) = 1. Con-
sider ρ a smooth enough solution with inf ρ > 0. There exists constants C > 0 and θ > 0
s.t. for ρN = ΠN

i=1ρ(t, xi), and for the joint law ρN on ΠdN of any entropy-weak solution
to the SDE system,

HN (t) + |KN (t)| ≤ eCρ ‖K‖ t
(
HN (t = 0) + |KN (t = 0)|+ C

N θ

)
,

Hence if H0
N + |K0

N | ≤ C N−θ, for any fixed marginal ρN,k

‖ρN,k −Πk
i=1ρ(t, xi)‖L1(Πk d) ≤ CT,ρ,kN−θ.

Remark 3.2. In the case σ > 0 fixed, it is possible to enlarge the class of kernels for
instance assuming only V ≥ −C with C > 0 and choosing α = 0 in (3.6). To allow α = 0
requires a novel large deviation inequality, similar in spirit to Prop. 6.1 but for singular
attractive potentials. More precisely, we can use the following proposition for which the
proof is more complex and we refer to our upcoming article [5] for it. There exists η0 > 0,
θ > 0 s.t. if G(x) ≤ C log 1

|x| + C with C > 0 and η ≤ η0 then

∫

ΠdN

∫

{x6=y}∩{|x−y|≤η}
G(x− y) (dµN − dρ)⊗2 dρN ≤ CHN +

C

N θ
.

Note that such control is also central in the proof for the attractive Patlak-Keller-Segel
kernel, see [4] for a sketch.

II) An Attractive case. This part concerns the first quantitative estimate related to par-
ticle approximation of the Patlak-Keller-Segel system. Namely we get the same conclusion
than in Theorem 3.2 for

V = λ log |x|+ perturbation

if 0 ≤ λ < 2dσ with the perturbation being regular kernel to get V periodic. We refer the
readers to [4] for the explanation of the steps in the Proof. Some comments are given at
the end of the present paper.

4. An important regularization lemma

In our approach an important Lemma will be the construction of an appropriate regu-
larized kernel using hypothesis (3.1)–(3.5). More precisely we prove the following Lemma
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Lemma 4.1. Let V satisfying (3.1)–(3.4). Then there exists a smooth approximation Vε
of V and a function of η(ε) with η(ε)→ 0 as ε→ 0 such that

V̂ε ≥ 0,

‖Vε − V ‖L1(Πd) ≤ η(ε), ‖I|x|≥δ (V − Vε)‖L1 ≤ C ε

δk
, ‖I|x|≥δ (∇V −∇Vε)‖L1 ≤ C ε

δk′
,

Vε(x) ≤ V (x) + ε for all x.

This step asks for appropriate regularization which in some sense depend on the total
number of particles N : It uses the pointwise properties of the kernels (3.3)–(3.5) which
includes a doubling variable property.

Proof. Some preliminary controls. Consider a smooth kernel K1 with compact support

in B(0, 1) and s.t. K̂1 ≥ 0. Observe that for |x| ≥ 2 δ and since |∇V (y)| ≤ C/|x|k for
|y| ≥ |x|/2,

|K1
δ ? V (x)− V (x)| ≤

∫

|z|≤1
K1(z) |V (x− δ z)− V (x)| dz ≤ C δ

|x|k .

Therefore
K1
δ ? V (x) ≤ V (x) + C δ1/2, ∀ |x| ≥ δ1/2k. (4.1)

On the other hand, we also have that K1
δ ? V (x) ≤ C δ−d ‖V ‖L1 . Since V (x) → ∞ as

|x| → 0, we also have that for some increasing function f(δ)

K1
δ ? V (x) ≤ V (x), ∀ |x| ≤ f(δ). (4.2)

As k is chosen such that k > 1/2 then δ1/2k ≥ 2δ, so we need to be more precise where

f(δ) ≤ |x| ≤ δ1/2k.

Construction of an appropriate regularized kernel Wε.
Case |x| ≥ 2δ. First of all we notice that by the doubling property, we have directly if
|x| ≥ 2 δ that |x|/2 ≤ |x− δ z| ≤ 2|x| for |z| ≤ 1 and thus

K1
δ ? V (x) ≤ C V (x), ∀ |x| ≥ 2 δ. (4.3)

Case |x| ≤ 2δ. For |x| ≤ 2 δ, the doubling property on its own only gives that

K1
δ ? V (x) ≤ C K1

δ ? V (0) ≤ C δ−d
∫

B(0,δ)
V (y) dy. (4.4)

We now define a sequence δn → 0 s.t.∫

B(0,δn)
V (y) dy ≤ C

∫

δn/2≤|y|≤δn
V (y) dy. (4.5)

The existence of such a sequence is straightforward to show by contradiction, as otherwise,
we would have for some δ and all δ ≤ δ that∫

B(0,δ/2)
V (y) dy ≥ (C − 1)

∫

δ/2≤|y|≤δ
V (y) dy.

