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CONTROLLABILITY OF A PARABOLIC SYSTEM WITH A
DIFFUSIVE INTERFACE

by

Jérome Le Rousseau, Matthieu Léautaud & Luc Robbiano

Abstract. — We consider a linear parabolic transmission problem across an interface of
codimension one in a bounded domain or on a Riemannian manifold, where the transmission
conditions involve an additional parabolic operator on the interface. This system is an
idealization of a three-layer model in which the central layer has a small thickness §. We
prove a Carleman estimate in the neighborhood of the interface for an associated elliptic
operator by means of partial estimates in several microlocal regions. In turn, from the
Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the
parabolic system. These results are uniform with respect to the small parameter o.

1. Introduction

When considering elliptic and parabolic operators in R"™ with a diffusion coefficient
that jumps across an interface of codimension one, say {z, = 0}, we can interpret the
associated equations as two equations with solutions that are coupled at the interface via
transmission conditions at x,, = 0, viz. in the parabolic case,

(1.1) o1 — VeerVayr = fi in {x, <0}, Owyo — VecaVays = fo in {x, > 0},
and

(1.2) Y1|zn=0- = Y2|z,=0+> 10, Y1 |z, =0~ = €202, Y2|g, =0+ -

Here, we are interested in parabolic/elliptic models in which part of the diffusion occurs
along the interface. Then the transmission conditions are of higher order, involving differ-
entiations in the direction of the interface. Such a model can be viewed as an idealization
of two diffusive media separated by a thin membrane. This model can be derived starting
from three media and formally letting the thickness of the intermediate layer become very
small. A small parameter § > 0 then measures the thickness of this layer. Questions such
as unique continuation, observation and controllability are natural for such a model. This
is the main goal of the present article.

Most of the analysis that we shall carry concerns a related elliptic operator, including
an additional variable. Our key result is the derivation of a Carleman estimate for this
operator (see Theorem 1.2 below). The general form of Carleman estimates for a second-
order elliptic operator P is (local form)

(1.3) hje?/Mw|| 22 + B3|l e?/ "V wf. < OhYl|e?" PwlZ,

for h sufficiently small, an appropriately chosen weight function ¢, and for smooth com-
pactly supported functions w. We then deduce an interpolation inequality and a spectral
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inequality for the original operator in the spirit of the work [19]. This spectral inequality
then yields the null controllability of the considered parabolic system. A important feature
of the results we obtain here is their uniformity in the thickness parameter §. In particular
this allows us to recover the earlier results obtained on (1.1)—(1.2) in [15]; this corresponds
to the limit § — 0 in the model we consider here.

1.1. Setting. — Let (€2, g) be a smooth compact n-dimensional (n > 2) connected Rie-
mannian manifold (with or without boundary), with g denoting the metric, and S a n—1-
dimensional smooth submanifold of 2 (without boundary). We assume that Q\S = Q;UQ,
with Q1 N Qs = 0, so that Q1 and Qs are two smooth open subsets of €. Endowed with
the metric g7 (s), S has a Riemannian structure. We denote by 9, a non vanishing vector
field defined in a neighborhood of S and normal to S (for the Riemannian metric). We
choose the vector field 0, outgoing from 21, incoming in 5. In local coordinates, we have

J k

where g¥g;. = 6%, A2 = (¢¥n;n;)~1, and n is the normal to S for the Euclidean metric in
the local coordinates, outgoing from €, incoming in Q5. In fact )\|25 = det(g)/ det(g;r(s))
at S.

The covariant gradient and the divergence operators are given in local coordinates by

- 1
Vg=>9"0u, divgv = T =) > O, (\/det(g)vi),
i et(g) 5

with similar definition for the gradient V® = V
the interface S with the metric g;p(s).

. s
97(s) and divergence div® = dlvgms) on

We consider a (scalar) diffusion coefficient c(x) with ¢, € (%), i = 1,2, yet
discontinuous across S and satisfying c¢(z) > cpin > 0 uniformly for z € Q7 U Qa. We

set
1 g
Ap =divg c(2)Vy = —=——== > Os,(cg”/det(g)0s,), in Q1 UQy,

Vdet(g) i;
in local coordinates. Let us denote ¢® a smooth (scalar) diffusion coefficient on S satisfying
c*(x) > ¢, > 0. Similarly we define Ags = div® ¢*V* as a second-order elliptic differential
operator on S.
In what follows, we shall use the notation zg, = (z|Qj)|5, j = 1,2, for the traces of
functions on S.

Given a time T > 0, we consider the following parabolic control problem

Oz — Nz = 1,u in (0,7) x Q1 Uy,
(1.4) Oz — Nesz® = % ((cOy2) 15, — (cOy2)s,) ?n (0,T) x S,

25, = 2° = 23, in (0,7) x S,

290 = 0;

with some initial data in L%(Q; U Q) x L?(S). Here, § denotes a bounded parameter,
0 <9 < §p, and w is an open nonempty subset of 1 U Qo. Let us suppose for instance
that w C Qy. The function u is a control function and the null-controllability problem
concerns the ability to drive the solution (z, z%) to zero at the final time 7.

Such a coupling condition at the interface was considered in [11] and [22] for the as-
sociated hyperbolic system. This model corresponds to two diffusive media separated by
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a thin layer in which diffusion also occurs. The parameter ¢ is then a measure of the
thickness of this intermediate layer. In the derivation of the model ¢ is assumed small.
We introduce the Hilbert space H§ = L%(Q; UQy) x L?(S) with the inner product

(Z’ Z)’Hg - (Z7 2)L2(91U92) +0 (Zsags)L2(S) ) Z = (ZVZS)? Z = (2’25)’
where

(1.5) (2, D) 2000, = [ 2Z dv, (2%, 2%) 125y = [2°Z8 dv®,
Q1UQ9 S

with dv = /det(g) dz and dv*® = /det(gr(s)) dy. We also introduce the following Hilbert

space
(1.6) HY ={Z = (2,2°) € H(Q UQ) x HY(S) ; Zon =05 215, = 2° = 215, },
with the inner product, with Z = (2, 2%), Z = (3, %),

(7, 2) 3 = (2,2) 30 + (¥4, V45) +5(c" V02, V)

L2(Q1U0s) (8)

Problem (1.4) can be written as
(1.7) OhZ + AsZ = Bu,

where the state is Z = (2,2°) € HJ and the operator As reads

—Aoz
1.8 AsZ = s c :
() ’ < —Aesz® = 5 ((cdy2)is, — (cBy2))s,) )
with domain
(1.9) D(As) ={(z,2°) € 7—[%; As(z,2%) € Hg}

The operator (As, D(As)) is nonnegative self-adjoint on . The control operator B is the
bounded operator from L?(€2; U)) into L?(Q1 Us) x L2(S) given by B : u + t(1,u,0).
Note that System (1.7), i.e. System (1.4), is well-posed for an initial condition in HY.

