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Discretization of Euler’s equations using optimal
transport: Cauchy and boundary value problems

Quentin Mérigot∗

Abstract
This note presents a numerical method based on optimal transport to

construct minimal geodesics along the group of volume preserving maps,
equipped with the L2 metric. As observed by Arnold, such geodesics solve
the Euler equations of inviscid incompressible fluids. The method relies on
the generalized polar decomposition of Brenier, numerically implemented
through semi-discrete optimal transport and it is robust enough to ex-
tract non-classical, multi-valued solutions of Euler’s equations predicted
by Brenier and Schnirelman [Mérigot and Mirebeau, SIAM J. Num. Anal.,
54(6), 2016]. In a second part, we explain how this approach also leads to
a numerical scheme able to approximate regular solutions to the Cauchy
problem for Euler’s equations [Gallouët and Mérigot, J. Found Comput
Math, 2017].

1 Introduction
The motion of an inviscid incompressible fluid, moving in a compact domain
Ω ⊂ Rd, is described by the Euler equations [Eul65]

{
∂tv + (v · ∇)v = −∇p
divv = 0,

(1)

coupled with the impervious boundary condition v ·n = 0 on ∂Ω. As noticed by
Arnold [Arn66], when expressed in Lagrangian coordinates, Euler’s equations
can be interpreted as the equation of geodesics in the infinite-dimensional group
of measure-preserving diffeomorphisms of Ω. To see this, consider the flow map
s : [0, T ]× Ω → Ω induced by the vector field v, that is d

dts(t, x) = v (t, s(t, x))
and s(0) = id. Euler’s equations (1) can therefore be reformulated as

d2

dt2
s(t) = −∇p(t, s(t, x)). (2)

Using d
dt det Ds(t, x) = div(v(t, x)) det Ds(t, x), the incompressibility constraint

div(v(t, x)) = 0 and the initial condition s(0) = id, one can check that s(t, ·)
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belongs to the set SDiff of diffeomorphisms of Ω with unit Jacobian. The pres-
sure term in the evolution equation in (2) expresses that the acceleration of s
should be orthogonal to the tangent plane to SDiff at s, where SDiff is regarded
as a submanifold of L2(Ω,Rd). Indeed, the tangent plane to SDiff at s(t) is
the set {v ◦ s(t) | div(v) = 0}, whose orthogonal is the space of gradients of
functions. The evolution equation in (2) expresses that d2

dt2 s(t) ⊥ Ts(t)SDiff ,
in other words that t 7→ s(t, ·) is a geodesic of SDiff. This formalism leads to
two natural problems:
• The standard Cauchy problem, forward in time: given the initial position

and velocity of the fluid particles, find their subsequent positions at all
positive times. This amounts to computing the exponential map on the
Lie group SDiff.

• The boundary value problem: given some observed initial and final posi-
tions of the fluid particles, find their intermediate states. This amounts
to computing a minimizing geodesic on SDiff.

Our purpose here is to show how Arnold’s geometric interpretation of Euler’s
equations, refined by Brenier with the help of optimal transport, naturally lead
to numerical schemes for both problems [MM16, GM17], improving on early
numerical experiments by Brenier [Bre89a].

2 Polar factorization and semi-discrete optimal
transport

In order to perform computations, the diffeomorphism s(t) ∈ SDiff will be
approximated by a piecewise constant map m(t). A piecewise constant map is
never a diffeomorphism and cannot be measure-preserving. One way to express
the incompressibility constraint is to use the geometry of the ambient space
L2(Ω,Rd) in which both SDiff and piecewise-constant maps embed. Our scheme
will make sure that the L2 distance between m(t) and SDiff remain small. Since
SDiff is not closed with respect to the L2 metric, we will use instead the larger
subset of measure preserving maps S.