By induction, this would imply that∫

B(0,δ/2k)
V (y) dy ≥ (1− 1/C)k−1(C − 1)

∫

δ/2≤|y|≤δ
V (y) dy. (4.6)

Exp. no II— Modulated free energy and mean field limit
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Using the Lp bound on V , we have∫

B(0,δ/2k)
V (y) dy ≤ C ′ 2−kp/(p−1)

this provides a contradiction with (4.6) if C − 1 is too large. Note by the way that if we
assume some explicit rate on V then we can have explicit bound on how large δn can be
w.r.t. δn+1.

If δ = δn, then (4.5) and (4.4) together implies that

K1
δ ? V (x) ≤ C δ−dn

∫

δn/2≤|y|≤δn
V (y) dy.

This is where we use (3.4) which implies that if |x| ≤ 2 δn and δn/2 ≤ |y| ≤ δn then
V (y) ≤ C V (x). Hence eventually for δ = δn, we obtain the counterpart to (4.3) and find

Kδn ? V (x) ≤ C V (x), ∀x. (4.7)

Now for every ε, we are going to choose M of the parameters δn, with M the integer part
of 1/ε large, and define first

Wε =
1

M

M∑

i=1

Kδni
? V.

We start by taking δn1 ≤ ε2/C and we then define the ni recursively s.t.

δni+1 ≤ min(f(δni), δ
2k
ni ).

We of course have automatically that Ŵε ≥ 0. Moreover since max δni → 0 as ε→ 0, the
standard approximation by convolution shows that ‖V −Wε‖L1 → 0. By using (3.3), we
also directly have that

‖I|x|≥δ (V −Wε)‖L1 ≤ C max δni
δk

≤ C ε

δk
,

and similarly

‖I|x|≥δ (∇V −∇Wε)‖L1 ≤ C ε

δk′
.

It only remains to compare Wε and V . For this consider any x, if |x| ≥ δ1/2k
n1 then (4.1)

directly implies that Wε(x) ≤ V (x) + ε. If |x| ≤ f(δnM ) then (4.2) also directly implies
that Wε(x) ≤ V (x).

This only leaves the case where |x| is somewhere between δnM and δn1 . In that case,
there exists i s.t. δni+1 ≤ |x| ≤ δni . By the definition of the δnj , one has that |x| ≤ f(δnj )

if j < i and |x| ≥ δ1/2k
nj if j > i+ 1. Using again (4.1) and (4.2), we then have

Kδnj
? V (x) ≤ V (x) + ε if j > i+ 1, Kδnj

? V (x) ≤ V (x) if j < i.

Using (4.7) for j = i and j = i+ 1, we get

Wε(x) ≤ (1 + 2C/M)V (x) + ε = (1 + 2C ε)V (x) + ε.

Definition of Vε and conclusion. This leads to the final definition Vε = Wε/(1 + 2C ε)

which indeed satisfies Vε ≤ V +ε, V̂ε ≥ 0 and still ‖Vε−V ‖L1 → 0 together with the other
convergences since obviously ‖Vε −Wε‖L1 → 0. �
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5. Control of terms for repulsive kernels with vanishing viscosity σN → 0

As a corollary of Lemma 4.1, we obtain a straightforward control on the contribution
to the potential energy from close particles

Lemma 5.1. Under the assumptions of Lemma 4.1, there exists a function η(N) with
η(N)→ 0 as N →∞, one has that

σN KN (t) ≥ −η(N).

Furthermore there exists η(δ) with η(δ)→ 0 as η → 0, such that for any δ

E
( 1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ

)
≤ 4σN KN (t) + η(N) + η(δ).

Proof. We start by noticing that

σN KN (t) =
1

2

∫

|x−y|≥δ
V (x− y) (µN − ρ)⊗2 +

1

2

∫

|x−y|<δ, x6=y
V (x− y) (µN − ρ)⊗2.

By using the regularity of ρ and the Lp integrability of V , we may bound from below the
second term in the right-hand side by

∫

|x−y|<δ, x6=y
V (x− y) (µN − ρ)⊗2 ≥ 1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ − C δα,

for some positive exponent α. Using Lemma 4.1 and more precisely the inequality Vε ≤
V + ε, we obtain that

∫

|x−y|<δ, x6=y
V (x− y) (µN − ρ)⊗2 ≥ 1

N2

∑

i 6=j
Vε(xi − xj) I|xi−xj |≤δ − C δα − ε.