Remark 1.1. — In the limit 6 — 0, from System (1.4), we obtain the following system
(see Section 2 for a proof of convergence)

Oz — Aez =11 in (O,T) x Q1 U Qo,
(1.10) (cOy2)|s, = (cOpz)s, and 2|5, = 2|5, in (0,T) x S,
290 = 0;

which corresponds to the case studied in [15]. We also refer to the recent works [6, 2,
12, 3, 5, 16, 14, 4] for the derivation of Carleman estimates for elliptic and parabolic
operators with such coefficients with applications to controllability and inverse problems.

1.2. Statement of the main results. —

1.2.1. Carleman estimate. — The Carleman estimate we prove concerns an augmented
elliptic operator: we introduce an additional coordinate, 29 € (0, Xo) C R, so that (zg,x) €
(0, Xo) x Q. This variable xp was introduced in [19]; there it allowed to obtain the null-
controllability of the heat equation. This approach was followed in several works [21, 10,
15]. It was also used to prove stabilization properties of the wave equation [18, 20].
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We consider the n + 1-dimensional partially determined elliptic problem
(1.11)
—92 w— A+ Vow + bw = f in (0, Xg) x (94 UQy),
—02, w* — Acsw® + Viw® + b*w®
= 5 ((c0yw)|(0.x0)x 52 = (€Oy0)|(0,x0)x5, +6°) in (0, Xp) x S,
W)(0,X0)xS1 = w® 4+ 60" and W|(0,X0)x Sy = w® + 62 in (O,Xo) x S.

Note that we add lower-order terms to the elliptic operators here: V, (resp. V) denotes
any smooth vector field on Q1 U Qo (resp. S) and b (resp. b°) are some bounded functions
on Q1 U (resp. S). Moreover, we include source terms 67, j = 1,2, 6 at the interface
through the transmission conditions. This system is not fully determined as we do not
prescribe any boundary condition on {0} x Q and {Xy} x Q.

In Section 3, we introduce a small neighborhood V; of S in 2, where we can use coor-
dinates of the form (y,z,) with y € S and z,, € [-2¢,2¢]. We then set M = (0, Xy) x V.
and M; = Mn ((0,Xo) x ), j=1,2.

For a properly chosen weight function ¢ (see Section 3.1), for some 0 < ap < Xo/2,
and a cut-off function ¢ = ((x,) € €°([0,2¢)), with ( = 1 on [0,¢), one can prove the
following theorem.

Theorem 1.2. — For all §g > 0, there exist C' > 0, and hg > 0 such that

(1.12)  hl[e?hw|)3 4 h3)|e?/"V 4y w2 + h 1212 |e?/Mwyg, |8 + h? '212 1€/ 2,20}, I3
=4 =14
< C (R fian, I3 + B4 e/ fian, I3 + h2521Ce?™ fian, I3
52
+ hle?MONE + (h+ ) [PM0%[ + 1P| Vg 50" ] + B e Vg 5075 + h3|e%0/h.98|3),

for all 0 < 6 < 8, 0 < h < hg, for (w,0',02,0%, f) satisfying (1.11), wypy, € € (M;),
and w* € € ((0, Xo) x S) with

supp(w) C (ap, Xo — ap) X S x (—2¢,2¢), supp(w?®) C (ap, Xo — ) x S.

Here Vygz = (920, Vg)ts Vag.s = (Ony, V) and |.]jo, |.Jo are L?*-norms on M and
(0, Xp) x S respectively. The weight function ¢ will be chosen increasing when crossing S
from M; to May, which corresponds to an observation on the side (0, X() x 2. Observe
the non symmetric form of the r.h.s. of the estimate above. This originates from our choice
of observing the solution w in (0, Xy) x Qa.

This type of Carleman estimate is well known away from the interface S (see [7], and
[19] for an estimate at the Dirichlet boundary 0).

Remark 1.3. — The additional variable x( is used here to obtain the spectral inequality
of Theorem 1.5 below. The same Carleman inequality holds for the operator As.

Following [15] we shall introduce microlocal regions that are defined on the whole (cotan-
gent bundle of) S. For each region we shall obtain a partial Carleman estimate. The
different estimates can then be patched together to yield (1.12).

1.2.2. Interpolation inequality. — With the Carleman estimate of Theorem 1.2 we can de-
duce an interpolation inequality of the form of that introduced in [19]. Let o € [0, X(/2),
we set K (a1) = L?((on, Xo — a1); 1Y) with also K§ = K2(0), and the following Sobolev
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spaces
Ki(ar) = L*((a1, Xo — an); H5) N H'((en, Xo — an); HY), K = K3(0),
and
K3 = L2((0, Xo); D(As5)) N H((0,X0);H§) N H?((0, X0); H3).

Theorem 1.4. — For all 69 > 0, there exist C > 0 and vy € (0,1) such that for all
d € (0,00) we have

Yo

(1.13) 101l o) < C”U”zlc_;”()(H (- 02 + A@UHICg + ||(9x0u(0,a:)HL2(w)> ,
for all U = (u,u®) € K3 with Ujgg—o = 0 in Q1 U Qy.

An important consequence of this interpolation inequality is the spectral inequality that
we present in the next section.

1.2.3. Spectral inequality and null-controllability result. — From the above interpolation
inequality we deduce a spectral inequality for the elliptic operator As defined in (1.8). We
consider & ; = (es ;, ef;,j), 7 € N, a Hilbert basis of ”Hg composed of eigenfunctions of the
operator As associated with the nonnegative eigenvalues us; € R, j € N, sorted in an
increasing sequence (see Proposition 2.2).