Definition 2.1 (Measure-preserving maps). Let S be the set of measurable maps
σ : Ω → Rd sending the restriction of the Lebesgue measure on Ω (hence-
forth denoted Leb) to itself. The measure-preserving condition can be written as
σ#Leb = Leb, which reads Leb(σ−1(A)) = Leb(A) for all A ⊆ Rd measurable.
We also denote dS : m ∈ L2(Ω,Rd)→ R the distance function to S:

dS(m) := inf
σ∈S
‖m− σ‖L2(Ω,Rd).

The polar decomposition theorem of Brenier [Bre91] allows to compute the
distance to the set of measure-preserving maps explicitely.

Theorem 2.2 (Brenier). Any m ∈ L2(Ω,Rd) admits a projection on S. Given
any such projection σ, there exists φ : Ω → Rd convex such that m = ∇φ ◦ σ.

Quentin Mérigot

IV–2



Moreover,
d2
S(m) = ‖∇φ‖2L2(Ω,Rd)

This theorem can be reformulated in terms of optimal transport. The
Wasserstein distance between two probability measures µ and ν on Rd, where µ
is absolutely continuous with respect to Lebesgue, can be defined as

W2
2(µ, ν) = inf

T#µ=ν

∫
‖T (x)− x‖2dµ(x). (3)

The polar factorization theorem implies that d2
S(m) = W2

2(m#Leb,Leb) : com-
puting the distance to S amounts to solving an optimal transport problem.
Before explaining how to use the squared distance d2

S to approximate geodesics
in SDiff, we will first explain how to discretize the space M.

Finite-dimensional approximation In order to perform numerics, we re-
place the infinite-dimensional ambient space M = L2(Ω,Rd) by a finite-dimen-
sional space MN , where N ≥ 1. We fix a partition of Ω into N subdomains
(ωj)1≤j≤N with equal area and with diameter ≤ C(1/N)1/d. We then denote
MN the space of piecewise-constants functions over this partition:

MN = {m ∈ L2(Ω,Rd) | m|ωj
= cst}.

Computing d2
S(m) = W2(m#Leb,Leb)2 therefore amounts to the computa-

tion of the Wasserstein distance between the Lebesgue measure and the finitely
supported measure m#Leb. Such optimal transport problems are often called
semi-discrete, because only one measure is discretized, and they can be solved
efficiently relying on Kantorovich duality and tools from computational geom-
etry [AHA98, Mer11, dGBOD12, Lév14]. Let ν = m#Leb = 1

N

∑
y∈Y δy for

some set Y with cardinal N . Kantorovich duality asserts that

W 2
2 (Leb, ν) = sup

φ:Ω→R,ψ:Y→R
φ(x)−ψ(y)≤‖x−y‖2

∫

Ω

φ(x) dLeb(x)−
∫
ψ(y) dν(y).

For any fixed ψ : Y → R the largest function φ : Ω→ R obeying the constraint
is given by φ(x) := miny∈Y ‖x−y‖2−ψ(y). This function is piecewise quadratic
over a partition (Lagy(g))y∈Y of Ω into convex polyhedra

Lagy(ψ) :=
{
x ∈ Ω | ∀z ∈ Y, ‖x− y‖2 + ψ(y) ≤ ‖x− z‖2 + ψ(z)

}
.

Eliminating the optimization variable φ, Kantorovitch duality reads

W 2
2 (Leb, ν) = sup

ψ:Y→R

∑

y∈Y

∫

Lagy(ψ)

(‖x− y‖2 + ψ(y)) dx− 1

N

∑

y∈Y
ψ(y). (4)

This partition of Ω induced by (Lagy(ψ))y∈Y is called the Laguerre diagram of
(Y, ψ). It can be be computed in near-linear time in R2 using existing software
[cga]. The maximization problem (4) is an unconstrained, concave and twice
continuously differentiable maximization problem, which is efficiently solved via
Newton or quasi-Newton methods. Semi-discrete optimal transport has become
a reliable and efficient building block for PDE discretizations [BCMO14].
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Gradient of d2
S The numerical schemes will use the gradient of d2

S, so we
will say a few word about it. As the square of a distance, the function d2

S is
semi-concave, and therefore its restriction to the finite-dimensional space MN is
differentiable almost everywhere. One also expects that∇d2

S(m) = 2(m−PS(m))
where PS(m) is the closest point to m on S. However, S is not convex and this
projection map is not always uniquely defined, and is actually never uniquely
defined on MN . Nonetheless, the following proposition can be proven using
elementary tools from convex analysis. The diagonal DN denotes the set of
functions m in MN such that m(ωj) = m(ωk) for some j 6= k.