Observe now that by the second point in Lemma 4.1, we have that
∫

|x−y|≥δ
V (x− y) (µN − ρ)⊗2 ≥

∫

|x−y|≥δ
Vε(x− y) (µN − ρ)⊗2 − C ε

δk
. (5.1)

Therefore by summing, we obtain that
∫

x 6=y
V (x− y) (µN − ρ)⊗2 ≥

∫

x6=y
Vε(x− y) (µN − ρ)⊗2 − C δα − ε− C ε

δk
.

We may simply add the diagonal to find
∫

x6=y
V (x−y) (µN −ρ)⊗2 ≥

∫
Vε(x−y) (µN −ρ)⊗2− C ‖Vε‖L∞

N
−C δα− ε−C ε

δk
. (5.2)

Since V̂ε ≥ 0, this yields
∫

x6=y
V (x− y) (µN − ρ)⊗2 ≥ −C ‖Vε‖L∞

N
− C δα − ε− C ε

δk
,

and conclude the first point by optimizing in ε and δ.
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To prove the second point we first remind that

1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ ≤

∫

|x−y|<δ, x6=y
V (x− y) (µN − ρ)⊗2 + C δα,

and thus
1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ ≤

∫

x 6=y
V (x− y) (µN − ρ)⊗2 + C δα

−
∫

|x−y|≥δ, x6=y
V (x− y) (µN − ρ)⊗2.

Using again (5.1), we get

1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ ≤

∫

x 6=y
V (x− y) (µN − ρ)⊗2 + C δα

−
∫

|x−y|≥δ, x6=y
Vε(x− y) (µN − ρ)⊗2 + C

ε

δk
.

Remark that since we are on the torus, I|x|≥δ has L1 norm less than 1. Therefore the

Fourier transform of Vε I|x|≥δ is dominated by V̂ε and

−
∫

|x−y|≥δ, x6=y
Vε(x− y) (µN − ρ)⊗2 ≤ −

∫
Vε(x− y) (µN − ρ)⊗2.

Appealing to (5.2), we hence finally get

1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ ≤ 2

∫

x 6=y
V (x− y) (µN − ρ)⊗2

+ C δα + C
ε

δk
+ ε+ C

‖Vε‖L∞
N

,

which concludes the second point, again by optimizing in ε. �

We need to control terms from above like

IN = −
∫

ΠdN
dρN

∫

Π2d∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2,

for ψ regular enough in terms of the potential energy. We use Fourier transform for the
regularized kernel that not use explicit formula of the kernel as in [19], [8]. This procedure
allows to treat more general kernels because it is not based on the reformulation of the
energy in terms of potential or extension representation (for the fractional laplacian) by
Caffarelli-Silvestre as in [19], [20], [8]. More precisely, we prove that

Lemma 5.2. Let ψ ∈ W 1,∞(Πd) and if V satisfies (3.1)–(3.2), then for any measure ν,
we have that

−
∫
∇V (x− y)(ψ(x)− ψ(y))ν⊗2 ≤ C

∫
|ν̂(ξ)|2 V̂ (ξ) dξ.

Remark 5.1. Remark that Riesz and Coulomb Kernel satisfy Hypothesis (3.1)–(3.6).
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Proof. This is where we need (3.6) which gives studying |ξ| ∼ |ζ|

|V̂ (ξ)− V̂ (ζ)| ≤ C|ξ − ζ|
1 + |ζ| V̂ (ζ)

using Gronwall Lemma. For ψ regular enough, we use the following calculation

−
∫
∇V (x− y)(ψ(x)− ψ(y))ν⊗2 = −Re

∫
i(ξV̂ (ξ)− ζV̂ (ζ))ψ̂(ξ − ζ)ν̂(ξ)ν̂(ζ)dξdζ

= −Re

∫
i
(
ξ(V̂ (ξ)− V̂ (ζ)) + (ξ − ζ)V̂ (ζ)

)
ψ̂(ξ − ζ)ν̂(ξ)ν̂(ζ)dξdζ

≤ C
∫
|ξ − ζ||ψ̂(ξ − ζ)|

√
V̂ (ξ)

