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THE CUBIC SZEGO FLOW AT LOW REGULARITY
PATRICK GERARD AND HERBERT KOCH

ABSTRACT. We prove that the cubic Szegd equation is well posed
on the space BMO, of functions of bounded mean oscillation in
the Hardy class of the disc, and we establish the Holder regularity
of this flow in the L? distance. We also show that the Cauchy
problem is illposed on the corresponding L space.

1. INTRODUCTION

This paper is devoted to low regularity solutions of the cubic Szegd
equation on the circle T = R/27Z,

(1) i0pu = H(|ul*u)

where IT : L*(T) — L2(T) denotes the orthogonal projector onto the
closed subspace L2 (T) of L*(T) defined by the cancellation of all neg-
ative Fourier modes,

Vk <0, u(k)=0.
Recall that L2 (T) can be identified to the Hardy space H?*(DD) consisting
of holomorphic functions u on the unit disc such that

r<l

2m
sup/ ‘u(rei$)|2 dr < oo .
0

In the sequel, we shall make use of this identification freely.

Equation (1) was introduced by S. Grellier and the first author in [5],
where a flow on H(T) := H*(T) N L%(T), s > 1/2, was defined, and
where a Lax pair structure was discovered. In [8], this equation was
identified as the time averaged effective system to the half wave equa-
tion on T. In [6], more precise integrability properties were established,
while in [7] an explicit formula for H*® solutions was derived. Finally,
a general nonlinear Fourier transform was constructed in [9], where

almost periodicity of solutions in Hi/ * and growth of higher Sobolev
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PATRICK GERARD AND HERBERT KocH

norms were proved. Furthermore, analyticity of solutions was studied
in [10].

Since I is a pseudodifferential operator of order 0, it is natural to ask
about solving Equation (1) for initial data with low regularity. For
instance, the ordinary differential equation

(2) 10 = |ul*u
is wellposed on L*°(T), with the explicit formula
u(t, z) = e MOy (0, 2) .

The purpose of this paper is to investigate how this property is modified
by the action of the pseudodifferential operator II. It is well known that
IT is not bounded on L*°(T). The space

BMO, (T) = {II(b),b € L=(T)}

was identified by Fefferman [3] as the intersection of L2 (T) with the
space BMO(T) of functions of bounded mean oscillation introduced by
John and Nirenberg, see [13], [4], as the space of functions f € L'(T)
such that

1 1
® s / £@) = (ilde < 4o (1= / ors

where the supremum above is taken on all intervals I C T. The space
BMO, is also the dual of

LA(T) = {h € L'(T) : Yk < 0, h(k) =0} .
For every u € BMO_(T), we set
lulliio = nf{lIblz=,b € L¥(T), 1) = u} = Jlul sy
Our main result is the following.

Theorem 1. For every ug € BMO(T), there ezists a unique function
u € CYR,LA(T)) N Cypi(R,BMOL(T)), solution of the initial value
problem
(4) i0wu = TI(|ul*u) , u(0) = ug .
Furthermore, ||u(t)|smo = ||uollsmo. Moreover, if u,v are two BMO
solutions of (1) satisfying

[u(0)[[Brmo + [[0(0)lBMo < M,
there exists a constant K, depending only on M, such that, for every
t e,
(5) () = v(t)]z2 < K [[u(0) = 0(O)[3  at) = e

Next we come to propagation of Sobolev regularity. In the low regu-
larity case, it is only partially obtained, as a consequence of the stability
estimate (5).
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Exp. n® XIV— The cubic Szegd flow at low reqularity

Corollary 1. Let u be a BMO solution of the cubic Szegd equation, as
given by Theorem 1. Assume u(0) = ug € H® for some s > 0. Then, if
s>1/2, u(t) € H¥(T) for every t € R. In the case 0 < s < 1/2, there
exists K > 0, depending only on a bound of ||up||smo, such that

s(t) Se_Kltl
VteR,u(t) eH (T) ) 8(t> = 1—25+286_K|t| '

Remark 1.

e We do not know whether the above exponent s(t) is optimal or not.
If it is optimal, such a loss of regularity could be compared to the
one established by Bahouri and Chemin in Theorem 1.3 of [1] for the
bidimensional incompressible Euler flow with bounded vorticity.

e The above corollary has a local version, which will be established in
the forthcoming paper [11].