Proposition 2.3. The functional d2
S is continuously differentiable on MN \DN .

If T is the optimal transport map between Leb and m#Leb, then,

1

2
∇d2

S|MN
(m) = m− PMN

PS(m), (5)

where PMN
is the orthogonal projection on the space of piecewise-constant maps.

More precisely, let Y = {m(ωj) | 1 ≤ j ≤ N} and consider ψ : Y → R
solving the optimal transport problem (4). Define bj(m) as the isobarycenter of
the jth Laguerre cell. Then, letting 1ωj

be the indicator function of ωj ,

1

2
∇d2

S|MN
(m) = m−

∑

1≤j≤N
bj(m)1ωi

. (6)

The first column of Figure 1 display two point sets Y 1 and Y 2 of the unit
square with N = 400 points. The second column displays the Laguerre cells
associated to the computation of d2

S(mi) with mi = 1
N

∑
y∈Y j δyj . The last two

rows display minus the gradient of the squared distance to the set of measure
preserving maps and mi −∇d2

S|MN
(mi) = PMN

◦ PS(mi).

3 Minimizing geodesics in SDiff

In this first section, we present the strategy introduced in [MM16] to construct
approximate minimizing geodesics in SDiff. Let s∗ = id and let s∗ ∈ SDiff
be a map which gives the final position s∗(x) of each fluid particle initially at
position x ∈ Ω. The minimizing geodesics problem is

minimize
∫ 1

0

‖ṡ(t)‖2L2(Ω,Rd)dt, subject to

{
∀t ∈ [0, 1], s(t) ∈ S,
s(0) = s∗, s(1) = s∗.

(7)

The set of unit Jacobian diffeomorphism SDiff is not closed for the L2 metric,
and we have therefore replaced it with the space of measure-preserving maps S,
which in dimension d ≥ 3 is the closure of SDiff. Despite this relaxation,
the optimization problem (7) needs not have a minimizer in s ∈ H1([0, 1],S)
in dimension d ≥ 3 [Shn94], and minimizing sequences (sn)n≥1 may instead
display oscillations reminiscent of an homogeneization phenomenon. A second
relaxation is therefore necessary, we refer the reader to [FD12] for a review.
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m1 Laguerre diagram −∇d2
S|MN

(m1) m−∇d2
S|MN

(m1)

m2 Laguerre diagram −∇d2
S|MN

(m2) m−∇d2
S|MN

(m2)

Figure 1: Projection of a piecewise constant map on the set of measure preserv-
ing maps.

3.1 Generalized flows
Brenier introduced in [Bre89b] a second relaxation of the minimizing geodesic
problem (7) based on generalized flows, which allow particles to split and their
paths to cross. This surprising behavior seems to be an unavoidable consequence
of the lack of viscosity in Euler’s equations. Generalized flows are also relevant
in dimension d ∈ {1, 2} if the underlying physical model actually involves a three
dimensional domain Ω× [0, ε]3−d in which one neglects the fluid acceleration in
the extra dimensions [Bre08].

Definition 3.1 (Generalized flow). Consider the space of continuous paths
(of fluid particles) Γ := C0([0, 1],Ω). A generalized flow, in Brenier’s sense
[Bre89b], is a probability measure µ over Γ. We denote by et(γ) := γ(t) the
evaluation map at time t ∈ [0, 1], so that the pushforward measure et#µ can be
understood as the distribution of particles at time t under the flow.