√
V̂ (ζ)|ν̂(ζ)||ν̂(ξ)|dξdζ

and therefore, using some regularity on ψ, by Cauchy-Schwartz

−
∫
∇V (x− y)(ψ(x)− ψ(y))ν⊗2 ≤ C

∫
|ν̂(ζ)|2V̂ (ζ) dζ. �

Of course we cannot directly use Lemma 6.7 with V on IN as

∫
V (x− y) (dµN − dρ)⊗2

will in general be infinite as the diagonal is not removed. But we can now easily combine
Lemma 5.2 with Lemma 5.1 to obtain

Corollary 5.1. Assume that ψ ∈W s,∞ and that V satisfies (3.1)–(3.6). Then there exists
a function η(N) with η(N)→ 0 as N →∞ and such that

IN = −
∫

ΠdN
dρN

∫

Π2d∩{x 6=y}
∇V (x−y) ·(ψ(x)−ψ(y))(dµN−dρ)⊗2 ≤ C σN KN (t)+η(N).

Proof. The basic strategy is again to split IN into two parts

IN = −
∫

ΠdN
dρN

∫

{|x−y|≤δ}∩{x6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

−
∫

ΠdN
dρN

∫

{|x−y|>δ}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2.

For the second term in the right-hand side, we want to replace ∇V by ∇Vε. We simply use
the second point of Lemma 4.1 again (similarly to the obtention of (5.1) in Lemma 5.1)
to get that

−
∫

{|x−y|>δ}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ −
∫

{|x−y|>δ}
∇Vε(x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2 + C

ε

δk′
.

(5.3)
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For the first term in the right-hand side, we first use the regularity of ρ together with the
Lp bound on V from (3.1) to deduce that

−
∫

{|x−y|≤δ}∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ −
∫

{|x−y|≤δ}∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))dµ⊗2

N + C δα,

for some α > 0. We know use the pointwise bound on ∇V from (3.4) and the Lipschitz
bound on ψ to obtain that

−
∫

{|x−y|≤δ}∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C
∫

{|x−y|≤δ}∩{x 6=y}
V (x− y) dµ⊗2

N + C δα.

Using the second point in Lemma 5.1, we hence have that

−
∫

ΠdN
dρN

∫

{|x−y|≤δ}∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C σN KN + η(N) + η(δ).

(5.4)

By the construction of Vε the same estimate applies

−
∫

ΠdN
dρN

∫

{|x−y|≤δ}∩{x 6=y}
∇Vε(x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C σN KN + η(N) + η(δ).

(5.5)

We may combine (5.5) with (5.3) to obtain that

−
∫

ΠdN
dρN

∫

{|x−y|>δ}∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ −
∫

ΠdN
dρN

∫

{x 6=y}
∇Vε(x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

+ C
ε

δk′
+ C σN KN + η(N) + η(δ).

Together with (5.4), this finally concludes that

−
∫

ΠdN
dρN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ −
∫

ΠdN
dρN

∫
∇Vε(x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

+ C
ε

δk′
+ C σN KN + η(N) + η(δ).

(5.6)
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We know apply Lemma 5.2 on Vε which by construction still satisfies (3.1)-(3.6) and this
yields

−
∫

ΠdN
dρN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C
∫

ΠdN
dρN

∫
Vε(x− y) (dµN − dρ)⊗2

+ C
ε

δk′
+ C σN KN + η(N) + η(δ).

We may now remove the diagonal

−
∫

ΠdN
dρN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C
∫

ΠdN
dρN

∫

{x 6=y}
Vε(x− y) (dµN − dρ)⊗2 + C

‖Vε‖L∞
N

+ C
ε

δk′
+ C σN KN + η(N) + η(δ),

and using the third point in Lemma 4.1,

−
∫

ΠdN
dρN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ C
∫

ΠdN
dρN

∫

{x6=y}
V (x− y) (dµN − dρ)⊗2 + C ε+ C

‖Vε‖L∞
N

+ C
ε

δk′
+ C σN KN + η(N) + η(δ).

The conclusion follows by optimizing in ε and δ. �

6. Control of terms for repulsive kernels with fixed viscosity σ > 0

6.1. A large deviation result.

Proposition 6.1. There exists δ0 > 0 and some exponent θ > 0, s.t. for any ρ ∈
L∞∩P(Πd) with log ρ ∈W 1,∞, for any W ∈ Lp(Π2d) for some p > 1 with W (−x) = W (x),
W ≥ 0, |∇W (x)| ≤ C/|x|k and finally ‖W‖L1 ≤ δ0 then

1

N
log

∫

ΠdN
e
−N

∫
{x 6=y}W (x−y) (dµN−dρ)⊗

2

ρ⊗
N
dXN ≤ C

N θ
.