Theorem 1.5. — For 6y > 0, there exists C > 0 such that for all 0 < § < §y and u € R,
we have

(1.14) 1Zlle < CeVEl2ll 2y, Z = (2,2°) € span{&s nsy < 1}

Following [19], this estimation then yields a construction of the control function wus(t, z)
n (1.4), by sequentially acting on a finite yet increasing number of eigenspaces, and we
hence obtain the following d-uniform controllability theorem. The proof can adapted to
those in [19] or [21, Section 5, Proposition 2| and the uniformity w.r.t. the parameter
d > 0 comes naturally. We refer also to [13] for an exposition of the method and to
[23, 17, 24, 25] for further developments.

Theorem 1.6. — Let 6y > 0. For an arbitrary time T > 0 and an arbitrary nonempty
open subset w C § there exists C > 0 such that: for all initial conditions Zy = (20, 2) € HY
and all 0 < § < &, there exists us € L*((0,T) x w) such that the solution (z,z°) of (1.4)
satisfies (z(T),z°(T)) = (0,0) and moreover

[usl £2((0,1)xw) < CllZoll3gg-

An important feature of this result is that the control is uniformly bounded as § — 0,
so that we can extract a subsequence us weakly convergent in L?((0,7) x w). Below,
Corollary 2.4 states that the associated solution of Problem (1.4) converges towards a
controlled solution of Problem (1.10). For this last control problem (previously treated
in [15]), we hence construct a control function which is robust with respect to small viscous
perturbations in the interface.

1.3. Notation: semi-classical operators and geometrical setting. —
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1.3.1. Semi-classical operators on R®. — We shall use of the notation (n) := (1 + |77]2)%
We denote by S™(R? x R?), S™ for short, the space of smooth functions symbols a(z, ¢, h)
and we define ¥ as the space of the associated semi-classical operators A = Op(a), for
a € S™, formally defined by

Au(z) = (2rh)~ [ E0 Pa (2, ¢ h) u(t) dt d¢, we . (RY).

We shall denote the principal symbol a,, by 0(A). In the main text the variable z will be
(g, z) € R" and ¢ = (&, €) € R**L. In particular we set

D = ﬁ,a, and we have o(D) =¢.
i

We introduce Sobolev spaces on R? and Sobolev norms which are adapted to the
scaling parameter h. The natural norm on L?(R?) is written as ull L2ray = llullo =

(f Ju(x)|? dx)% Let r € R; we then set
[ullr = l[ull r®ay = [A"ullo,  with A" := Op((£)")
and
HRY = {u € F'RY; [lul, < oo},

The space " (R?) is algebraically equal to the classical Sobolev space H"(R%). For a
fixed value of h, the norm ||.||, is equivalent to the classical Sobolev norm that we write
|| g7+ (may- However, these norms are not uniformly equivalent as h goes to 0.

1.3.2. Tangential semi-classical operators on R%, d > 2. — We set z = (¢/,2q), 2/ =
(#1,..,24-1) and ¢ = ({1, .., Ca—1) accordingly. We denote by SF(R? x R*1), ST for
short, the space of smooth functions b(z,(’,h), defined for h € (0, ho] for some hg > 0,
that satisfy the following property: for all o, § multi-indices, there exists C, g > 0, such
that

020Lb(2,¢' )| < Cap(¢V™ P, zeRY ¢ €R™L, he (0, hl.

We define U as the space of tangential semi-classical operators B = Op(b), for b € ST,
formally defined by

Bu(z) = (2rh) =D X (2 ¢ RY u(t zg) dt’ dC, u e S (RY).

In the main text the variable z will be (xg,2',7,) € R"! and ¢! = (£,¢) € R*. We
shall also denote the principal symbol by, by o(B). We shall denote by A3 the tangential
pseudo-differential operator whose symbol is (¢’)*.

For function defined on z4 = 0 or restricted to zg = 0, following [19, 20], we shall
denote by (.,.), the inner product, i.e., (f,g), := [/ f(2')g(z") dz’. The induced norm is
denoted by |.|o, i.e., | I3 = (f, f)o- For r € R we introduce

(1.15) |f

1.3.3. Local charts, pullbacks, and Sobolev norms. — The submanifold S is of dimension
n — 1 and is furnished with a finite atlas (U, ¢;), j € J. The maps ¢; : U; — U; C R*!
is a smooth diffecomorphism. If U; N Uy, # ) we also set

¢ik: 95U NU) C Uj = ¢u(Uj N UR) C Uy,

Yy drod; (y).

S (Ri-1) = |flr = |A5*f\0-
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We shall use semi-classical Sobolev norms over the manifold S together with a finite
atlas (Uj, ¢;);, ¢j : U; — R"™1, and a partition of unity (¢/;); subordinated to this covering
of S:

Y; € €F(S), supp(y;) CU;, 0<¢; <1, > ;=1
J

We then set:
(1.16) [ul sr(s) = Z [(65) Yyl e rn-1y.-
1.3.3.1. Norms in codimension 1. — For a function u defined on (0, Xo) x R"~! we set
2 9 0o
lulo = |ulr2(0,x0)xmn-1),  [ulf = [Daouly + / |ul 1 (gn—1y dezo.

For a function u defined on (0, Xo) x S, we set

j
where ¢; stands for Id ®¢;.
1.3.3.2. Norms in all dimensions. — For a function u defined on (0, Xg) x R"~! x R we
set
2 g, NP 2 2
fulo = ellqousoyznxzys Nl = [1Dugulld + 1 s sy doo dan + 1D, ul,

Note that the latter norm is equivalent to [ul| 1 (rxrn-1xr) if moreover the function u is
compactly supported in the xy variable. For a function u defined on (0, Xy) x S x R, we
set

(118) lulle = S 1(67Y) Gyulles £=0,1,
J

where ¢; stands for Id ®¢; @ Id.

1.3.3.3. Tangential semi-classical operators on a manifold. — We can define tangential
semi-classical operators on a manifold by means of local representations. This relies on
the change of variables formula for semi-classical operators in R?. In Section 3.6 below
we introduce a particular class of tangential operators that will allow us to separate the
analysis into microlocal regions.

2. Well-posedness and asymptotic behavior

We introduce a more general operator
AsZ = ( —Acz—i-Vlaz—i-bz >
A Vi B2 — F((e0)2)ys, — (D)) )
with domain D(Ay)
field a(x)V, (resp. a

= D(As) (see (1.9)), where V, (resp. V;) denotes a smooth vector
5(x)V?®), and b (resp. b®) is a bounded function.