In the beginning of this note, we have seen that the ordinary dif-
ferential equation (2) is well posed on L*(T). In contrast, using the
John—Nirenberg definition (3), it is easy to prove that this equation is
not wellposed on BMO(T). Indeed, though ug(z) = log | sin z| belongs
to BMO(T), one can check that, for every ¢t # 0, the function

u(t, z) = (log | sin z|)e~#0oglsinz])?

does not belong to BMO(T), because its average on [e, 2¢] is bounded
as € tends to 0. Somewhat symmetrically, the next result shows that the
Szegl equation is illposed on L>. We denote by C(T) = C(T)N L3 (T)
the Banach space of continuous functions on the circle with nonnegative
Fourier modes.

Theorem 2. There exists a dense Gs subset G of C(T) such that, for
every ug € G, the solution u of (4) satisfies

VT > 0,u ¢ L=(0,T] x T) .

The present note will give a sketch of the proof of Theorem 1, Corol-
lary 1 and Theorem 2. An extended version with more detailed proofs
and additional results is in preparation [11].

Acknowledgements. We are grateful to Daniel Tataru for suggesting
an improvement leading to Corollary 1.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is based on two arguments. The first one is a
characterization of BMO, (T) which was established by Nehari [16] be-
fore the John—Nirenberg paper. Nehari’s result — see also Theorem 1.1
of Peller [17] — claims that, given u € L2 (T), the Hankel operator I'z
defined on finitely supported sequence x := (z,,),>0 by

Ta(x)], = 3 + n)

n=0
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extends as a bounded operator on ¢?(N) if and only if « € BMO(T),
and that

||Fa||z2—>z2 = ||U||BMO .

As we will recall below, it turns out that the Lax pair discovered in [5]
allows to prove that, if a u is a smooth solution of (1), the operator
norm ||I'g) || ;-2 is independent of ¢. This provides a BMO bound for
the sequence (u,) of smooth solutions of (1) which approximates ug at

t =0 in Bemo(|[uollBmo)-

The second argument relies on the John—Nirenberg inequality [13], [4],
which claims that BMO, (T) C LP(T) for every p < oo, and that there
exists a universal constant C' > 0 such that, for every v € BMO,(T),
for every p € [1, 00),

[ullr < Cpllvllsmo -

This inequality will allow us to prove that the sequence (u,,) is a Cauchy
sequence in C([—T,T], L3 (T)) for every T' < oo, leading to existence
of solution u.

Let us come to the detailed proof of Theorem 1. We first recall the
Lax pair structure of the cubic Szegd equation, as established in [5] and
revisited in [7]. For every u € BMO, (T), define the antilinear Hankel
operator

H,:L%(T) — L%(T)
by the formula
H,(h) =T(uh) , h € L2(T) .
It is easy to check that H, is bounded on L? +(T), and that

—_— =

Hy(B) = Ta (B) 5 (Hu(n), ha) = (Ho(ho), ha),
where (f, g) denotes the usual L? inner product. In particular,
H? ~ Tl

is a linear positive selfadjoint operator. From Nehari’s theorem, we
have

(6) [ Hullz2 -2 = [ullmo -

Next we claim that, for every a,b,c € LY(T),

(7) Hiyapey = TopHe + HoThz — HoHyHe

where, for every m € L*(T), the Toeplitz operator T}, is defined by
Ton(h) =II(mh) , h € L2(T) .

XIv—+4
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Indeed, given h € L2 (T), we have
Hiy(g(h) = TI(I(abe) ) = I(abch)
= I(abII(ch)) + TT(ab(I — TT)(ch))
= T3H.(h) + H, <bm) .
The proof of (7) is completed by observing that
bﬁtﬁﬂﬁzn@ﬁfﬁﬁmzjﬁm—mmwy

Now assume that u is a smooth solution to (1). Combining the equation
and identity (7), we have

d
g7 Hu = —iHnquze) = —i(HyTjup2 + Tjup Hy — H,)) = [Bu, Hu]
where [B, C] denotes the commutator of the operators B, C,

Bmz_mw+%Hﬂ
and where we have used the antilinearity of H, in writing

i(H, A+ AH,) = [iA, H,]

for every linear operator A. Notice that B, is an antiselfadjoint linear
operator on L% (T). Solving the linear ODE

dUu
(8) ’r =BU,U0)=1.

in the space of bounded operators on L%, we get a one parameter family
U(t) of unitary operators, which satisfies

(9) VteER, Hyuy = U(t)Hyo)U(t)"
From (9) and (6), we conclude
(10) vie R, [lu(®)][smo = [luollBmo -

We now come to the second step of the proof, for which the main point
is the following stability lemma.