Proof. We denote

F (µN ) =

∫

{x 6=y}
W (x− y) (dµN − dρ)⊗

2
,

and introduce a simple truncation Wε of W by

Wε(x) = W (x) I|x|≥ε.

We define as well

Fε(µ) =

∫

Π2d∩{x 6=y}
Wε(x− y) (dµ− dρ)⊗2.
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We may expand F to find

F (µN ) =

∫

Π2d∩{x 6=y}
W (x− y) (dµN − dρ)⊗2

=
1

N2

∑

i 6=j
W (xi − xj)− 2

1

N

∑

i

W ? ρ(xi)

+

∫

Π2d∩{x 6=y}
W (x− y) ρ(x) ρ(y) dx dy.

Now note that by the Lp integrability on W and the L∞ integrability on ρ,

|Wε ? ρ(x)−W ? ρ(x)| ≤ ‖Wε −W‖L1 ‖ρ‖L∞ ≤ ‖W I|z|≤ε‖L1 ‖ρ‖L∞
≤ C ε1/2p∗ ‖ρ‖L∞ .

Further note that since W ≥ 0, we have that Wε(x) ≤W (x) so this directly implies that

−F (µN ) ≤ −Fε(µN ) + C ‖ρ‖L∞ ε1/2p∗ .

We are hence led to bounding

ZN,ε =
1

N
log

∫

ΠdN
e−N

∫
Π2d Wε(x−y) (dµN−dρ)⊗

2

ρ⊗
N
dXN ,

since

ZN =
1

N
log

∫

ΠdN
e
−N

∫
{x 6=y}W (x−y) (dµN−dρ)⊗

2

ρ⊗
N
dXN ≤ ZN,ε + C ε1/2p∗ . (6.1)

We now rely on a quantitative variant of a classical large deviation result

Theorem 6.1. Assume that log ρ ∈ W 1,∞ and that L is a standard convolution kernel.
Then there exists a constant C depending only on d, L, s.t. for any F : P(Πd) → R,
continuous on continuous functions, one has that

1

N
log

∫

ΠdN
e−N F (Lδ?µN ) ρN dX

N ≤ I(F )

+
C

N1/(d+1) δd/(d+1)
(logN + | log δ|+ ‖ log ρ‖L∞) + C δ ‖ log ρ‖W 1,∞ ,

where

I(F ) = max
µ∈P(Πd)

−
[
F (µ) +

∫

Πd
µ log

µ

ρ
dx
]
. (6.2)

Proof. The proof of Theorem 6.1 relies on classical arguments and we refer to our upcoming
article for more details. Since |∇W | ≤ C/|x|k, the potential Wε is smooth and hence

−Fε(µN ) ≤ −Fε(Lδ ? µN ) + C
δ

εk
.

Using Theorem 6.1, we thus have that

ZN,ε ≤I(Fε) + C
δ

εk
+

C

N1/(d+1) δd/(d+1)
(logN + | log δ|+ ‖ log ρ‖L∞)

+ C δ ‖ log ρ‖W 1,∞ .
(6.3)

The last step of the proof is hence to estimate I(Fε) for which we appeal to
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Lemma 6.1. For any ρ ∈ L∞, there exists a truncation δ0 s.t. for any W̃ with ‖W̃‖L1 ≤ δ0

and W (x) ≥ 0 then, defining

F
W̃

(µ) =

∫

{x 6=y}
W̃ (x− y) (µ(dx)− ρ(x) dx) (µ(dy)− ρ(y) dy),

one then has that I(F
W̃

) = 0.

Assuming that Lemma 6.1 holds, we may apply it to W̃ = Wε which implies I(Fε) = 0
and finally combining (6.1) and (6.3)

ZN ≤C ε1/2p∗ + C
δ

εk
+

C

N1/(d+1) δd/(d+1)
(logN + | log δ|+ ‖ log ρ‖L∞)

+ C δ ‖ log ρ‖W 1,∞ .

We may immediately conclude by optimizing in ε and δ. �

Sketch of the proof of Lemma 6.1. Since W̃ ≥ 0, I(F
W̃

) is coercive and by considering a
maximizing sequence, we may find a maximum µ which is bounded in L logL. Such a
maximum must satisfy that

1 + log
µ

ρ
+ 2 W̃ ? (µ− ρ) = κ,

where the constant κ is chosen so that
∫
µ = 1. This may be rewritten as

µ =
ρ

M
e−2 W̃?(µ−ρ), M =

∫
ρ e−2 W̃?(µ−ρ) dx.

Let us denote u = −W̃ ? (µ− ρ) and to emphasize the dependence on u in M

M = Mu =

∫
ρ e2u(x) dx.