Proposition 2.1. — Let a,b,a°,b° be bounded coefficients. Then, the operator
(—As, D(As)) generates a €°-semigroup on 7-[?;. If moreover a = 0, a®* = 0 and
b,b° € R, then As is self-adjoint on 'Hg.

Proposition 2.2. — There exists a Hilbert basis of 'Hg formed of eigenfunctions &; =
(esjr€5;), J € N, of the self-adjoint operator As (given in (1.8)) associated with the
ergenvalues 0 < pso < ps1 < - < s <
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Note that if €2 is a manifold with no boundary then 0 is an eigenfunction for As. If 2 has
a boundary, the Dirichlet boundary condition that we prescribe yield the first eigenvalue
to be positive.

Now, we discuss, for some A > 0 (one can take A = 0 if 9Q # () the convergence
properties of the solution Zs = (z5, z§) of

Orzs — Doz + Azs = fs in (0, T) x Q1 U Qo,
2y — Neszf + Azf = % ((cOyzs)s, — (cOpzs)is,) + f5 in (0,T) x S,
(2.1) 25|15, = 2§ = 25|S, in (0,7) x S,
25190 = 0 in (0,7),
Zs|t=0 = 20 and Zg\tzo = 23,

towards the solution z of

Oz—Acz+Xz=Hf in (0,7) x Q7 UQo,
(2.2) i3, = 2|5, and (cIyz)|s, = (cOyz)|s, 1in (0,T) x S,
' zj90 =0 in (0,7),
Zjy—0 = 20 in Q.

Proposition 2.8. — Suppose that HFJHLQ(O,T;Hg) < C wuniformly in §, that fs — f in
L2((0,T) x Q3 UQs) as 6 — 0 and that zg € HY(Q) and z§ € HY(S). Then, we have,
z5)0; — Zjg; in L2(0,T; H2(Q;)) N HY(0,T; L*(£Y)) and *-weak in L°°(0,T; H'(Q;)), and
there exists C' > 0 such that for all t € [0, T, ||zs)0, ()| g1(q,) < C" for j =1,2.

As a consequence, we can obtain a convergence result for the control problem under
view. We denote by ugs the control function given by Theorem 1.6, that satisfies

0 Zs + AsZs = Bug
Zs|t=0 = Zo
Zsjt=r = 0.

According to Theorem 1.6, us is uniformly bounded in L?((0,T) x w), so that we can
extract a subsequence (also denoted by w;s) weakly converging in this space towards u. We
also consider the solution Zs = (Zs, Z5) of

3t25 + A(;Z(; = Bu
2.3 ~
23) { Zs|t=0 = Zo-

The following result is a consequence of Proposition 2.3.

Corollary 2.4. — As d — 0, the limit u is a null-control function for the limit system
(1.10). Moreover, (Z5 — 25>|Qj — 0 in L*(0,T; H*(Q;)) N HY(0,T; L*(Y)) and x-weak
in L>=(0,T; H(S))), and there exists C > 0 such that for all t € [0,T], 12510, (t) —
Zsjo; (Dl a1,y < C forj=1,2.

In particular, we have Z5(T) — 0 in H'(Q). This shows that the limit u is a control func-
tion for the limit system (1.10) which is robust with respect to small viscous perturbations.
Indeed, it realizes an approximate control for System (2.3).
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3. Local setting in a neighborhood of the interface

In a sufficiently small neighborhood of S, say V., we place ourselves in normal geodesic
coordinates (w.r.t. to the spatial variables ). More precisely (see [8, Appendix C.5]) for
¢ sufficiently small, there exists a diffeomorphism

F:S x[-2¢2] =V
(Y, xn) = F(y, zn),

so that the differential operator —(930 — A, + V, takes the form on both sides of the
interface:

_89%0 - c(y, w”) (892371, - RQ(y’ xn)) + R (y7 ‘TTL)’
and the differential operator —92, — A% 4 V3 takes the form on the interface
—0%, + *(y)Ra(y, 20 = 0) + Ri(y),

where Ry(y,zy) is a x,-family of second-order elliptic differential operators on S, i.e., a
tangential operator, with principal symbol r(y, xn,n), n € T,/(S), that satisfies

(3.1) r(y,xn,n) €R, and  Cilnl < r(y,zn,n) < Colnl;,

for some 0 < Cy < Cy < oo, and Ry (y, x,) is a first-order operator on S x ([—25, 0)u(0, 26])
(involving partial derivatives in all variables and having a jump across S x {0}), R;(y) is
a first-order operator on S.

By abuse of notation we shall write V. in place of S x [—2¢, 2¢|. In this setting, we have

Vo =F(S x [-26,0) =VonQy, ViF=F(S x (0,2]) = Vo Ny,

and we recall that the observation region w is in .
In the sequel, we shall often write

x:=(y,zn), and x:= (xg,x)= (20,y,2n) € [0, Xo] x S X [-2¢,2¢].
We set
1 2 2 1 s 1 2 1 s
P=l2 (2~ Ro(e) + LRi(@), P =02 4 Balyan = 0) 4 LRI,

In this framework, in the neighborhood V. of S, System (1.11) becomes
(3.2)

Pw=F, in (0,Xo) x S x ([~2¢,0) U (0, 2¢]),
Pow® = Ci(s((caxnw)‘xnzo-‘— - (Caxnw)\xn=0— + 68) in (0, Xp) x S,
W)g, —o- = W + 6! and Wiz, =0+ = W + 02, in (0, Xo) x S,
with
1
(3.3) F= Ef + Row, ©°=6°+ IRjw®,

where Ry and R§ are zero-order operators with bounded coefficients on .S'x ([—25, 0) U (0, 26])
and S respectively.
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3.1. Properties of the weight functions. — We denote by 7(x,n,7n’) the symmetric
bilinear form associated with the quadratic principal symbol r(z,n). We introduce the
following symmetric bilinear form

- 1 ~
(34) 5(%50777756777/) = @605{) +T($,T],771)
and the associated positive definite ‘quadratic form B(z;&p,n). We choose a positive
bounded continuous function () in VZ" such that

(3:5) By, —xn;0,n) — 1Y, @) B(Ys 23 €0, ) = Cl(&0,m)[> >0, (&0,m) € R X T, (),
for x = (y,xn) € V&'

We then choose a function ¢ = ¢(x) on [0, Xo] x V. that is smooth on both sides of the
interface and simply continuous across the interface, that moreover satisfies the following
properties.

