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CONTROLLABILITY OF A PARABOLIC SYSTEM WITH A

DIFFUSIVE INTERFACE

by

Jérôme Le Rousseau, Matthieu Léautaud & Luc Robbiano

Abstract. — We consider a linear parabolic transmission problem across an interface of
codimension one in a bounded domain or on a Riemannian manifold, where the transmission
conditions involve an additional parabolic operator on the interface. This system is an
idealization of a three-layer model in which the central layer has a small thickness δ. We
prove a Carleman estimate in the neighborhood of the interface for an associated elliptic
operator by means of partial estimates in several microlocal regions. In turn, from the
Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the
parabolic system. These results are uniform with respect to the small parameter δ.

1. Introduction

When considering elliptic and parabolic operators in Rn with a diffusion coefficient

that jumps across an interface of codimension one, say {xn = 0}, we can interpret the

associated equations as two equations with solutions that are coupled at the interface via

transmission conditions at xn = 0, viz. in the parabolic case,

∂ty1 −∇xc1∇xy1 = f1 in {xn < 0}, ∂ty2 −∇xc2∇xy2 = f2 in {xn > 0},(1.1)

and

y1|xn=0− = y2|xn=0+ , c1∂xny1|xn=0− = c2∂xny2|xn=0+ .(1.2)

Here, we are interested in parabolic/elliptic models in which part of the diffusion occurs

along the interface. Then the transmission conditions are of higher order, involving differ-

entiations in the direction of the interface. Such a model can be viewed as an idealization

of two diffusive media separated by a thin membrane. This model can be derived starting

from three media and formally letting the thickness of the intermediate layer become very

small. A small parameter δ > 0 then measures the thickness of this layer. Questions such

as unique continuation, observation and controllability are natural for such a model. This

is the main goal of the present article.

Most of the analysis that we shall carry concerns a related elliptic operator, including

an additional variable. Our key result is the derivation of a Carleman estimate for this

operator (see Theorem 1.2 below). The general form of Carleman estimates for a second-

order elliptic operator P is (local form)

h‖eϕ/hw‖2L2 + h3‖eϕ/h∇w‖2L2 ≤ Ch4‖eϕ/hPw‖2L2 ,(1.3)

for h sufficiently small, an appropriately chosen weight function ϕ, and for smooth com-

pactly supported functions w. We then deduce an interpolation inequality and a spectral
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inequality for the original operator in the spirit of the work [19]. This spectral inequality

then yields the null controllability of the considered parabolic system. A important feature

of the results we obtain here is their uniformity in the thickness parameter δ. In particular

this allows us to recover the earlier results obtained on (1.1)–(1.2) in [15]; this corresponds

to the limit δ → 0 in the model we consider here.

1.1. Setting. — Let (Ω, g) be a smooth compact n-dimensional (n ≥ 2) connected Rie-

mannian manifold (with or without boundary), with g denoting the metric, and S a n−1-

dimensional smooth submanifold of Ω (without boundary). We assume that Ω\S = Ω1∪Ω2

with Ω1 ∩ Ω2 = ∅, so that Ω1 and Ω2 are two smooth open subsets of Ω. Endowed with

the metric g|T (S), S has a Riemannian structure. We denote by ∂η a non vanishing vector

field defined in a neighborhood of S and normal to S (for the Riemannian metric). We

choose the vector field ∂η outgoing from Ω1, incoming in Ω2. In local coordinates, we have

∂η =
∑
j
ηj∂xj , with ηj = λ

∑
k

nkg
jk, |η|g = 1,

where gijgjk = δik, λ
2 = (gijninj)

−1, and n is the normal to S for the Euclidean metric in

the local coordinates, outgoing from Ω1, incoming in Ω2. In fact λ2
|S = det(g)/ det(g|T (S))

at S.

The covariant gradient and the divergence operators are given in local coordinates by

∇g =
∑
i
gij∂xi , divg v =

1√
det(g)

∑
i
∂xi(

√
det(g)vi),

with similar definition for the gradient ∇s = ∇g|T (S)
and divergence divs = divg|T (S)

on

the interface S with the metric g|T (S).

We consider a (scalar) diffusion coefficient c(x) with c|Ωi ∈ C∞(Ωi), i = 1, 2, yet

discontinuous across S and satisfying c(x) ≥ cmin > 0 uniformly for x ∈ Ω1 ∪ Ω2. We

set

∆c = divg c(x)∇g =
1√

det(g)

∑
i,j
∂xi(cg

ij
√

det(g)∂xj ), in Ω1 ∪ Ω2,

in local coordinates. Let us denote cs a smooth (scalar) diffusion coefficient on S satisfying

cs(x) ≥ csmin > 0. Similarly we define ∆cs = divs cs∇s as a second-order elliptic differential

operator on S.

In what follows, we shall use the notation z|Sj = (z|Ωj )|S , j = 1, 2, for the traces of

functions on S.

Given a time T > 0, we consider the following parabolic control problem

(1.4)





∂tz −∆cz = 1ωu in (0, T )× Ω1 ∪ Ω2,

∂tz
s −∆csz

s = 1
δ

(
(c∂ηz)|S2

− (c∂ηz)|S1

)
in (0, T )× S,

z|S1
= zs = z|S2

in (0, T )× S,
z|∂Ω = 0;

with some initial data in L2(Ω1 ∪ Ω2) × L2(S). Here, δ denotes a bounded parameter,

0 < δ ≤ δ0, and ω is an open nonempty subset of Ω1 ∪ Ω2. Let us suppose for instance

that ω ⊂ Ω2. The function u is a control function and the null-controllability problem

concerns the ability to drive the solution (z, zs) to zero at the final time T .

Such a coupling condition at the interface was considered in [11] and [22] for the as-

sociated hyperbolic system. This model corresponds to two diffusive media separated by
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a thin layer in which diffusion also occurs. The parameter δ is then a measure of the

thickness of this intermediate layer. In the derivation of the model δ is assumed small.

We introduce the Hilbert space H0
δ = L2(Ω1 ∪ Ω2)× L2(S) with the inner product

(
Z, Z̃

)
H0
δ

= (z, z̃)L2(Ω1∪Ω2) + δ (zs, z̃s)L2(S) , Z = (z, zs), Z̃ = (z̃, z̃s),

where

(z, z̃)L2(Ω1∪Ω2) = ∫
Ω1∪Ω2

zz̃ dν, (zs, z̃s)L2(S) = ∫
S
zsz̃s dνs,(1.5)

with dν =
√

det(g) dx and dνs =
√

det(g|T (S)) dy. We also introduce the following Hilbert

space

H1
δ = {Z = (z, zs) ∈ H1(Ω1 ∪ Ω2)×H1(S) ; z|∂Ω = 0 ; z|S1

= zs = z|S2
},(1.6)

with the inner product, with Z = (z, zs), Z̃ = (z̃, z̃s),
(
Z, Z̃

)
H1
δ

=
(
Z, Z̃

)
H0
δ

+
(
c∇gz,∇g z̃

)
L2(Ω1∪Ω2)

+ δ
(
cs∇sz,∇sz̃s

)
L2(S)

.

Problem (1.4) can be written as

(1.7) ∂tZ +AδZ = Bu,

where the state is Z = (z, zs) ∈ H0
δ and the operator Aδ reads

(1.8) AδZ =

( −∆cz
−∆csz

s − 1
δ

(
(c∂ηz)|S2

− (c∂ηz)|S1

)
)
,

with domain

(1.9) D(Aδ) = {(z, zs) ∈ H1
δ ; Aδ(z, z

s) ∈ H0
δ}.

The operator (Aδ, D(Aδ)) is nonnegative self-adjoint on H0
δ . The control operator B is the

bounded operator from L2(Ω1 ∪Ω2) into L2(Ω1 ∪Ω2)×L2(S) given by B : u 7→ t(1ωu, 0).

Note that System (1.7), i.e. System (1.4), is well-posed for an initial condition in H0
δ .