Any classical flow s ∈ H1([0, 1],S) can be represented by a generalized flow
µs, supported on the paths γx : t 7→ s(t, x), weighted by the Lebesgue measure
on x ∈ Ω. The use of generalized flows turns the non-linear incompressibility
constraint s(t) ∈ S into the linear constraint et#µ = Leb. This similar to
Kantorovich’s linearization of the non-linear mass preservation constraint in
Monge’s optimal transport problem. This idea leads to a convex relaxation
of the minimizing geodesic distance problem (7), for which the existence of a
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minimizer is guaranteed:

d2(s∗, s
∗) := min

µ∈P(Γ)

∫

Γ

A(γ)dµ(γ), where A(γ) =

∫ 1

0

|γ̇(t)|2dt

subject to

{
∀t ∈ [0, 1], et#µ = Leb,

(e0, e1)#µ = (s∗, s∗)#Leb.

(8)
The second constraint (e0, e1)#µ = (s∗, s∗)#Leb rephrases the prescription of
the endpoints (s(0) = s∗ and s(1) = s∗) in the minimizing geodesic problem (7)
by imposing a coupling between particle positions at initial and final times.

Pressure. The incompressibility constraint in (8) gives rise to a Lagrange mul-
tiplier, called the pressure and which generalises the field p in (1). Surprisingly,
the pressure turns out to be the unique maximizer to a concave optimization
problem dual to (8), up to trivial invariance (that is, the addition of a function
depending only on time) [Bre93]. Moreover, the pressure is a classical function
p ∈ L2

loc( ]0, 1[, BV(Ω)), at least when the domain Ω is a d-dimensional torus
[AF07]. This regularity is sufficient to show that any solution s to (7) (resp.
µ-almost any path γ, for any solution µ to (8)) satisfies

∂tts(t, x) = −∇p(t, s(t, x)), resp. γ̈(t) = −∇p(t, γ(t)). (9)

This implies that the support of µ is contained in the space of solutions to a
second-order ODE, a fact that is used in our convergence estimates.

3.2 Discretization and convergence
Given two measure-preserving maps s∗, s∗ ∈ S, discretization parameters T,N ≥
1, and a penalization factor λ � 1, we introduce the functional which to m ∈
MT+1
N associates

ET,N,λ(m) := T
∑

0≤i<T
‖mi+1−mi‖2+λ

(
‖m0−s∗‖2+‖mT−s∗‖2+

∑

1≤i<T
d2
S(mi)

)
.

(10)
Comparing this with (7), we recognize the standard discretization of the length
of the discrete path (m0, · · · ,mT ), as well as an implementation by penalization
of the boundary value constraints. The last term corresponds to a penalization of
the incompressibility constraints, or more precisely a penalization of the squared
distance between the maps mi and the set S of measure preserving maps. The
discrete optimization problem we consider is then

min
m∈MT+1

N

ET,N,λ(m). (11)

The problem (11), considered as a function of m ∈ MT+1
N , is an N(T + 1)d-

dimensional unconstrained optimization problem. Note that the functional E
is non-convex and C2 smooth only on a dense open set. However, the use of a
quasi-Newton method (L-BFGS) gives satisfactory results.

Quentin Mérigot
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t = 0 t = 1

γj(i/T )
ωj

Figure 2: From a chain of maps to a probability measure over paths.

Convergence towards generalized geodesics In order to prove conver-
gence of discrete solutions towards generalized geodesics, we need to embed
MT+1
N in the space P(Γ). To do so, note that m ∈ MT+1

N is equivalently de-
scribed by a family of points (Mi,j)1≤i≤T,1≤j≤N in Rd, whereMi,j is the position
of the point j at time i. The chain M1,j , . . . ,MT,j describes the successive posi-
tions of the jth particle, which can be interpolated into a piecewise-affine path
γj : [0, 1] → Rd satisfying γj( iT ) = Mij . One can then associate to m ∈ MT

N a
generalized flow µ[m] ∈ P(Γ),

µ[m] :=
1

N

∑

1≤i≤N
δγj .

This construction is illustrated in Figure 2.