1. For a function 4/ such that 0 < v/(z) < v(z) — € in VT, for some € > 0, we have

(36) 7/(y7 xn)(axngo)Q(xo, Y, xn) - <a$n(p)2(x07 Y, _xn) >C > 0,

for zg € [0, Xo], and = = (y,x,) € V.'.
2. For a given value of v > 0 sufficiently small we have

(3.7) 102, p(x)] + [V p(x)]4 < I/i%f 0, 01,  x = (z0,7) € [0, Xo] x V-
3. We have
(3.8) 000 + [VP0lg + |0z, 0] >0

in [0, Xo] x Vz and Hormander’s sub-ellipticity condition is satisfied on both sides of
the interface. This condition will be precisely stated below after the introduction of
the conjugated operator (see (3.13)).

Note that we have infy + [0;, ¢ > C > 0.

The first condition states the increase in the normal slope of the weight function when
crossing the interface. We thus ask the weight function to be relatively flat in the tangent
directions to the interface as compared to its variations in the normal direction. We explain
below how a weight function satisfying the sub-ellipticity condition can be built through
a convexification procedure (see Remark 3.3).

Remark 3.1. — Property (3.6) and |05, + |V*¢lg + [02,¢| > 0 can be obtained by
choosing ¢ such that (9z,¢)|j0,x,)xs = C > 0 and assuming that (3.6) only holds on
[0, Xo] x S and then shrinking the neighborhood V. by choosing ¢ sufficiently small.

Remark 3.2. — Note that the conditions we impose on the weight function are proven
sharp in [14] in the limiting case § — 0. If (3.6) is not satisfied, i.e., the increase in the
normal slope of the weight function is chosen too small, one can then build a quasi-mode
that concentrates at the interface and shows that the Carleman estimate cannot hold.

3.2. A system formulation. — Following [1, 15], we shall consider (3.2) as a system of
two equations coupled at the boundary z,, = 0. Here, the coupling involves a tangential
second-order elliptic operator. In [0, X¢] x S x [—2¢,0), we make the change of variables
T, to —x,. For a function 1 defined in V., we set

W(y,l’n) = w(yvxn) and T/)l(y,&“n) = 1/1(?4, —IL’n), for x, >0,
XVII-10
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and similarly for symbols and operators, e.g.,

Tr(y’ xn’ 77) = r(y’ $n7 ,,7) and Tl(y’ xn’ 77) = r(y’ _In’ 77)’ fOr $n 2 O'
We set VI = S x (0,2¢]. System (3.2) then takes the form

Phy'h = F'h, in (0, Xg) x VT,
(3.9) Piw® = 25 ((¢" 0" gm0+ + (10, wh) o+ +O%) in (0, Xp) x S,
w! o = w4+ 0% in (0, Xg) x S.
3.3. Conjugation by the weight function. — We now consider the weight functions

@/t built up as above from the continuous function ¢ defined on V.. We introduce the
following conjugated differential operators

p;/z — h2e<P7/l/hPr/le—<P7/l/h7 P = B2ePis/h pso—eis/h
With the functions
W = e s = gfis/hyys,
F;/z — h26¢71/hp71’ oF = —ihe?Is/h@s, GZZ = ePIs/hg'h,

with 0 < h < hg, System (3.9) can be rewritten as

P;/’v% F7’ in (0, Xo) x VT,
Psv® = 2 ("(Dy,, + 10x, 0" -~
+c(Dg,, + 10y, ")) U+ T @fp) in (0, Xp) x S,
ol e =t + 0] in (0, Xg) x S.

Recall that D = hd/i here. We shall consider the operators P;/l and P7 as semi-classical
differential operators.
We separate the self- and anti-adjoint parts of the operators Pcp/’, viz.,

~ T 1 T TN % A" Y Ty
= SR B, QY = (Pl - Py,

The (semi-classical) principal symbols §; of Qj, j =1,2 are then

q;/l (Xv 507 mn, gn) = SEL + q;l (X7 gOa n)a
(i/l (Xa &-07 mn, én) = 2§naxn SOT/Z + 2(111 (Xa 607 T]),
for (y,n) € T*(S), with

81' 7/l 2 T T T
/o) = B oGy — (P2 4 e a6 1 (0,07)

/l(X £0,1) = 506907090

A (w5, dy™).

Recall that 77 (z,m,n") stands for the symmetric bilinear form associated with the
quadratic principal symbol 77 (z, 7). The principal symbol of PJZ is naturally

(3.11) /l = q2 —|—zq = €2 4 2i€,0,, 0" + q/l + 2zq/l

For the sake of concision we have at places omitted some of the variable dependencies, e.g.
writing ¢ in place of 7 (x).
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Note also that the symbol of P7 is given by

8 o)
R (C )

Tn,=0

(3.12) + 24 (502%30 + 7 (x5 m, dy@|xn=0)) )

xnzo‘

(Recall that 7! and 7" (resp. ¢! and ¢") coincide at z,, = 07.)
After the introduction of the conjugated operator we can introduce the sub-ellipticity
property satisfied by the weight function:

(3.13) Vx € [0, Xo] x V¥, (€0,7m.6n) € R x T} (S) x R,

PL(x, €0, 60) = 0 = {30 ] H(x, 0,1, €0) > 0.

The sub-ellipticity property (3.13) is necessary for the derivation of the Carleman estimate
and is geometrically invariant (see e.g. [7, Section 8.1, page 186], see also [13]).

Remark 3.3. — A weight function ¢ that satisfies the properties of Section 3.1 can be
obtained in the following classical way. Choose a continuous function v, smooth on both
sides of S, such that ¢ satisfies conditions (3.6)~(3.8). These conditions are then also
satisfied by ¢ = e, A > 1. For the parameter \ sufficiently large ¢ will also fulfill
the sub-ellipticity condition (see e.g. Lemma 3 in [19, Section 3.B|, Theorem 8.6.3 in [7,
Chapter 8], or Proposition 28.3.3 in [9, Chapter 28]).

3.4. Phase-space regions. — Following [20, 15] we introduce the following quantity

(q717l (X, 507 77)) 2
(9a, )

and the following sets in the (tangential) phase space:

(3.14) (%, €0,m) = ag (x, 0,77) +

(3.15)

El*® = {(20,y, xn; &0,m) € [0, X0] x S x [0,2¢] x R x Ty(S); u” (w0, y, xni &0, m) 2 0},
(3.16)

2 = {(z0,y, zn; &0, 1) € [0, X0] x S x [0,2¢] x R x TJ(S)§/~L%(x07y7xn§§0777) = 0}.