Remark 1.1. — In the limit δ → 0, from System (1.4), we obtain the following system

(see Section 2 for a proof of convergence)

(1.10)





∂tz −∆cz = 1ωu in (0, T )× Ω1 ∪ Ω2,

(c∂ηz)|S2
= (c∂ηz)|S1

and z|S1
= z|S2

in (0, T )× S,
z|∂Ω = 0;

which corresponds to the case studied in [15]. We also refer to the recent works [6, 2,

12, 3, 5, 16, 14, 4] for the derivation of Carleman estimates for elliptic and parabolic

operators with such coefficients with applications to controllability and inverse problems.

1.2. Statement of the main results. —

1.2.1. Carleman estimate. — The Carleman estimate we prove concerns an augmented

elliptic operator: we introduce an additional coordinate, x0 ∈ (0, X0) ⊂ R, so that (x0, x) ∈
(0, X0) × Ω. This variable x0 was introduced in [19]; there it allowed to obtain the null-

controllability of the heat equation. This approach was followed in several works [21, 10,

15]. It was also used to prove stabilization properties of the wave equation [18, 20].
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We consider the n+ 1-dimensional partially determined elliptic problem

(1.11)



−∂2
x0w −∆cw +∇aw + bw = f in (0, X0)× (Ω1 ∪ Ω2),

−∂2
x0w

s −∆csw
s +∇saws + bsws

= 1
δ

(
(c∂ηw)|(0,X0)×S2

− (c∂ηw)|(0,X0)×S1
+ θs

)
in (0, X0)× S,

w|(0,X0)×S1
= ws + θ1 and w|(0,X0)×S2

= ws + θ2 in (0, X0)× S.

Note that we add lower-order terms to the elliptic operators here: ∇a (resp. ∇sa) denotes

any smooth vector field on Ω1 ∪ Ω2 (resp. S) and b (resp. bs) are some bounded functions

on Ω1 ∪ Ω2 (resp. S). Moreover, we include source terms θj , j = 1, 2, θs at the interface

through the transmission conditions. This system is not fully determined as we do not

prescribe any boundary condition on {0} × Ω and {X0} × Ω.

In Section 3, we introduce a small neighborhood Vε of S in Ω, where we can use coor-

dinates of the form (y, xn) with y ∈ S and xn ∈ [−2ε, 2ε]. We then set M = (0, X0)× Vε
and Mj =M∩

(
(0, X0)× Ωj

)
, j = 1, 2.

For a properly chosen weight function ϕ (see Section 3.1), for some 0 < α0 < X0/2,

and a cut-off function ζ = ζ(xn) ∈ C∞c ([0, 2ε)), with ζ = 1 on [0, ε), one can prove the

following theorem.

Theorem 1.2. — For all δ0 > 0, there exist C > 0, and h0 > 0 such that

(1.12) h‖eϕ/hw‖20 + h3‖eϕ/h∇x0,xw‖20 + h
∑
j=1,2

|eϕ/hw|Sj |20 + h3 ∑
j=1,2

|eϕ/h∇x0,xw|Sj |20

≤ C
(
h4‖eϕ/hf|M1

‖20 + h4‖eϕ/hf|M2
‖20 + h2δ2‖ζeϕ/hf|M2

‖20

+ h|eϕ/hθ1|20 +
(
h+

δ2

h

)
|eϕ/hθ2|20 + h3|eϕ/h∇x0,Sθ1|20 + h3|eϕ/h∇x0,Sθ2|20 + h3|eϕ/hθs|20

)
,

for all 0 < δ < δ0, 0 < h ≤ h0, for (w, θ1, θ2, θs, f) satisfying (1.11), w|Mj
∈ C∞(Mj),

and ws ∈ C∞
(
(0, X0)× S

)
with

supp(w) ⊂ (α0, X0 − α0)× S × (−2ε, 2ε), supp(ws) ⊂ (α0, X0 − α0)× S.

Here ∇x0,x = (∂x0 ,∇g)t, ∇x0,S = (∂x0 ,∇s)t and ‖.‖0, |.|0 are L2-norms on M and

(0, X0)× S respectively. The weight function ϕ will be chosen increasing when crossing S

from M1 to M2, which corresponds to an observation on the side (0, X0)× Ω2. Observe

the non symmetric form of the r.h.s. of the estimate above. This originates from our choice

of observing the solution w in (0, X0)× Ω2.

This type of Carleman estimate is well known away from the interface S (see [7], and

[19] for an estimate at the Dirichlet boundary ∂Ω).

Remark 1.3. — The additional variable x0 is used here to obtain the spectral inequality

of Theorem 1.5 below. The same Carleman inequality holds for the operator Aδ.

Following [15] we shall introduce microlocal regions that are defined on the whole (cotan-

gent bundle of) S. For each region we shall obtain a partial Carleman estimate. The

different estimates can then be patched together to yield (1.12).

1.2.2. Interpolation inequality. — With the Carleman estimate of Theorem 1.2 we can de-

duce an interpolation inequality of the form of that introduced in [19]. Let α1 ∈ [0, X0/2),

we set K0
δ(α1) = L2

(
(α1, X0 − α1);H0

δ

)
with also K0

δ = K0
δ(0), and the following Sobolev
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spaces

K1
δ(α1) = L2

(
(α1, X0 − α1);H1

δ

)
∩ H1

(
(α1, X0 − α1);H0

δ

)
, K1

δ = K1
δ(0),

and

K2
δ = L2

(
(0, X0);D(Aδ)

)
∩ H1

(
(0, X0);H1

δ

)
∩ H2

(
(0, X0);H0

δ

)
.

Theorem 1.4. — For all δ0 > 0, there exist C ≥ 0 and ν0 ∈ (0, 1) such that for all

δ ∈ (0, δ0) we have

‖U‖K1
δ(α1) ≤ C‖U‖1−ν0K1

δ

(∥∥∥
(
− ∂2

x0 +Aδ
)
U
∥∥∥
K0
δ

+ ‖∂x0u(0, x)‖L2(ω)

)ν0
,(1.13)

for all U = (u, us) ∈ K2
δ with u|x0=0 = 0 in Ω1 ∪ Ω2.

An important consequence of this interpolation inequality is the spectral inequality that

we present in the next section.

1.2.3. Spectral inequality and null-controllability result. — From the above interpolation

inequality we deduce a spectral inequality for the elliptic operator Aδ defined in (1.8). We

consider Eδ,j = (eδ,j , e
s
δ,j), j ∈ N, a Hilbert basis of H0

δ composed of eigenfunctions of the

operator Aδ associated with the nonnegative eigenvalues µδ,j ∈ R, j ∈ N, sorted in an

increasing sequence (see Proposition 2.2).

Theorem 1.5. — For δ0 > 0, there exists C > 0 such that for all 0 < δ ≤ δ0 and µ ∈ R,

we have

‖Z‖H0
δ
≤ CeC

√
µ‖z‖L2(ω), Z = (z, zs) ∈ span{Eδ,j ;µδ,j ≤ µ}.(1.14)

Following [19], this estimation then yields a construction of the control function uδ(t, x)

in (1.4), by sequentially acting on a finite yet increasing number of eigenspaces, and we

hence obtain the following δ-uniform controllability theorem. The proof can adapted to

those in [19] or [21, Section 5, Proposition 2] and the uniformity w.r.t. the parameter

δ > 0 comes naturally. We refer also to [13] for an exposition of the method and to

[23, 17, 24, 25] for further developments.

Theorem 1.6. — Let δ0 > 0. For an arbitrary time T > 0 and an arbitrary nonempty

open subset ω ⊂ Ω there exists C > 0 such that: for all initial conditions Z0 = (z0, z
s
0) ∈ H0

δ

and all 0 < δ ≤ δ0, there exists uδ ∈ L2((0, T )× ω) such that the solution (z, zs) of (1.4)

satisfies (z(T ), zs(T )) = (0, 0) and moreover

‖uδ‖L2((0,T )×ω) ≤ C‖Z0‖H0
δ
.