Definition 3.2 (Regular flow). We call regular flow between s∗ and s∗ ∈ SDiff
a probability measure µ ∈ P(Γ) satisfying
(i) the incompressibility constraint et#µ = Leb
(ii) the boundary conditions (e0, e1)#Leb = (s∗, s∗)#Leb
(iii) µ-almost every γ ∈ Γ satisfies γ̈ = −∇p ◦ γ, where p : Ω × [0, 1] has

Lipschitz gradient.

Note that if the Hessian of the pressure p is sufficiently small, namely that

∀t ∈ [0, 1], ∀x ∈ Ω, ∇2p(t, x) ≺ π2id (12)

in the sense of symmetric matrices, then a regular flow is actually a minimizing
geodesic. This fact has been used by Brenier to prove that classical solutions
to Euler’s equations whose pressure satisfy this condition are in fact minimizing
the relaxed energy [Bre89b]. The following theorem proves the convergence of
solutions of the discrete problems (11) towards regular minimizing geodesics
[MM16].

Theorem 3.3. Let s∗, s∗ ∈ SDiff, and assume that there exists a general-
ized minimizing geodesic, solving (8), which is also a regular flow. Let mN ∈
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arg min EN,TN ,λN
, where λN = N2d and limN→∞ TNλN = 0. Then, up to sub-

sequences, µ[mN ] ∈ P(Γ) converges weakly to a probability measure µ ∈ P(Γ)
which is a generalized minimizing geodesic between s∗ and s∗.

This theorem is proven in the spirit of Γ-convergence. The main diffi-
culty is to establish that lim supN→∞ EN,TN ,λN

≤ E(µ), where µ ∈ P(Γ) is
the regular generalized minimizing geodesic and where E(µ) =

∫
A(γ)dµ(γ).

To do that, it suffices to construct sequences m̃N ∈ MTN

N from µ such that
EN,TN ,λN

(m̃N ) ≤ (1 + o(1))E(µ). The main idea is to use optimal quantization
[Gru04] to approximate µ by an empirical measure of the form

µN =
1

N

∑

1≤i≤N
δγi ,

and to control the rate of convergence of µN to µ. This is where the regularity
hypothesis plays a role, as it implies that µ is not supported on the whole
infinite-dimensional space Γ = C0([0, 1],Ω) but on the subset

Γp = {γ ∈ C2([0, 1],Ω) | γ̈ = −∇p ◦ γ},

which has dimension 2d by the Cauchy-Lipschitz theorem. Thanks to this upper
bound on the dimension of spt(µ), one can control the rate of convergence of
µN towards µ, and finally the energy of the discrete chain constructed from µN
to the energy of µ. The condition λN = N2d comes from dim(Γp) = 2d. More
generally, if dim(Γp) = D one can choose λN = ND in order to get convergence.

A numerical result Figures 3 and 4 from [MM16] illustrate, for the first
time, a sharp result of Brenier [Bre89b]: for the Beltrami flow on the square,
the classical solution to Euler’s equation is also a minimizing geodesic as long
as tmax < 1. If this threshold is exceeded, then several minimizers of (8) may
exist, and some or all of them may be non-classical generalized flows µ ∈ P(Γ).
In that case the support of the flow µ has dimension > d, so that some fluid
particles follow non-deterministic paths.

4 Cauchy problem for Euler’s equations
In this section, we present the construction of a numerical scheme solutions to
the Cauchy problem for Euler’s equation (1). This scheme has been introduced
in [GM17], and is strongly inspired by a particle scheme of Brenier [Bre00].
The solution to Euler’s equations (1) is considered as a geodesic in SDiff, which
is then approximated by the solution to a differential equation in the finite-
dimensional space MN :




m̈(t) +

∇d2
S(m(t))

2ε2
= 0, for t ∈ [0, T ] ,

(m(0), ṁ(0)) ∈M2
N

(13)

Quentin Mérigot
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(a) t = 0.0 (b) t = 0.95 (c) t = 1.1 (d) t = 1.3 (e) t = 1.5

(f) t = 0.0 (g) t = 0.25 ∗ tmax (h) t = 0.5 ∗ tmax (i) t = 0.75 ∗ tmax (j) t = tmax = 0.9