The analysis we carry on will make precise the behavior of the roots of le (viewing pzl
as a second-order polynomial in the variable &, see (3.11)) as (x,&p,n) varies.

The assumption we have formulated yields the following key property.

Proposition 3.4. — There exists Cy > 0 such that in the neighborhood V. we have

(:U’l _7($)MT) (x,80,m) > C0<(£0’77)>2 >0, x=(20,2) = (20,Y,%n), (§0,m) € RX TJ(S)

In particular, E™t U Z" C Ebt.
Proposition 3.5. — With the properties of the weight function of Section 3.1 we have
Char(p,) C Char(RepS) C (E"™ N {z, = 0}).
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‘ . u = e l p=—2e =0 u=2e;
0 Char(P;) u =0 ou =26 Fpt=—61 0 opum =€ 1
|
e e e -
Z! ! ! ! A ! v
| b [ T — .
% | F L &

—_3 — —_3
- -

FIGURE 1. Sketch of the relative localization of the different phase-space regions.
Here v represents the norm of the tangential frequencies.

3.5. Root properties. — The following lemma describes the position of the roots of
pé’ of (3.11) viewed as a second-order polynomial in &,.

Lemma 3.6. — We have the following root properties.

1. In the region E7vF, the polynomial pi defined in (3.11) has two distinct roots that
satisfy Tm p’ot > 0 and Im p%’_ < 0. Moreover we have

,u% >C>0 < Imp7”+ >C" >0 and Imp%’_ < -C'<0,

2. In the region E"v~, the imaginary parts of the two roots have the same sign as that
of =0y, 0.
3. In the region Z't, one of the roots is real.
Moreover, there exist C > 0 and H > 0 such that |p/vt — p7o=| > | Tm p/tt — Im p7—| >
C > 0 in the region {u > —H}.

Remark 3.7. — Note that (x,&,n) € E7F for |&| + ||, sufficiently large, say |€o| +

Inly > R, uniformly in x € [0, Xo] x V7 and for h bounded. Note also that in the region
{uh > —H}, the roots p’vF are smooth since they do not cross.

3.6. Microlocalisation operators. — We call
M, =(0,Xp) x S x [0, 2¢].

We also set
M = {(:po,y, Zn,&0,m) € (0, Xp) X S x [0,2e] x R x Ty*(S)} ~ T*((0,Xp) x S) x [0, 2¢].

We define the following open sets in (tangential) phase-space:
& ={(x,&,n) € M%; e1 < p"(x,&0,1)},
Z ={(x,&,n) € M%; =261 < p"(x,&0,n) < 2€1 },
F ={(x,&,n) € M%; e < pl(x,&0,7), and p"(x,&0,n) < —€1},
¢ = {(va(]an) S M*-}—a Ml(xag()?n) < 262}-
The constants €; and ez are taken such that sup(y)e; + €2 < Cp/2, with Cj as in Proposi-
tion 3.4. Our analysis in the region 2 will require €; to be small (see Section 4.3 below).
Recall that v is defined in Section 3.1. This yields 4N % = (). As a consequence of Propo-
sitions 3.4 and 3.5, the localization of the different microlocal zones can be represented as
in Figure 1. In particular, we have Char(p},) C (¢ \ #) N {z,, = 0}.

With the open covering of M* by &, 2, % and ¢ we introduce a ¢ partition of
unity,

(3.17)

X(§+X@()+X5’Z+Xg:17 0§X0S17 Supp(XO)C.a .:gv‘gdﬂo%\)g‘

The sets 27, .7 and ¢ are relatively compact which gives x#, x.#, xy € S;7°(M}) =
MNinso S~ ™(M?) and consequently x,s € S9-(M?). Associated with these symbols we now
define tangential pseudo-differential operators on M.
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Given 0 < ag < Xo/2, we choose a function ¢! € €>°(0, Xo) that satisfies (* =1 on a
neighborhood of (g, Xo — ap) and 0 < ¢! < 1. Setting

gives a partition of unity on (ag, Xo — ag) x S x [0, 2¢]. Recall that (v;);es is a partition
of unity on S (see Section 1.3.3).
We define the following operators on M:
(3.19) Z, = ;]5.,]., with Ze; =65 0pr(xes)(¢;') Gy €T, o=6,2,7.9,
je
where qﬁj denotes the pullback by the function ¢; and

(3.20) Xe,j = C~j (d);l)*X.,
and (; dlen:)tes a function in €2°((0, Xp) x U;) with ¢; = 1 in a neighborhood of
supp((651)7¢))-

The operators =, are zero-order tangential semi-classical operators on M, with prin-
cipal symbol ¢!(20)xe(X, &0, 7).

Remark 3.8. — The role of the parameter ag introduced here is to avoid considering
boundary problems on ({0} U {Xp}) x S x [0, 2¢].

4. Proof of the Carleman estimate in a neighborhood of the interface

In this section, we prove Carleman estimates in the four microlocal regions described
above, that is, for functions 407, with v € €2°((0, X¢) xSx[0,2¢)) and @ = &, &, .7, 9.
Two main technics can be used to obtained these microlocal estimates: Calderon projectors
and the standard Carleman method. The first one exploits ellipticity; one has to be away
from the characterisitic set of the conjugated operator; there is no loss of derivative in
such estimate which can be observed in the powers of the semi-classical parameter h. The
second one is based on the computation of an L? norm and uses a sub-ellipticity argument;
it can be used in the neighborhood of the characterisitic set of the conjugated operator;
there is a loss of derivative there which shows in the the powers of the semi-classical
parameter h.

4.1. Estimate in the region 4. — We introduce a microlocal cut-off function ygz €
C (M), 0 < xgz < 1, satisfying

X¢7 = 1 on a neighborhood of supp(x«),

X¢ + x# = 1 on a neighborhood of supp(x«z).

We choose (2 € €>°(0, Xo) such that 0 < ¢? < 1, ¢2 = 1 on a neighborhood of supp(¢!)
(with ¢* defined in (3.18)), and such that ¢; = 1 on supp((gﬁj_l)*g?) where Cf(:zo,y) =
C2(z0)1;(y). As in (3.20) we set

(4.1)

T
xg7. = C(6; ") xu7,
and we define the associated tangential pseudo-differential operator =z by
—_ —_ . —_ 1\ * .
Eyr = Y. Byzj, with Egz ;= ¢5Opr(xes;)(6;') ¢, je,
JjEJ
Note that the local symbol of Z44 in each chart is equal to one in the support of that of

—

-
.