An important feature of this result is that the control is uniformly bounded as δ → 0,

so that we can extract a subsequence uδ weakly convergent in L2((0, T ) × ω). Below,

Corollary 2.4 states that the associated solution of Problem (1.4) converges towards a

controlled solution of Problem (1.10). For this last control problem (previously treated

in [15]), we hence construct a control function which is robust with respect to small viscous

perturbations in the interface.

1.3. Notation: semi-classical operators and geometrical setting. —
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1.3.1. Semi-classical operators on Rd. — We shall use of the notation 〈η〉 := (1 + |η|2)
1
2 .

We denote by Sm(Rd×Rd), Sm for short, the space of smooth functions symbols a(z, ζ, h)

and we define Ψm as the space of the associated semi-classical operators A = Op(a), for

a ∈ Sm, formally defined by

Au(z) = (2πh)−d ∫∫ ei〈z−t,ζ〉/ha(z, ζ, h) u(t) dt dζ, u ∈ S ′(Rd).

We shall denote the principal symbol am by σ(A). In the main text the variable z will be

(x0, x) ∈ Rn+1 and ζ = (ξ0, ξ) ∈ Rn+1. In particular we set

D =
h

i
∂, and we have σ(D) = ξ.

We introduce Sobolev spaces on Rd and Sobolev norms which are adapted to the

scaling parameter h. The natural norm on L2(Rd) is written as ‖u‖L2(Rd) = ‖u‖0 :=

(∫ |u(x)|2 dx)
1
2 . Let r ∈ R; we then set

‖u‖r = ‖u‖H r(Rd) = ‖Λru‖0, with Λr := Op(〈ξ〉r)

and

H r(Rd) := {u ∈ S ′(Rd); ‖u‖r <∞}.
The space H r(Rd) is algebraically equal to the classical Sobolev space Hr(Rd). For a

fixed value of h, the norm ‖.‖r is equivalent to the classical Sobolev norm that we write

‖.‖Hr(Rd). However, these norms are not uniformly equivalent as h goes to 0.

1.3.2. Tangential semi-classical operators on Rd, d ≥ 2. — We set z = (z′, zd), z′ =

(z1, . . . , zd−1) and ζ ′ = (ζ1, . . . , ζd−1) accordingly. We denote by SmT (Rd × Rd−1), SmT for

short, the space of smooth functions b(z, ζ ′, h), defined for h ∈ (0, h0] for some h0 > 0,

that satisfy the following property: for all α, β multi-indices, there exists Cα,β ≥ 0, such

that ∣∣∣∂αz ∂βζ′b(z, ζ ′, h)
∣∣∣ ≤ Cα,β〈ζ ′〉m−|β|, z ∈ Rd, ζ ′ ∈ Rd−1, h ∈ (0, h0].

We define Ψm
T as the space of tangential semi-classical operators B = OpT (b), for b ∈ SmT ,

formally defined by

B u(z) = (2πh)−(d−1) ∫∫ ei〈z′−t′,ζ′〉/hb(z, ζ ′, h) u(t′, zd) dt
′ dζ ′, u ∈ S ′(Rd).

In the main text the variable z will be (x0, x
′, xn) ∈ Rn+1 and ζ ′ = (ξ0, ξ

′) ∈ Rn. We

shall also denote the principal symbol bm by σ(B). We shall denote by ΛsT the tangential

pseudo-differential operator whose symbol is 〈ζ ′〉s.
For function defined on zd = 0 or restricted to zd = 0, following [19, 20], we shall

denote by (., .)0 the inner product, i.e., (f, g)0 := ∫∫ f(z′) g(z′) dz′. The induced norm is

denoted by |.|0, i.e., |f |20 = (f, f)0. For r ∈ R we introduce

(1.15) |f |H r(Rd−1) = |f |r := |ΛrT f |0.
1.3.3. Local charts, pullbacks, and Sobolev norms. — The submanifold S is of dimension

n− 1 and is furnished with a finite atlas (Uj , φj), j ∈ J . The maps φj : Uj → Ũj ⊂ Rn−1

is a smooth diffeomorphism. If Uj ∩ Uk 6= ∅ we also set

φjk : φj(Uj ∩ Uk) ⊂ Ũj → φk(Uj ∩ Uk) ⊂ Ũk,
y 7→ φk ◦ φ−1

j (y).
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We shall use semi-classical Sobolev norms over the manifold S together with a finite

atlas (Uj , φj)j , φj : Uj → Rn−1, and a partition of unity (ψj)j subordinated to this covering

of S:

ψj ∈ C∞(S), supp(ψj) ⊂ Uj , 0 ≤ ψj ≤ 1,
∑
j
ψj = 1.

We then set:

|u|H r(S) =
∑
j
|
(
φ−1
j

)∗
ψju|H r(Rn−1).(1.16)

1.3.3.1. Norms in codimension 1. — For a function u defined on (0, X0)× Rn−1 we set

|u|0 = |u|L2((0,X0)×Rn−1), |u|21 = |Dx0u|20 +
X0

∫
0
|u|2H 1(Rn−1) dx0.

For a function u defined on (0, X0)× S, we set

|u|` =
∑
j
|
(
φ−1
j

)∗
ψju|`, ` = 0, 1,(1.17)

where φj stands for Id⊗φj .
1.3.3.2. Norms in all dimensions. — For a function u defined on (0, X0)×Rn−1 ×R we

set

‖u‖0 = ‖u‖L2((0,X0)×Rn−1×R), ‖u‖21 = ‖Dx0u‖20 +
X0

∫
0
∫
R
‖u‖2H 1(Rn−1) dx0 dxn + ‖Dxnu‖20.

Note that the latter norm is equivalent to ‖u‖H 1(R×Rn−1×R) if moreover the function u is

compactly supported in the x0 variable. For a function u defined on (0, X0) × S × R, we

set

‖u‖` =
∑
j
‖
(
φ−1
j

)∗
ψju‖`, ` = 0, 1,(1.18)

where φj stands for Id⊗φj ⊗ Id.

1.3.3.3. Tangential semi-classical operators on a manifold. — We can define tangential

semi-classical operators on a manifold by means of local representations. This relies on

the change of variables formula for semi-classical operators in Rd. In Section 3.6 below

we introduce a particular class of tangential operators that will allow us to separate the

analysis into microlocal regions.

2. Well-posedness and asymptotic behavior

We introduce a more general operator

AδZ =

( −∆cz +∇az + bz
−∆csz

s +∇sazs + bszs − 1
δ

(
(c∂ηz)|S2

− (c∂ηz)|S1

)
)
,

with domain D(Aδ) = D(Aδ) (see (1.9)), where ∇a (resp. ∇sa) denotes a smooth vector

field a(x)∇g (resp. as(x)∇s), and b (resp. bs) is a bounded function.

Proposition 2.1. — Let a, b, as, bs be bounded coefficients. Then, the operator

(−Aδ, D(Aδ)) generates a C 0-semigroup on H0
δ . If moreover a = 0, as = 0 and

b, bs ∈ R, then Aδ is self-adjoint on H0
δ .

Proposition 2.2. — There exists a Hilbert basis of H0
δ formed of eigenfunctions Ej =

(eδ,j , e
s
δ,j), j ∈ N, of the self-adjoint operator Aδ (given in (1.8)) associated with the

eigenvalues 0 ≤ µδ,0 ≤ µδ,1 ≤ · · · ≤ µδ,j ≤ · · · .
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Note that if Ω is a manifold with no boundary then 0 is an eigenfunction for Aδ. If Ω has

a boundary, the Dirichlet boundary condition that we prescribe yield the first eigenvalue

to be positive.