(k) t = 0.0 (l) t = 0.25 ∗ tmax (m) t = 0.5 ∗ tmax (n) t = 0.75 ∗ tmax (o) t = tmax = 1.1

(p) t = 0.0 (q) t = 0.25 ∗ tmax (r) t = 0.5 ∗ tmax (s) t = 0.75 ∗ tmax (t) t = tmax = 1.3

(u) t = 0.0 (v) t = 0.25 ∗ tmax (w) t = 0.5 ∗ tmax (x) t = 0.75 ∗ tmax (y) t = tmax = 1.5

Figure 3: (First row) The Beltrami flow in the unit square, shown at various
timesteps, is a classical solution to Euler equations. The particles color depends
on their initial position. (Second to fifth row) Generalized fluid flows recon-
structed by our algorithm, using the boundary conditions displayed in the first
and last column. When tmax < 1 we recover the classical flow, while for tmax ≥ 1
the solution is not classical anymore and includes some mixing.
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Figure 4: Particles trajectories in the case tmax = 1.5, see Figure 3. Trajectories
originating from inside the red circle on the left seem strongly non-deterministic.

The idea is that the point m(t) want to move in straight line, but is forced by
the term 1

2ε2∇d2
S(m(t)) to remain close to the space S. One difficulty, as before,

is that we want to approximate a geodesic in S by a curve in MN while the
intersection S ∩MN is empty (and actually, these two sets are at positive dis-
tance from each other). This differential system is induced by the Hamiltonian
H(m, ṁ) = 1

2‖ṁ‖2M +
d2S (m)

2ε2 . Equation (13) can be rewritten as a system of N
particles in interaction, whose positions are denoted M1(t), . . . ,MN (t) ∈ Rd.
Given m(t) =

∑
jMj(t)1ωj(t) and using (6), it is possible to rewrite this dif-

ferential system in terms of barycenters of Laguerre cells, which depend on
the solution to the optimal transport problem between Leb and the empirical
measure 1

N

∑
1≤i≤N δMi

. With these notations, (13) is then equivalent to
{
M̈j(t) + 1

ε2

(
Mj(t)− bj

(∑
iMj(t)1ωj(t)

))
= 0

(M(0), Ṁ(0)) ∈ (Rd)N × (Rd)N
(14)

Loosely speaking, equation (14) describe a physical system where each particle
Mj(t) is subject to the force of a spring with stiffness 1

ε attached to the point
bj(M1(t), . . . ,MN (t)) which varies in time and depends on the position of all
the particles.

The main result of [GM17] is that the system of equations (13) can be
used to approximate regular solutions to Euler’s equations (1). It relies on
a modulated energy technique which is similar to that used in [Bre00] and
requires C1,1 regularity assumptions on the solution to Euler’s equations. See
also [BL04, CGP07] for related works.

Theorem 4.1 ([GM17]). Let Ω be a bounded domain of Rd with Lipschitz
boundary. Let v, p be a strong solution of Euler’s equations (1), let s be the
flow map induced by v (see (2)) and assume that v, p, ∂tv, ∂tp,∇v and ∇p are
Lipschitz on Ω, uniformly on [0, T ]. Suppose in addition that there exists a C1

curve m : [0, T ]→MN satisfying the initial conditions

m(0) = PMN
(id), ṁ(0) = PMN

(v(0, ·)),

which is twice differentiable and satisfies the second-order equation (13) for all

Quentin Mérigot
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times in [0, T ], possibly up to a countable number of exceptions. Then,

max
t∈[0,T ]

‖ṁ− v(t, φ(t, ·))‖2M ≤ C
(
h2
N

ε2
+ ε2 + hN

)
. (15)

Numerical simulations show that this scheme is also able to recover the
qualitative behavior of fluids, such as the Kelvin-Helmoltz and Rayleigh-Taylor
instability, even if these situations are not encompassed in the current conver-
gence theory. We refer to [GM17] for details on the time-discretization and for
2D numerical results. We also refer to [dGWH+15] for impressive 3D simula-
tions using a similar discretization.
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