We recall that the function ¢ = ((z,) € €°([0, 2¢)) satisfies ((0) = 1 on [0, €).
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Making use of the Calderén projector technique for P, and of the standard Carleman

techniques for pr we obtain the following partial estimate.

3
Proposition 4.1. — Suppose that the weight function @ satisfies the properties listed
in Section 8.1. Then, for all 69 > 0, there exist C > 0 and hg > 0 such that, for all
0<6<dyand0 < h < hg, v € €((0,X0) x S x[0,2¢)) and v° € €2((0,Xo) x S)
satisfying (3.10), we have

(4.2)
IE4v" |1} + hIZgv], _o+ [T + D, Egv], o+ 15
< C(IP5v" I3 + K207 + B D, oy, o+ )

and

(4.3)
hHEfW-’lH% + h|E€¢U|lxn:0+|% + h|DwnE€¢U|lwn:0+ ’(2)

52
< C(1+ 13) (ICPLTIR + W20 I} 4+ 141D, oo} + W10 7+ 1210 )

(52 T T S
+ O (IR 4+ B2 + bl + 16315 + Rl + hlOLJF).

Note the difference in the powers of the semi-classical parameter A in the term ||Z4v"||;
and ||ZE4v!||; in the Lh.s. of these estimates: there is no loss of derivative in (4.2) and a
half derivative is lost in (4.3). The factor (1 4+ ¢/h) in the r.h.s. of (4.3) is important: it
originates from the non-ellipticity of the operator P} on the interface in the region ¢ (see
figure 1).

4.2. Estimate in the region .#. — Making use of the Calderén projector technique

1A
for both P;yj and P

PRTRLS obtain the following partial estimate.

Proposition 4.2. — Suppose that the weight function ¢ satisfies the properties listed
in Section 3.1. Then, for all 69 > 0, there exist C > 0 and hg > 0 such that, for all
0<6<dyand0 < h < hg, v/ € €°((0,X0) x S x[0,2)) and v* € €2((0,Xy) x S)
satisfying (3.10), we have

(44)  |E#0"IF + BIEzf, _o+ [} + hIDe, Bzl o+ 5
< C(IP5v I3 + W20 + ¥ D, o]y, o+ )
and
(45) 1=z} + hlEsv],, o+ [ + Al Da, By, —o+[d
< C(Hprle% + B2 |1} + kY Dy, v, o413 + 1 P50
+ W2+ 1D of, g3+ HIOLIE + BIOIR).
4.3. Estimate in the region 2. — As a consequence of property (3.6) of the weight

function and the compactness of [0, Xg] x S x [0,2¢], we remark that in the region %,
there exists K1 > 0 such that

(4.6) (8%(,07")2 — p" > min (8xngor)2 -2 > K1 >0
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for €; sufficiently small (the constant €; is used in the definition of the microlocal regions
in (3.17)).
Making use of the Calderén projector technique for Pé)’j, and standard techniques to

prove Carleman estimates for P, we obtain the following partial estimate.

Proposition 4.3. — Suppose that the weight function @ satisfies the properties listed
in Section 8.1. Then, for all 69 > 0, there exist C > 0 and hg > 0 such that, for all
0<6<d and 0 < h < hg, v € €((0,Xp) x S x [0,2¢)) and v° € €2((0,Xo) x S)
satisfying (3.10), we have

(4.7)

2

_ )
h||Ezv ||% + h(l + 72

< C(HHZ“II% + R0 + RS2 + B} + PG + B2 ([T + AY Do, vy, o+ I3

62 T T S
+ 0L+ bl + IO+ hlO3R ).

and
(4.8)
IE20"F + h’E&“’U\lxn:mﬁ + h‘Danfé"fonzm 3
< C(llpivlllg + 2 + 1| Do, vfy, o |3+ PP10*[F + (pffhg(HP;UTllg +h|lv"7)
h3
R+ RO + 57 5lO317)-

Transmission conditions are important in the derivation of this microlocal estimate;
information is transported from the '’ side to the ’r’ side through such conditions; in the
proof, a quadratic form is estimated at the interface, positivity is obtained thanks to the
tranmission conditions; this explains the factor (1 + 62/h?) in (4.7).

4.4. Estimate in the region &. — Using in this region the ellipticity of P}, and

the Calderén projector technique for both P and P! ., we obtain the following partial

».J
estimate.

Proposition 4.4. — Suppose that the weight function @ satisfies the properties listed
in Section 8.1. Then, for all ég > 0, there exist C > 0 and hg > 0 such that, for all
0<6<dyand0 < h < hg, v € €((0,X0) x S x[0,2)) and v* € €2((0,Xo) x S)
satisfying (3.10), we have
(4.9)
|20 13 + hIZsv] o i+ BID2Zsv] 3

< C(IIPZ;UTH% + R3[|} + B D, 0l o+ 1§ + PG + B2 + WY Day v, o+ 13

+ BN* R+ RO + Bl + hl6L ).

4.5. A semi-global Carleman estimate: proof of Theorem 1.2. — In this section,
we explain how we can patch together the four microlocal estimate of Propositions 4.1,

4.2, 4.3 and 4.4, to obtain a global Carleman estimate in a neighborhood of S, and prove
Theorem 1.2.
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First, let us introduce some notation. We set
BT(w) := hlw, —o+ [ + 7| D, w}a, =0+ |5,
RHS" (w) := || PLw|[§ + h*|[wl} + h*| D, wya,—o+ 3,
Ry == h|O3[§ + h|OL]T + hl6L 3.

This allows us to formulate concisely the four microlocal estimates of Propositions 4.1,
4.2, 4.3 and 4.4.