We observe that u is a solution to

u = −W̃ ?
(
ρ
(e2u(x)

Mu
− 1
))
, (6.4)

which is in fact a sort of non-linear elliptic equation. It is straightforward to show that

the unique solution to (6.4) is u = 0 provided that ‖W̃‖L1 is small enough. �
�

6.2. Control on EN . The second ingredient to bound EN from below is the following
classical convexity inequality∫

ΠdN
ψ(XN ) dρN ≤

1

α

1

N

∫
dρN log

ρN
ρN

+
1

α

1

N
log

∫

ΠdN
eαN ψ(XN ) dρN . (6.5)

The proper control of EN however requires truncating interactions after some distance so
that we define

KηN =
1

2σ

∫

ΠdN

∫

{x 6=y}
V (x− y)χ(|x− y|/η) (dµN − dρ)⊗2 ρN dX

N ,

where χ is some smooth non-negative function with χ=1 on [0, 1] and χ = 0 on [2,∞),
together with χ̂ ≥ 0. Finally we define EηN = HN + KηN . Combined with Prop. 6.1 this
inequality lets us bound from below EηN as per
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Proposition 6.2. Assume that V satisfies (3.1)-(3.4) and (3.7) then there exists η0 > 0
and θ > 0 so that for any η ≤ η0

EηN ≥ −
C

N θ
.

Moreover for any δ ≤ η with η ≤ η0

E
(

1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ

)
≤ EηN +

C

N θ
+ C δθ.

Proof. For the first point, using (6.5) on KηN , we find that

−KηN ≤ HN +
1

N
log

∫

ΠdN
e
− N

2σ

∫
{x 6=y} V (x−y)χ(|x−y|/η) (dµN−dρ)⊗2

dρN .

We now apply Prop. 6.1 to W = 1
2σ V (x)χ(|x|/η). From (3.1) and (3.3), W trivially

satisfies all assumptions of Prop. 6.1 with the exception of ‖W‖L1 ≤ δ0. For this, we
remark that

‖V (x)χ(|x|/η)‖L1 ≤
∫

|x|≤2 η
V (x) dx ≤ C ‖V ‖Lp η1/p∗ ,

so that ‖W‖L1 ≤ δ0 is ensured by choosing η ≤ η0 with η0 small enough. Therefore Prop.
6.1 implies that

−KηN ≤ HN +
C

N θ
.

For the second point, observe first that

1

N2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ ≤

1

N2

∑

i 6=j
V (xi − xj)χ(|xi − xj |/δ)

≤
∫

{x 6=y}
V (x− y)χ(|x− y|/δ) (dµN − dρN )⊗2 + C δθ.

Therefore

E
(

1

2σN2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ

)
− EηN

≤ −HN −
1

2σ

∫

{x 6=y}
V (x− y) (χ(|x− y|/η)− χ(|x− y|/δ)) (dµN − dρN )⊗2 + C δθ.

Using (6.5)

E
(

1

2σN2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ

)
− EηN

≤ 1

N
log

∫

ΠdN
e
− N

2σ

∫
{x 6=y} V (x−y) (χ(|x−y|/η)−χ(|x−y|/δ)) (dµN−dρN )⊗2

dρN + C δθ.

Of course χ(|x− y|/η)−χ(|x− y|/δ) ≥ 0 if δ ≤ η so that we may again apply Prop. 6.1
to W (x) = V (x) (χ(|x|/η)− χ(|x|/δ)) and find as claimed

E
(

1

2σN2

∑

i 6=j
V (xi − xj) I|xi−xj |≤δ

)
− EηN ≤ C δθ +

C

N θ
. �
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6.3. Control of the right-hand side. As for the case σ → 0, the goal is to control

IN = −
∫

ΠdN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y)) (dµN − dρ)⊗2 dρN .

The Fourier assumption (3.6) for σ > 0 is more general that assumption (3.6) in the case
σ = 0 because we can use Inequality (6.5) and Theorem 6.1 to control the new term in
the Fourier procedure. More precisely, we have

Lemma 6.2. Assume that ψ ∈W k,+∞ with k large enough and that V satisfies (3.1)-(3.4)
and

|V̂ (ξ)− V̂ (ζ)| ≤ C |ξ − ζ|
1 + |ζ|

(
V̂ (ζ) +

χ(ζ)

1 + |ζ|d−α
)

(6.6)

with 0 < α < d and χ ∈ L∞ζ . Then for any measure ν, we have that

−
∫
∇V (x− y)(ψ(x)− ψ(y))ν⊗2 ≤ C

∫
|ν̂(ξ)|2 (V̂ (ξ) + χ(ξ)/(1 + |ξ|d−α) dξ. (6.7)

Proof. The proof follows the same lines as for Lemma 5.2. �

Note that the extra term in the right-hand side of inequality (6.7) is controlled by the
relative entropy because going back to the physical space, we will get a term written as

∫

x 6=y
G(x− y)(µN − ρ)⊗2(dxdy)

with G(x) ∼ |x|−α ∈ Lp for some p > 1. We can now prove the equivalent of Corollary 5.1.