Now, we discuss, for some λ > 0 (one can take λ = 0 if ∂Ω 6= ∅) the convergence

properties of the solution Zδ = (zδ, z
s
δ) of

(2.1)





∂tzδ −∆czδ + λzδ = fδ in (0, T )× Ω1 ∪ Ω2,

∂tz
s
δ −∆csz

s
δ + λzsδ = 1

δ

(
(c∂ηzδ)|S2

− (c∂ηzδ)|S1

)
+ fsδ in (0, T )× S,

zδ |S1
= zsδ = zδ |S2

in (0, T )× S,
zδ |∂Ω = 0 in (0, T ),

zδ |t=0 = z0 and zsδ |t=0 = zs0,

towards the solution z of

(2.2)





∂tz−∆cz + λz = f in (0, T )× Ω1 ∪ Ω2,

z|S1
= z|S2

and (c∂ηz)|S2
= (c∂ηz)|S1

in (0, T )× S,
z|∂Ω = 0 in (0, T ),

z|t=0 = z0 in Ω.

Proposition 2.3. — Suppose that ‖Fδ‖L2(0,T ;H0
δ)
≤ C uniformly in δ, that fδ ⇀ f in

L2((0, T ) × Ω1 ∪ Ω2) as δ → 0 and that z0 ∈ H1
0 (Ω) and zs0 ∈ H1(S). Then, we have,

zδ |Ωj ⇀ z|Ωj in L2(0, T ;H2(Ωj)) ∩H1(0, T ;L2(Ωj)) and ∗-weak in L∞(0, T ;H1(Ωj)), and

there exists C ′ > 0 such that for all t ∈ [0, T ], ‖zδ |Ωj (t)‖H1(Ωj) ≤ C ′ for j = 1, 2.

As a consequence, we can obtain a convergence result for the control problem under

view. We denote by uδ the control function given by Theorem 1.6, that satisfies





∂tZδ +AδZδ = Buδ
Zδ |t=0 = Z0

Zδ |t=T = 0.

According to Theorem 1.6, uδ is uniformly bounded in L2((0, T ) × ω), so that we can

extract a subsequence (also denoted by uδ) weakly converging in this space towards u. We

also consider the solution Z̃δ = (z̃δ, z̃
s
δ) of

(2.3)

{
∂tZ̃δ +AδZ̃δ = Bu

Z̃δ |t=0 = Z0.

The following result is a consequence of Proposition 2.3.

Corollary 2.4. — As δ → 0, the limit u is a null-control function for the limit system

(1.10). Moreover, (z̃δ − zδ)|Ωj ⇀ 0 in L2(0, T ;H2(Ωj)) ∩ H1(0, T ;L2(Ωj)) and ∗-weak

in L∞(0, T ;H1(Ωj)), and there exists C > 0 such that for all t ∈ [0, T ], ‖zδ |Ωj (t) −
z̃δ |Ωj (t)‖H1(Ωj) ≤ C for j = 1, 2.

In particular, we have z̃δ(T ) ⇀ 0 in H1(Ω). This shows that the limit u is a control func-

tion for the limit system (1.10) which is robust with respect to small viscous perturbations.

Indeed, it realizes an approximate control for System (2.3).
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3. Local setting in a neighborhood of the interface

In a sufficiently small neighborhood of S, say Vε, we place ourselves in normal geodesic

coordinates (w.r.t. to the spatial variables x). More precisely (see [8, Appendix C.5]) for

ε sufficiently small, there exists a diffeomorphism

F : S × [−2ε, 2ε]→ Vε

(y, xn) 7→ F(y, xn),

so that the differential operator −∂2
x0 − ∆c + ∇a takes the form on both sides of the

interface:

−∂2
x0 − c(y, xn)

(
∂2
xn −R2(y, xn)

)
+R1(y, xn),

and the differential operator −∂2
x0 −∆s

c +∇sa takes the form on the interface

−∂2
x0 + cs(y)R2(y, xn = 0) +Rs1(y),

where R2(y, xn) is a xn-family of second-order elliptic differential operators on S, i.e., a

tangential operator, with principal symbol r(y, xn, η), η ∈ T ∗y (S), that satisfies

(3.1) r(y, xn, η) ∈ R, and C1|η|2g ≤ r(y, xn, η) ≤ C2|η|2g,

for some 0 < C1 ≤ C2 <∞, and R1(y, xn) is a first-order operator on S×
(
[−2ε, 0)∪(0, 2ε]

)

(involving partial derivatives in all variables and having a jump across S × {0}), Rs1(y) is

a first-order operator on S.

By abuse of notation we shall write Vε in place of S× [−2ε, 2ε]. In this setting, we have

V −ε = F(S × [−2ε, 0)) = Vε ∩ Ω1, V +
ε = F(S × (0, 2ε]) = Vε ∩ Ω2,

and we recall that the observation region ω is in Ω2.

In the sequel, we shall often write

x := (y, xn), and x := (x0, x) = (x0, y, xn) ∈ [0, X0]× S × [−2ε, 2ε].

We set

P = −1

c
∂2
x0 −

(
∂2
xn −R2(x)

)
+

1

c
R1(x), P s = − 1

cs
∂2
x0 +R2(y, xn = 0) +

1

cs
Rs1(y).

In this framework, in the neighborhood Vε of S, System (1.11) becomes

(3.2)



Pw = F, in (0, X0)× S ×
(
[−2ε, 0

)
∪
(
0, 2ε]

)
,

P sws = 1
csδ

(
(c∂xnw)|xn=0+ − (c∂xnw)|xn=0− + Θs

)
in (0, X0)× S,

w|xn=0− = ws + θ1 and w|xn=0+ = ws + θ2, in (0, X0)× S,

with

F =
1

c
f +R0w, Θs = θs + δRs0w

s,(3.3)

whereR0 andRs0 are zero-order operators with bounded coefficients on S×
(
[−2ε, 0

)
∪
(
0, 2ε]

)

and S respectively.
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3.1. Properties of the weight functions. — We denote by r̃(x, η, η′) the symmetric

bilinear form associated with the quadratic principal symbol r(x, η). We introduce the

following symmetric bilinear form

β̃(x; ξ0, η; ξ′0, η
′) =

1

c(x)
ξ0ξ
′
0 + r̃(x, η, η′).(3.4)

and the associated positive definite quadratic form β(x; ξ0, η). We choose a positive

bounded continuous function γ(x) in V +
ε such that

(3.5) β(y,−xn; ξ0, η)− γ(y, xn)β(y, xn; ξ0, η) ≥ C|(ξ0, η)|2 > 0, (ξ0, η) ∈ R× T ∗y (S),

for x = (y, xn) ∈ V +
ε .

We then choose a function ϕ = ϕ(x) on [0, X0]× Vε that is smooth on both sides of the

interface and simply continuous across the interface, that moreover satisfies the following

properties.

1. For a function γ′ such that 0 < γ′(x) ≤ γ(x)− ε in V +
ε , for some ε > 0, we have

γ′(y, xn)(∂xnϕ)2(x0, y, xn)− (∂xnϕ)2(x0, y,−xn) ≥ C > 0,(3.6)

for x0 ∈ [0, X0], and x = (y, xn) ∈ V +
ε .

2. For a given value of ν > 0 sufficiently small we have

|∂x0ϕ(x)|+ |∇sϕ(x)|g ≤ ν inf
Vε

|∂xnϕ|, x = (x0, x) ∈ [0, X0]× Vε.(3.7)

3. We have

|∂x0ϕ|+ |∇sϕ|g + |∂xnϕ| > 0(3.8)

in [0, X0]× Vε and Hörmander’s sub-ellipticity condition is satisfied on both sides of

the interface. This condition will be precisely stated below after the introduction of

the conjugated operator (see (3.13)).

Note that we have infV +
ε
|∂xnϕ| ≥ C > 0.

The first condition states the increase in the normal slope of the weight function when

crossing the interface. We thus ask the weight function to be relatively flat in the tangent

directions to the interface as compared to its variations in the normal direction. We explain

below how a weight function satisfying the sub-ellipticity condition can be built through

a convexification procedure (see Remark 3.3).