(4.10) |E40")12 + BT(E40") S RES"(v7),
52
(4.11) hl|Eg0'| +eBT(E0') S (1+ 1) (ICPL I3 + | Dol oo} + b )
= 5°
+eRHS'(v)) +|e(h® + %) Bz |I7 ] + | eh(h® + 6°)[v°[} |+ eRy + e |03 5,

(4.12) IE#0"|F + BT(Ez0") < RHS"(v"),
(4.13) |224Y? + BT (E2v!) < RHS! (v!) + RHS" (") + Ry,
(4.14)

—_ r — r r(,T 52 r
eh||Z24v"||? +e BT(E2v") < e RHS" (v7) 4+ RHS! (v)) +| eh(h? + 62)|v* |2 +sg19¢13+g}%@,

h2
(4.15) |22V |3 + BT(Exv!) < RHS () + R3|v[3 + e RHS" (v") + Ry,
(4.16) 2072 + BT(Egv”) < RHS!(v!) + RHS™(v") + h3[v®|? + Ry.

To derive the final Carleman estimate we need to sum together these microlocal estimate
and many terms in the r.h.s. need to be “absorbed” by those in the L.h.s.. This is a standard
procedure usually making use of the powers of the parameter i in front of these terms
and by choosing h sufficiently small. Note, however, that some powers of h are critical
here so that the related terms (in frames) in the right hand-sides cannot be “absorbed”
directly. To overcome this problem, we have multiplied the two concerned equations by a
small parameter £ > 0 whose value is independent of hA and §.

Note that these three atypical terms are the reason for the introduction of the microlocal
region .# (compare with the microlocal regions used in [15]). In fact, the microlocal region
Z acts as a buffer: as .% is an elliptic region for both the operators PZZ, it provides terms
in the L.h.s. of the associated microlocal estimates of better quality than those obtained in
the regions ¢ and Z (compare the powers of h in the L.h.s. terms of these estimates).

Observe that the property xe + x# + Xz + xo = 1 implies, see Section 3.6,

Egj+E7,+Ez;+Es;= (G20, 9)-

As a consequence of the definition of the operators Z,, @ = &, %, .%,¥, given in (3.19)-
(3.20), this yields

(4.17) Es+Ex +E5 + 29 = ¢ (20).
We now treat the three atypical terms and use the small parameter .
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As supp(v®) C (g, Xo — ag) X S (see the statement of Theorem 1.2 and Section 3.3),
with (4.17), and using the transmission conditions (3.10), we have

v® = (Wof = o0 + Egv® + Eg0° + By’

l l

= Eev — Eg@fp + Zpv — ng@fo + E{fvl — Ezrefp + Zgv” — Eggez;, at z, =0".

Hence, for § < ég and h < hg we can estimate the two atypical terms concerning v*
in (4.11) and (4.14) as

ehd?|v®? < eh|Zgv!|3 4 eh|Z 20! 3 + eh|220Y? + eh|24v"|? + eRy.

When summing all the estimates (4.10)-(4.16) together and taking e sufficiently small, the

four terms eh|Zgv! |2, eh|Z4v!|2, eh|Z70!|2, eh|Z4v"|? can be “absorbed” by the Lh.s. of
(4.16), (4.15), (4.13), and (4.10) respectively.
The remaining atypical term is in (4.11):

e(1? +")|Egsv" I} S elEasvT 3.

We choose a function ¢4 € €>°(0, Xo) such that ¢* = 1 on a neighborhood of (ag, Xo— ),
¢! =1 on a neighborhood of supp(¢*) and 0 < ¢* < 1. Since supp(v") C (g, Xo — ) X
S x [0,2¢), we have

(4.18) Eyrv" = Z4z(Eq + Ez)0" + Bz (1 — Zy —E5)CM".
The principal symbol of the operator Z¢z(1 — 2y — Z£)¢* is
xar (1= ¢Mxg +x2))¢ = Crar (1 - (xo +x2))¢H =0

since x¢+x.# = 1 onsupp(x«#) by (4.1). We thus have Z¢z(1-Z4—Z7)¢* € h\I/}l(MJr),
so that (4.18) gives

e(h? + 8%)|Egz0" |11 S ellZgv [ + ellExv7 (1T + eh?(lo" 2.

When summing all the estimates (4.10)-(4.16) together and taking e sufficiently small, the
two terms ¢||Z4v" |3, €]|Z#v"||? in this expression can be absorbed by the Lh.s. of (4.10)
and (4.12), respectively. This is possible since these two estimates are obtained in elliptic
regions yielding better powers in h.

Now, if we sum all the partial estimates (4.10)-(4.16), and handle the atypical terms as
explained above, we obtain

(4.19) IEgv" [ + BT (Egv") + hl|Zg0'[§ + BT(Z40')
+|E507 |} + BLEs0") + 50
+ BT(E#v!) 4 h||Z20"||3 + BT(Ez0")
+ 22|} + BT(E2v") + ||Esv” |} + BT(Eg0")
52
S RHS"(v") + RHS!(v)) + (1 + +3) ICPL" |I5 + R Jv° |3
52
+ B[ Dy vy, o+ 15+ Ro + 10515
Using supp(v”) C (g, Xo — ag) x S x [0,2¢) and (4.17), we can write
[ ]l < 12907 [ + 12207 1 + [[E2v™ |1 + [Ze0™ |1,
together with
|U\;/,in:0+‘l < |E%U|ﬁn:0+|1 + |E§U\ﬁnzo+‘1 + |Efv|ﬁn:0+|l + |E£U\ﬁn:0+|l»
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and

T

,
|Dmnv|{én:0+ o < |Dan{¢U/

T T T
‘;n:()‘l* \0+|Dzn:(rv‘ﬁn:0+ ’0+|Dzn:fv|ﬁn:0+ |0+\D%:gv|ﬁn:0+ lo-

These three inequalities together with (4.19) give

Bl |} + hjot oo B+ AIDe ot o 3

52
[, ! 4 !
SUPL IS + B0 IF + B D, e+ (14 53) ICPR0" 3 + 11 PR 3

52
+ [V + h?|Da, o], g+ l§ + B2 |0°[T + Ro + ﬁl%lg,
Taking 0 < h < hg with hg sufficiently small in this expression gives
Bl + hfolt oo+ AIDa, ot o3

< 0,02 7,72 52 77|12 62 7|2

S IPevllo + 1250715 + (1 + 5 5) ISPl + Ro + —-105[o.
Recalling the definitions of v/ = e‘p%/hw%, F;/l, GZZ, o5, (see Section 3.3 and Equa-
tion (3.3)), and observing that we have

R L G R (O

and similar inequalities for the norms at the interface {z, = 07}, we can “absorb” the
zero-order terms in (3.3), which concludes the proof of Theorem 1.2. O
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