Corollary 6.1. Assume that ψ ∈ W s,∞ and that V satisfies all assumptions (3.1)–(3.7).
Then there exists η0 and θ > 0 s.t. if η ≤ η0

IN = −
∫

ΠdN
dρN

∫

Π2d∩{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2 ≤ C EηN (t) +

C

N θ
.

Proof. The proof closely follows the one for Corollary (5.1). More precisely all arguments
up to obtaining (5.6) are identical and hence we have still

IN = −
∫

ΠdN
dρN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

≤ −
∫

ΠdN
dρN

∫

{x 6=y}
∇Vε(x− y) · (ψ(x)− ψ(y))(dµN − dρ)⊗2

+ C
ε

δk′
+ C KN +

C

N θ
+ C ηθ.

From this point, instead of Lemma 5.2, we apply Lemma 6.2. Let us take Vε as constructed
in Lemma 4.1. From Assumptions (3.6)-(3.7), we have that

|V̂ (ξ)− V̂ (ζ)| ≤ C |ξ − ζ|
1 + |ζ|

(
V̂ (ζ) +

K̂ε(ζ)

1 + |ζ|d−α
)
,
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so that (6.6) is satisfied with χ = K̂ε and Lemma 6.2 yields

IN ≤ C
∫

ΠdN
dρN

∫

{x 6=y}
Vε(x− y) (dµN − dρ)⊗2

+ C

∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d−α K̂ε(ξ) dξ

+ C
ε

δk′
+ C KN +

C

N θ
+ C ηθ.

Because we have that Vε ≤ C V + ε, by Lemma 4.1, we deduce that

IN ≤ C
∫

ΠdN
dρN

∫

{x 6=y}
V (x− y) (dµN − dρ)⊗2

+ C

∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d−α K̂ε(ξ) dξ

+ C
ε

δk′
+ C KN +

C

N θ
+ C ηθ.

Using Prop. 6.2, we then have that

IN ≤ C EηN + C

∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d−α K̂ε(ξ) dξ

+ C
ε

δk′
+ C KN +

C

N θ
+ C ηθ.

(6.8)

By taking the inverse Fourier transform, we can write
∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d Kε(ξ) dξ =

∫

ΠdN
dρN

∫

Π2d

Kε ? G(x− y) (dµN − dρ)⊗2,

where Ĝ(ξ) = (1 + |ξ|)−d+α and hence G(x) ≤ C 1
|x|α . We may remove the diagonal

∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d Kε(ξ) dξ

≤
∫

ΠdN
dρN

∫

{x 6=y}
Kε ? G(x− y) (dµN − dρ)⊗2 + C

1

εαN
,

and then simply bound Kε ? G by 1/|x|α to get
∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d Kε(ξ) dξ

≤ C
∫

ΠdN
dρN

∫

{x 6=y}

1

|x− y|α (dµN − dρ)⊗2 + C
1

εαN
.

By using the convexity inequality and Prop. 6.1, we finally obtain that
∫

ΠdN
dρN

∫ |µ̂N − ρ̂|2
1 + |ξ|d Kε(ξ) dξ ≤ CHN + C

1

εαN
,

and inserting this into (6.8)

IN ≤ C EηN + CHN + C
1

εαN
+ C

ε

δk′
+ C KN +

C

N θ
+ C ηθ,

concluding by optimizing on δ and ε. �
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7. Concluding the proofs of Theorems 3.1 and 3.2

The proofs of Theorems 3.1 and 3.2 now follow from a straightforward Gronwall argu-
ment starting from (2.6). For the proof of Theorem 3.1, we rescale (2.6) to deduce

σN EN (t) ≤ σNEN (t = 0) +

∫ t

0
IN (s) ds,

with

IN =

∫

ΠdN

∫

{x 6=y}
∇V (x− y) · (ψ(x)− ψ(y)) (dµN − dρ)⊗2 dρN ,

and

ψ(x) =
σN
2
∇ log

ρ

Gρ
(x).