Remark 3.1. — Property (3.6) and |∂x0ϕ| + |∇sϕ|g + |∂xnϕ| > 0 can be obtained by

choosing ϕ such that (∂xnϕ)|[0,X0]×S ≥ C > 0 and assuming that (3.6) only holds on

[0, X0]× S and then shrinking the neighborhood Vε by choosing ε sufficiently small.

Remark 3.2. — Note that the conditions we impose on the weight function are proven

sharp in [14] in the limiting case δ → 0. If (3.6) is not satisfied, i.e., the increase in the

normal slope of the weight function is chosen too small, one can then build a quasi-mode

that concentrates at the interface and shows that the Carleman estimate cannot hold.

3.2. A system formulation. — Following [1, 15], we shall consider (3.2) as a system of

two equations coupled at the boundary xn = 0+. Here, the coupling involves a tangential

second-order elliptic operator. In [0, X0] × S × [−2ε, 0), we make the change of variables

xn to −xn. For a function ψ defined in Vε, we set

ψr(y, xn) = ψ(y, xn) and ψl(y, xn) := ψ(y,−xn), for xn ≥ 0,
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and similarly for symbols and operators, e.g.,

rr(y, xn, η) = r(y, xn, η) and rl(y, xn, η) = r(y,−xn, η), for xn ≥ 0.

We set V +
ε = S × (0, 2ε]. System (3.2) then takes the form

(3.9)





P
r/lw

r/l = F
r/l , in (0, X0)× V +

ε ,

P sws = 1
csδ

(
(cr∂xnw

r)|xn=0+ + (cl∂xnw
l)|xn=0+ + Θs

)
in (0, X0)× S,

w
r/l
|xn=0+

= ws + θ
r/l in (0, X0)× S.

3.3. Conjugation by the weight function. — We now consider the weight functions

ϕ
r/l built up as above from the continuous function ϕ defined on Vε. We introduce the

following conjugated differential operators

P
r/l
ϕ = h2eϕ

r/l/hP
r/le−ϕ

r/l/h, P sϕ = h2eϕ|S/hP se−ϕ|S/h.

With the functions

v
r/l = eϕ

r/l/hw
r/l , vs = eϕ|S/hws,

F
r/l
ϕ = h2eϕ

r/l/hF
r/l , Θs

ϕ = −iheϕ|S/hΘs, θ
r/l
ϕ = eϕ|S/hθ

r/l ,

with 0 < h < h0, System (3.9) can be rewritten as

(3.10)





P
r/l
ϕ v

r/l = F
r/l
ϕ in (0, X0)× V +

ε ,

P sϕv
s = hi

csδ

(
cr(Dxn + i∂xnϕ

r)vr|xn=0+

+cl(Dxn + i∂xnϕ
l)vl|xn=0+ + Θs

ϕ

)
in (0, X0)× S,

v
r/l
|xn=0+

= vs + θ
r/l
ϕ in (0, X0)× S.

Recall that D = h∂/i here. We shall consider the operators P
r/l
ϕ and P sϕ as semi-classical

differential operators.

We separate the self- and anti-adjoint parts of the operators P
r/l
ϕ , viz.,

Q̃
r/l
2 =

1

2

(
P
r/l
ϕ + (P

r/l
ϕ )∗

)
, Q̃

r/l
1 =

1

2i

(
P
r/l
ϕ − (P

r/l
ϕ )∗

)
.

The (semi-classical) principal symbols q̃j of Q̃j , j = 1, 2 are then

q̃
r/l
2 (x, ξ0, η, ξn) = ξ2

n + q
r/l
2 (x, ξ0, η),

q̃
r/l
1 (x, ξ0, η, ξn) = 2ξn∂xnϕ

r/l + 2q
r/l
1 (x, ξ0, η),

for (y, η) ∈ T ∗(S), with

q
r/l
2 (x, ξ0, η) =

ξ2
0

c
r/l

+ r
r/l(x, η)−

((∂x0ϕ
r/l)2

c
r/l

+ r
r/l(x, dyϕ

r/l) + (∂xnϕ
r/l)2
)

q
r/l
1 (x, ξ0, η) =

ξ0∂x0ϕ
r/l

c
r/l

+ r̃
r/l(x; η, dyϕ

r/l).

Recall that r̃
r/l(x, η, η′) stands for the symmetric bilinear form associated with the

quadratic principal symbol r
r/l(x, η). The principal symbol of P

r/l
ϕ is naturally

p
r/l
ϕ = q̃

r/l
2 + iq̃

r/l
1 = ξ2

n + 2iξn∂xnϕ
r/l + q

r/l
2 + 2iq

r/l
1 .(3.11)

For the sake of concision we have at places omitted some of the variable dependencies, e.g.

writing ϕ
r/l in place of ϕ

r/l(x).
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Note also that the symbol of P sϕ is given by

psϕ =
ξ2

0

cs
+ r(x, η)−

((∂x0ϕ)2

cs
+ r(x, dyϕ|xn=0)

)∣∣∣
xn=0

+ 2i
(ξ0∂x0ϕ

cs
+ r̃(x; η, dyϕ|xn=0)

)∣∣∣
xn=0

.(3.12)

(Recall that rl and rr (resp. ϕl and ϕr) coincide at xn = 0+.)

After the introduction of the conjugated operator we can introduce the sub-ellipticity

property satisfied by the weight function:

(3.13) ∀x ∈ [0, X0]× V +
ε , (ξ0, η, ξn) ∈ R× T ∗y (S)× R,

p
r/l
ϕ (x, ξ0, η, ξn) = 0 ⇒ {q̃

r/l
2 , q̃

r/l
1 }(x, ξ0, η, ξn) > 0.

The sub-ellipticity property (3.13) is necessary for the derivation of the Carleman estimate

and is geometrically invariant (see e.g. [7, Section 8.1, page 186], see also [13]).

Remark 3.3. — A weight function ϕ that satisfies the properties of Section 3.1 can be

obtained in the following classical way. Choose a continuous function ψ, smooth on both

sides of S, such that ψ
r/l satisfies conditions (3.6)–(3.8). These conditions are then also

satisfied by ϕ = eλψ, λ ≥ 1. For the parameter λ sufficiently large ϕ will also fulfill

the sub-ellipticity condition (see e.g. Lemma 3 in [19, Section 3.B], Theorem 8.6.3 in [7,

Chapter 8], or Proposition 28.3.3 in [9, Chapter 28]).

3.4. Phase-space regions. — Following [20, 15] we introduce the following quantity

µ
r/l(x, ξ0, η) = q

r/l
2 (x, ξ0, η) +

(
q
r/l
1 (x, ξ0, η)

)2
(
∂xnϕ

r/l
)2 ,(3.14)

and the following sets in the (tangential) phase space:

E
r/l,± =

{
(x0, y, xn; ξ0, η) ∈ [0, X0]× S × [0, 2ε]× R× T ∗y (S);µ

r/l(x0, y, xn; ξ0, η) ≷ 0
}
,

(3.15)

Z
r/l =

{
(x0, y, xn; ξ0, η) ∈ [0, X0]× S × [0, 2ε]× R× T ∗y (S);µ

r/l(x0, y, xn; ξ0, η) = 0
}
.

(3.16)

The analysis we carry on will make precise the behavior of the roots of p
r/l
ϕ (viewing p

r/l
ϕ

as a second-order polynomial in the variable ξn, see (3.11)) as (x, ξ0, η) varies.

The assumption we have formulated yields the following key property.

Proposition 3.4. — There exists C0 > 0 such that in the neighborhood Vε we have

(
µl− γ(x)µr

)
(x, ξ0, η) ≥ C0〈(ξ0, η)〉2 > 0, x = (x0, x) = (x0, y, xn), (ξ0, η) ∈ R× T ∗y (S).

In particular, Er,+ ∪ Zr ⊂ El,+.

Proposition 3.5. — With the properties of the weight function of Section 3.1 we have

Char(psϕ) ⊂ Char(Re psϕ) ⊂ (El,− ∩ {xn = 0}).
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µl = 0
µr = 0

G E

0

F

Zr

Z

µr = −2ε1 µr = 2ε1
µr = −ε1 µr = ε1Char(P sϕ)

Zl

µl = ε2

ν

µl = 2ε2

Figure 1. Sketch of the relative localization of the different phase-space regions.
Here ν represents the norm of the tangential frequencies.

3.5. Root properties. — The following lemma describes the position of the roots of

p
r/l
ϕ of (3.11) viewed as a second-order polynomial in ξn.

Lemma 3.6. — We have the following root properties.

1. In the region E
r/l,+, the polynomial p

r/l
ϕ defined in (3.11) has two distinct roots that

satisfy Im ρ
r/l,+ > 0 and Im ρ

r/l,− < 0. Moreover we have

µ
r/l ≥ C > 0 ⇔ Im ρ

r/l,+ ≥ C ′ > 0 and Im ρ
r/l,− ≤ −C ′ < 0,

2. In the region E
r/l,−, the imaginary parts of the two roots have the same sign as that

of −∂xnϕ
r/l.

3. In the region Z
r/l, one of the roots is real.

Moreover, there exist C > 0 and H > 0 such that |ρr/l,+ − ρr/l,−| ≥ | Im ρ
r/l,+ − Im ρ

r/l,−| ≥
C > 0 in the region {µr/l ≥ −H}.
Remark 3.7. — Note that (x, ξ0, η) ∈ Er/l,+ for |ξ0| + |η|g sufficiently large, say |ξ0| +
|η|g ≥ R, uniformly in x ∈ [0, X0] × V +

ε and for h bounded. Note also that in the region

{µr/l ≥ −H}, the roots ρ
r/l,± are smooth since they do not cross.

3.6. Microlocalisation operators. — We call

M+ = (0, X0)× S × [0, 2ε].

We also set

M∗+ :=
{

(x0, y, xn, ξ0, η) ∈ (0, X0)× S × [0, 2ε]× R× T ∗y (S)
}
' T ∗ ((0, X0)× S)× [0, 2ε].

We define the following open sets in (tangential) phase-space:

E =
{

(x, ξ0, η) ∈M∗+; ε1 < µr(x, ξ0, η)
}
,

Z =
{

(x, ξ0, η) ∈M∗+; −2ε1 < µr(x, ξ0, η) < 2ε1
}
,

F =
{

(x, ξ0, η) ∈M∗+; ε2 < µl(x, ξ0, η), and µr(x, ξ0, η) < −ε1
}
,

G =
{

(x, ξ0, η) ∈M∗+; µl(x, ξ0, η) < 2ε2
}
.

(3.17)

The constants ε1 and ε2 are taken such that sup(γ)ε1 + ε2 < C0/2, with C0 as in Proposi-

tion 3.4. Our analysis in the region Z will require ε1 to be small (see Section 4.3 below).

Recall that γ is defined in Section 3.1. This yields G ∩Z = ∅. As a consequence of Propo-

sitions 3.4 and 3.5, the localization of the different microlocal zones can be represented as

in Figure 1. In particular, we have Char(psϕ) ⊂ (G \F ) ∩ {xn = 0}.
With the open covering of M∗+ by E , Z , F and G we introduce a C∞ partition of

unity,

χE + χZ + χF + χG = 1, 0 ≤ χ• ≤ 1, supp(χ•) ⊂ •, • = E ,Z ,F ,G .

The sets Z , F and G are relatively compact which gives χZ , χF , χG ∈ S−∞T (M∗+) =⋂
m>0 S

−m(M∗+) and consequently χE ∈ S0
T (M∗+). Associated with these symbols we now

define tangential pseudo-differential operators on M+.
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Given 0 < α0 < X0/2, we choose a function ζ1 ∈ C∞c (0, X0) that satisfies ζ1 = 1 on a

neighborhood of (α0, X0 − α0) and 0 ≤ ζ1 ≤ 1. Setting

(3.18) ζj(x0, y, xn) = ζ1(x0)ψj(y)

gives a partition of unity on (α0, X0 − α0)× S × [0, 2ε]. Recall that (ψj)j∈J is a partition

of unity on S (see Section 1.3.3).

We define the following operators on M+:

Ξ• =
∑
j∈J

Ξ•,j , with Ξ•,j = φ∗j OpT (χ•,j)
(
φ−1
j

)∗
ζj , j ∈ J, • = E ,Z ,F ,G ,(3.19)

where φ∗j denotes the pullback by the function φj and

χ•,j = ζ̃j
(
φ−1
j

)∗
χ•,(3.20)

and ζ̃j denotes a function in C∞c ((0, X0) × Ũj) with ζ̃j = 1 in a neighborhood of

supp(
(
φ−1
j

)∗
ζj).

The operators Ξ• are zero-order tangential semi-classical operators on M+, with prin-

cipal symbol ζ1(x0)χ•(x, ξ0, η).

Remark 3.8. — The role of the parameter α0 introduced here is to avoid considering

boundary problems on ({0} ∪ {X0})× S × [0, 2ε].

4. Proof of the Carleman estimate in a neighborhood of the interface

In this section, we prove Carleman estimates in the four microlocal regions described

above, that is, for functions Ξ•v
r/l , with v

r/l ∈ C∞c ((0, X0)×S×[0, 2ε)) and • = E ,Z ,F ,G .

Two main technics can be used to obtained these microlocal estimates: Calderón projectors

and the standard Carleman method. The first one exploits ellipticity; one has to be away

from the characterisitic set of the conjugated operator; there is no loss of derivative in

such estimate which can be observed in the powers of the semi-classical parameter h. The

second one is based on the computation of an L2 norm and uses a sub-ellipticity argument;

it can be used in the neighborhood of the characterisitic set of the conjugated operator;

there is a loss of derivative there which shows in the the powers of the semi-classical

parameter h.

4.1. Estimate in the region G . — We introduce a microlocal cut-off function χGF ∈
C∞c (M∗+), 0 ≤ χGF ≤ 1, satisfying

(4.1)
χGF = 1 on a neighborhood of supp(χG ),
χG + χF = 1 on a neighborhood of supp(χGF ).

We choose ζ2 ∈ C∞c (0, X0) such that 0 ≤ ζ2 ≤ 1, ζ2 = 1 on a neighborhood of supp(ζ1)

(with ζ1 defined in (3.18)), and such that ζ̃j = 1 on supp(
(
φ−1
j

)∗
ζ2
j ) where ζ2

j (x0, y) =

ζ2(x0)ψj(y). As in (3.20) we set

χGF ,j = ζ̃j
(
φ−1
j

)∗
χGF ,

and we define the associated tangential pseudo-differential operator ΞGF by

ΞGF =
∑
j∈J

ΞGF ,j , with ΞGF ,j = φ∗j OpT (χGF ,j)
(
φ−1
j

)∗
ζ2
j , j ∈ J,

Note that the local symbol of ΞGF in each chart is equal to one in the support of that of

ΞG .

We recall that the function ζ = ζ(xn) ∈ C∞c ([0, 2ε)) satisfies ζ(0) = 1 on [0, ε).
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Making use of the Calderón projector technique for P rϕ,j and of the standard Carleman

techniques for P lϕ,j , we obtain the following partial estimate.