Note that ψ ∈ W s,∞ uniformly in N since σN logGρ is smooth uniformly in N (but the
scaling by σN is needed here). We may hence apply Corollary 5.1 to obtain that

IN ≤ C σN KN (t) + η(N),

and hence recalling that EN = KN (t) +HN (t),

σN KN (t)+σN HN (t) ≤ σN KN (t = 0)+σN HN (t = 0)+C

∫ t

0
σN KN (s) ds+η(N). (7.1)

We recall from Lemma 5.1 that σN KN ≥ −η(N) and hence applying Gronwall lemma, we
conclude from (7.1) that

σN KN (t) ≤ eC t (σN KN (t = 0) + σN HN (t = 0) + η(N)) ,

finishing the proof of Theorem 3.1. For the proof of Theorem 3.2, as mentioned just
after (6.5), the control of EN required truncating interactions after some distance and it
remains now to control the long range part in V which we need to deal with on it own.
The procedure is well explained in [5]. First we recall that this long-range part reads

W (x) = V (x)(1− χ(|x|/η))

and we define KWN given by (2.5) with GWN and GWρN replacing V by W in (2.2) and (2.3).

The different results in Section 6 actually concern EηN and we need to evaluate the contri-

bution of KWN which is the complement. Calculating its evolution in time and using the
fact that the kernel V is W 2,∞ far from 0, we can prove that

d

dt
KN (GWN |GWρN ) ≤ CHN (ρN |ρN ) +

C

N
.

The interested readers are referred to [4] for more explanations and to [5] for the forthcom-
ing single complete document. Plugging everybody together allows to get Theorem 3.2.

8. An attractive interesting case: The Patlak-Keller-Segel kernel

In space dimension 2, the Patlak-Keller-Segel system reads
{
∂tρ+ div (ρ u) = σ∆ ρ,

u = ∇Φ, −∆Φ = 2π λ ρ.
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This is an important system in biology for instance. Classical solutions for such system
may not exist for all times as the singular attractive interactions can lead to concentration
(see J. Dolbeault and B. Perthame [7]):

• Global existence of classical solution if λ ≤ 4σ (or λ ≤ 2 d σ).
• Always blow-up if λ > 4σ.

Based on the free energy of the system∫
ρ log ρ dx+

λ

2

∫
log |x− y| ρ(x) ρ(y) dx dy.

Blanchet-Dolbeault-Perthame (see [2]) show existence of global weak satisfying free energy
control with subcritical mass. Note that our modulated free energy may be seen as a
particle version of such free energy. Particle approximation of the Patlak-Keller-Segel
system has been studied by several authors such as [6], [10], [13] for example. Recently
N. Fournier and B. Jourdain (see [9]) proved limit for λ < σ with no quantitative estimates.
In all these papers, the particle system is also studied from an existence view point which
is an important and difficult question. This is not the objective of our study which focuses
on quantitative estimates under assumptions of existence of solutions.

To prove a quantitative estimate between the particle approximation of the Patlak-
Keller-Segel system and its formal limit, the upper-bound of (2.7) in the inequality (2.6)
encoding the propagation of EN is more simple than for the repulsive case. It uses that
|∇V (x)| ≤ C/|x| and Theorem [15]. The lower bound control of KN is more complicated:
We choose to prove an upper bound of the opposite. The method is quite similar that the
repulsive case when σ > 0 is fixed. It uses an appropriate cut-off smooth function close to
singularity with a regularization of the kernel and the proof that for an appropriate cut-off
size the large deviation function is zero. This uses the Logarithmic Hardy-Littlewood-
Sobolev inequality to show the maximum is attained for η small enough for µ = ρ. The
interested readers are referred to [4] for more explanations and to [5] for a single complete
document.

9. Conclusion

Using the right physics is the key in [4] to make the link between two important results
namely [19] and [15]: This link allows to consider more general singular kernels with
possible presence of viscosity. The method provides a statistical control with a large
class of attractive-repulsive interactions but some works are needed to obtain the best
convergence rate and it is not yet fully clear how general the interactions can be. Note
that we have not used the presence of the diffusive term (2.8) in the inequality concerning
the free-energy which could perhaps help to improve the rate of convergence when σ > 0
is fixed. It could be also interesting to study the case with blow-up for attractive kernels
namely the super-critical cases. An other important problem could be non-gradient flow
systems and hamiltonian systems. It could also be the extension of the work to the Keller-
Segel parabolic-parabolic equations, see [21]. An existence result improving the results by
[6], [9] for the particle approximation of the Patlak-Keller-Segel system is also a challenging
and interesting problem.
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