Proposition 4.1. — Suppose that the weight function ϕ satisfies the properties listed

in Section 3.1. Then, for all δ0 > 0, there exist C > 0 and h0 > 0 such that, for all

0 < δ ≤ δ0 and 0 < h ≤ h0, v
r/l ∈ C∞c ((0, X0) × S × [0, 2ε)) and vs ∈ C∞c ((0, X0) × S)

satisfying (3.10), we have

‖ΞG v
r‖21 + h|ΞG v

r
|xn=0+ |21 + h|DxnΞG v

r
|xn=0+ |20

(4.2)

≤ C
(
‖P rϕvr‖20 + h2‖vr‖21 + h4|Dxnv

r
|xn=0+ |20

)
,

and

h‖ΞG v
l‖21 + h|ΞG v

l
|xn=0+ |21 + h|DxnΞG v

l
|xn=0+ |20

(4.3)

≤ C
(
1 +

δ2

h2

)(
‖ζP rϕvr‖20 + h2‖ΞGFv

r‖21 + h4|Dxnv
r
|xn=0+ |20 + h4‖vr‖21 + h3|vs|21

)

+ C
(
‖P lϕvl‖20 + h2‖vl‖21 + h|θlϕ|21 +

δ2

h
|θrϕ|20 + h|θrϕ|21 + h|Θs

ϕ|20
)
.

Note the difference in the powers of the semi-classical parameter h in the term ‖ΞG v
r‖1

and ‖ΞG v
l‖1 in the l.h.s. of these estimates: there is no loss of derivative in (4.2) and a

half derivative is lost in (4.3). The factor (1 + δ/h) in the r.h.s. of (4.3) is important: it

originates from the non-ellipticity of the operator P sϕ on the interface in the region G (see

figure 1).

4.2. Estimate in the region F . — Making use of the Calderón projector technique

for both P rϕ,j and P lϕ,j , we obtain the following partial estimate.

Proposition 4.2. — Suppose that the weight function ϕ satisfies the properties listed

in Section 3.1. Then, for all δ0 > 0, there exist C > 0 and h0 > 0 such that, for all

0 < δ ≤ δ0 and 0 < h ≤ h0, v
r/l ∈ C∞c ((0, X0) × S × [0, 2ε)) and vs ∈ C∞c ((0, X0) × S)

satisfying (3.10), we have

‖ΞFv
r‖21 + h|ΞFv

r
|xn=0+ |21 + h|DxnΞFv

r
|xn=0+ |20(4.4)

≤ C
(
‖P rϕvr‖20 + h2‖vr‖21 + h4|Dxnv

r
|xn=0+ |20

)
,

and

‖ΞFv
l‖21 + h|ΞFv

l
|xn=0+ |21 + h|DxnΞFv

l
|xn=0+ |20(4.5)

≤ C
(
‖P lϕvl‖20 + h2‖vl‖21 + h4|Dxnv

l
|xn=0+ |20 + ‖P rϕvr‖20

+ h2‖vr‖21 + h4|Dxnv
r
|xn=0+ |20 + h|θlϕ|21 + h|θrϕ|21

)
.

4.3. Estimate in the region Z . — As a consequence of property (3.6) of the weight

function and the compactness of [0, X0] × S × [0, 2ε], we remark that in the region Z ,

there exists K1 > 0 such that
(
∂xnϕ

r
)2 − µr ≥ min

(
∂xnϕ

r
)2 − 2ε1 ≥ K1 > 0(4.6)
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for ε1 sufficiently small (the constant ε1 is used in the definition of the microlocal regions

in (3.17)).

Making use of the Calderón projector technique for P lϕ,j , and standard techniques to

prove Carleman estimates for P rϕ,j , we obtain the following partial estimate.

Proposition 4.3. — Suppose that the weight function ϕ satisfies the properties listed

in Section 3.1. Then, for all δ0 > 0, there exist C > 0 and h0 > 0 such that, for all

0 < δ ≤ δ0 and 0 < h ≤ h0, v
r/l ∈ C∞c ((0, X0) × S × [0, 2ε)) and vs ∈ C∞c ((0, X0) × S)

satisfying (3.10), we have

h‖ΞZ v
r‖21 + h

(
1 +

δ2

h2

)
|ΞZ v

r
|xn=0+ |21 + h|DxnΞZ v

r
|xn=0+ |20

(4.7)

≤ C
(
‖P rϕvr‖20 + h2‖vr‖21 + h(δ2 + h2)|vs|21 + ‖P lϕvl‖20 + h2‖vl‖21 + h4|Dxnv

l
|xn=0+ |20

+
δ2

h
|θrϕ|20 + h|θlϕ|21 + h|θrϕ|21 + h|Θs

ϕ|20
)
,

and

‖ΞZ v
l‖21 + h|ΞZ v

l
|xn=0+ |21 + h|DxnΞZ v

l
|xn=0+ |20

(4.8)

≤ C
(
‖P lϕvl‖20 + h2‖vl‖21 + h4|Dxnv

l
|xn=0+ |20 + h3|vs|21 +

h2

δ2 + h2

(
‖P rϕvr‖20 + h2‖vr‖21

)

+ h|θlϕ|21 + h|θrϕ|21 +
h3

δ2 + h2
|Θs

ϕ|20
)
.

Transmission conditions are important in the derivation of this microlocal estimate;

information is transported from the ’l’ side to the ’r’ side through such conditions; in the

proof, a quadratic form is estimated at the interface, positivity is obtained thanks to the

tranmission conditions; this explains the factor (1 + δ2/h2) in (4.7).

4.4. Estimate in the region E . — Using in this region the ellipticity of P sϕ,j and

the Calderón projector technique for both P rϕ,j and P lϕ,j , we obtain the following partial

estimate.

Proposition 4.4. — Suppose that the weight function ϕ satisfies the properties listed

in Section 3.1. Then, for all δ0 > 0, there exist C > 0 and h0 > 0 such that, for all

0 < δ ≤ δ0 and 0 < h ≤ h0, v
r/l ∈ C∞c ((0, X0) × S × [0, 2ε)) and vs ∈ C∞c ((0, X0) × S)

satisfying (3.10), we have

‖ΞE v
r/l‖21 + h|ΞE v

r/l
|xn=0+

|21 + h|DxnΞE v
r/l
|xn=0+

|20
(4.9)

≤ C
(
‖P rϕvr‖20 + h2‖vr‖21 + h4|Dxnv

r
|xn=0+ |20 + ‖P lϕvl‖20 + h2‖vl‖21 + h4|Dxnv

l
|xn=0+ |20

+ h3|vs|21 + h|Θs
ϕ|20 + h|θrϕ|21 + h|θlϕ|21

)
.

4.5. A semi-global Carleman estimate: proof of Theorem 1.2. — In this section,

we explain how we can patch together the four microlocal estimate of Propositions 4.1,

4.2, 4.3 and 4.4, to obtain a global Carleman estimate in a neighborhood of S, and prove

Theorem 1.2.
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First, let us introduce some notation. We set

BT(w) := h|w|xn=0+ |21 + h|Dxnw|xn=0+ |20,
RHS

r/l(w) := ‖P r/l
ϕ w‖20 + h2‖w‖21 + h4|Dxnw|xn=0+ |20,

Rθ := h|Θs
ϕ|20 + h|θrϕ|21 + h|θlϕ|21.

This allows us to formulate concisely the four microlocal estimates of Propositions 4.1,

4.2, 4.3 and 4.4.

(4.10) ‖ΞG v
r‖21 + BT(ΞG v

r) . RHSr(vr),

(4.11) εh‖ΞG v
l‖21 + εBT(ΞG v

l) .
(
1 +

δ2

h2

)(
ε‖ζP rϕvr‖20 + εh4|Dxnv

r
|xn=0+ |20 + εh4‖vr‖21

)

+ εRHSl(vl) + ε(h2 + δ2)‖ΞGF v
r‖21 + εh(h2 + δ2)|vs|21 + εRθ + ε

δ2

h
|θrϕ|20,

(4.12) ‖ΞFv
r‖21 + BT(ΞFv

r) . RHSr(vr),

(4.13) ‖ΞFv
l‖21 + BT(ΞFv

l) . RHSl(vl) + RHSr(vr) +Rθ,

(4.14)

εh‖ΞZ v
r‖21 +εBT(ΞZ v

r) . εRHSr(vr)+εRHSl(vl)+ εh(h2 + δ2)|vs|21 +ε
δ2

h
|θrϕ|20 +εRθ,

(4.15) ‖ΞZ v
l‖21 + BT(ΞZ v

l) . RHSl(vl) + h3|vs|21 +
h2

δ2 + h2
RHSr(vr) +Rθ,

(4.16) ‖ΞE v
r/l‖21 + BT(ΞE v

r/l) . RHSl(vl) + RHSr(vr) + h3|vs|21 +Rθ.

To derive the final Carleman estimate we need to sum together these microlocal estimate

and many terms in the r.h.s. need to be “absorbed” by those in the l.h.s.. This is a standard

procedure usually making use of the powers of the parameter h in front of these terms

and by choosing h sufficiently small. Note, however, that some powers of h are critical

here so that the related terms (in frames) in the right hand-sides cannot be “absorbed”

directly. To overcome this problem, we have multiplied the two concerned equations by a

small parameter ε > 0 whose value is independent of h and δ.

Note that these three atypical terms are the reason for the introduction of the microlocal

region F (compare with the microlocal regions used in [15]). In fact, the microlocal region

F acts as a buffer: as F is an elliptic region for both the operators P
r/l
ϕ , it provides terms

in the l.h.s. of the associated microlocal estimates of better quality than those obtained in

the regions G and Z (compare the powers of h in the l.h.s. terms of these estimates).

Observe that the property χE + χZ + χF + χG = 1 implies, see Section 3.6,

ΞG ,j + ΞF ,j + ΞZ ,j + ΞE ,j = ζj(x0, y).

As a consequence of the definition of the operators Ξ•, • = E ,Z ,F ,G , given in (3.19)-

(3.20), this yields

(4.17) ΞE + ΞZ + ΞF + ΞG = ζ1(x0).

We now treat the three atypical terms and use the small parameter ε.
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As supp(vs) ⊂ (α0, X0 − α0) × S (see the statement of Theorem 1.2 and Section 3.3),

with (4.17), and using the transmission conditions (3.10), we have

vs = ζ1vs = ΞE v
s + ΞZ v

s + ΞFv
s + ΞG v

s

= ΞE v
l − ΞE θ

l
ϕ + ΞZ v

l − ΞZ θ
l
ϕ + ΞFv

l − ΞF θ
l
ϕ + ΞG v

r − ΞG θ
r
ϕ, at xn = 0+.

Hence, for δ ≤ δ0 and h ≤ h0 we can estimate the two atypical terms concerning vs

in (4.11) and (4.14) as

εhδ2|vs|21 . εh|ΞE v
l|21 + εh|ΞZ v

l|21 + εh|ΞFv
l|21 + εh|ΞG v

r|21 + εRθ.

When summing all the estimates (4.10)-(4.16) together and taking ε sufficiently small, the

four terms εh|ΞE v
l|21, εh|ΞZ v

l|21, εh|ΞFv
l|21, εh|ΞG v

r|21 can be “absorbed” by the l.h.s. of

(4.16), (4.15), (4.13), and (4.10) respectively.

The remaining atypical term is in (4.11):

ε
(
h2 + δ2)‖ΞGFv

r‖21 . ε‖ΞGFv
r‖21.

We choose a function ζ4 ∈ C∞c (0, X0) such that ζ4 = 1 on a neighborhood of (α0, X0−α0),

ζ1 = 1 on a neighborhood of supp(ζ4) and 0 ≤ ζ4 ≤ 1. Since supp(vr) ⊂ (α0, X0 − α0)×
S × [0, 2ε), we have

ΞGF v
r = ΞGF (ΞG + ΞF )vr + ΞGF (1− ΞG − ΞF )ζ4vr.(4.18)

The principal symbol of the operator ΞGF (1− ΞG − ΞF )ζ4 is

ζ2χGF

(
1− ζ1(χG + χF )

)
ζ4 = ζ2χGF

(
1− (χG + χF )

)
ζ4 = 0

since χG +χF = 1 on supp(χGF ) by (4.1). We thus have ΞGF (1−ΞG−ΞF )ζ4 ∈ hΨ−1
T (M+),

so that (4.18) gives

ε(h2 + δ2)‖ΞGF v
r‖21 . ε‖ΞG v

r‖21 + ε‖ΞFv
r‖21 + εh2‖vr‖21.

When summing all the estimates (4.10)-(4.16) together and taking ε sufficiently small, the

two terms ε‖ΞG v
r‖21, ε‖ΞFv

r‖21 in this expression can be absorbed by the l.h.s. of (4.10)

and (4.12), respectively. This is possible since these two estimates are obtained in elliptic

regions yielding better powers in h.

Now, if we sum all the partial estimates (4.10)-(4.16), and handle the atypical terms as

explained above, we obtain

‖ΞG v
r‖21 + BT(ΞG v

r) + h‖ΞG v
l‖21 + BT(ΞG v

l)(4.19)

+ ‖ΞFv
r‖21 + BT(ΞFv

r) + ‖ΞFv
l‖21

+ BT(ΞFv
l) + h‖ΞZ v

r‖21 + BT(ΞZ v
r)

+ ‖ΞZ v
l‖21 + BT(ΞZ v

l) + ‖ΞE v
r/l‖21 + BT(ΞE v

r/l)

. RHSr(vr) + RHSl(vl) +
(
1 +

δ2

h2

)
‖ζP rϕvr‖20 + h3|vs|21

+ h2|Dxnv
r
|xn=0+ |20 +Rθ +

δ2

h
|θrϕ|20.

Using supp(v
r/l) ⊂ (α0, X0 − α0)× S × [0, 2ε) and (4.17), we can write

‖vr/l‖1 ≤ ‖ΞG v
r/l‖1 + ‖ΞFv

r/l‖1 + ‖ΞZ v
r/l‖1 + ‖ΞE v

r/l‖1,
together with

|v
r/l
|xn=0+

|1 ≤ |ΞG v
r/l
|xn=0+

|1 + |ΞFv
r/l
|xn=0+

|1 + |ΞZ v
r/l
|xn=0+

|1 + |ΞE v
r/l
|xn=0+

|1,
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and

|Dxnv
r/l
|xn=0+

|0 ≤ |DxnΞG v
r/l
|xn=0+

|0+|DxnΞFv
r/l
|xn=0+

|0+|DxnΞZ v
r/l
|xn=0+

|0+|DxnΞE v
r/l
|xn=0+

|0.
These three inequalities together with (4.19) give

h‖vr/l‖21 + h|v
r/l
|xn=0+

|21 + h|Dxnv
r/l
|xn=0+

|20

. ‖P lϕvl‖20 + h2‖vl‖21 + h4|Dxnv
l
|xn=0+ |20 +

(
1 +

δ2

h2

)
‖ζP rϕvr‖20 + ‖P rϕvr‖20

+ h2‖vr‖21 + h2|Dxnv
r
|xn=0+ |20 + h3|vs|21 +Rθ +

δ2

h
|θrϕ|20,

Taking 0 < h ≤ h0 with h0 sufficiently small in this expression gives

h‖vr/l‖21 + h|v
r/l
|xn=0+

|21 + h|Dxnv
r/l
|xn=0+

|20

. ‖P lϕvl‖20 + ‖P rϕvr‖20 +
(
1 +

δ2

h2

)
‖ζP rϕvr‖20 +Rθ +

δ2

h
|θrϕ|20.

Recalling the definitions of v
r/l = eϕ

r/l/hw
r/l , F

r/l
ϕ , θ

r/l
ϕ , Θs

ϕ (see Section 3.3 and Equa-

tion (3.3)), and observing that we have

‖eϕ
r/l/hDxkw

r/l‖0 ≤ ‖Dxk

(
eϕ

r/l/hw
r/l
)
‖0 + ‖

(
∂xkϕ

r/l
)
eϕ

r/l/hw
r/l‖0,

and similar inequalities for the norms at the interface {xn = 0+}, we can “absorb” the

zero-order terms in (3.3), which concludes the proof of Theorem 1.2.
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