Lemma 1. Let u,v be two smooth solutions of (1), satisfying

|lwol|BMO + ||vollBMO < M .

There exists a constant K, depending only on M, such that, for every
t € R,

lu(t) = o(t)llzz < K fuo = woll5a"" -
Proof. Recall that we denote by
2
iry 7wy 4%
Uﬂ%—/f@)g@)Qﬂ
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the inner product on L*(T). Set N (¢) := ||u(t) —v(t)||3.. Assumet > 0
for simplicity, and compute
dN

—p = 2Im (T(Juf?u) — T(jv]*0),u — v) .

Applying the Taylor formula, we have, introducing wy := 6u+ (1 —0)v
for 6 € [0, 1],
1
H(‘u’Qu) — H(’UPU) = /(2T|w0|2 + ng)(u —v)df .
0

Since Tj,, > is selfadjoint, its contribution to the imaginary part of the
inner product cancels, and we are left with

%:2/11m<ng(u—v),u—v> o .

0
Using identity (7) with @ = ¢ = wy and b = 1, we obtain

1

dN
- = 2/Im (TwyHuw, + HyTw, — Hy,H1 Hy,) (uw—v),u —v) df

1

:4/Im<Hw9(u—v),@9(u—v)) d9+2/1m ((wg,u —v)?) db .

From the conservation of the BMO norm (10), we already know that
llwe|lsmo < M, and thus

[Huwgllz2 sp2 < M wolly <CMp .
Using Holder’s inequality, we infer, for large p and for every time ¢ > 0,
[(Hoy (1 =), Wo(u = 0))| < MJu— vl 2 |[wglu — 0P |u — o] =2/7]| 2
< Mlu— vl g2 [lwolu — v[*P o | lu — v|* 22| 2y
< M(CMp)* 7 Ju— o] 7"
< C(M)pN'“'/7
We now choose, at a given time ¢t > 0,
p=p(t) =2+log(M?/N(t)) > 2,
since, by the conservation of L? norms of u and v,
N(t) < (luollzz + llvollz2)* < M*..

We infer
dN
| = K(M)N (2 +log(M?/N)) .
Solving this differential inequality, we obtain the lemma. O

XIV-6
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Let us complete the proof of Theorem 1. Let ug € BMO(T). Select
a sequence (uf) of smooth functions in L? such that

lug — uollz2 — 0, limsup [lug||Bmo < |uollBMmo -
For instance, one can choose
up (e) = ug(r,e™)

where 7, is any sequence of positive numbers smaller than 1 converging
to 1. Denote by u™ the solution of (1) with initial datum u{. Then
Lemma 1 implies that (u") is a Cauchy sequence in C([-T,T], L%) for
every T' > 0, hence it converges to v € C(R, L%). Furthermore,

lu"(t)[|BMo = [|ug l|lBMmO,

hence u,(t) — wu(t) in L? for every p < oo, locally uniformly in time.
This allows to pass to the limit in Equation (1), so that u is a solution
of (4), and moreover

|u(t)|lBmo < limsup [lug|lBmo < [JuollBmo -

It remains to prove uniqueness of such solutions, and the conserva-
tion of the BMO norm. For uniqueness, we observe that the proof
of Lemma 1 can be easily extended to solutions u,v € C(R,L%) N
Cu«(R,BMO, (T). Indeed, the only technical point is to extend the
identity

I(w?h) = wH,(h) + Hy,(wh) — H,H, H,(h)

to the case w,h € BMO,. This can be easily achieved by approx-
imation of w. This leads to estimate (5). Applying this estimate
to ug = vy, we conclude that there exists only one solution u €
C(R, L3) N Cyu (R, BMOL(T)) of (4).

As for the conservation of the BMO norm, it is enough to observe that,
given T' € R, that we already have an inequality,

[u(T)[[Bmo < JuollBumo -
Now, precisely from what we did, the problem
i0w = II(Jv[*v) , v(0) = u(T)

has only one solution v € C'(R, L2 ) and locally bounded in BMO, and
llv(®)|lsmo < ||v(0)||smo - Therefore v(t) = u(t + 1), and applying the
above inequality at ¢t = =T yields ||uo|lBmo < ||w(T)|BMmo, Whence the
desired equality.

3. PROOF OF COROLLARY 1

In the case s > 1/2, Corollary 1 is just a consequence of the unique-
ness of the Cauchy problem in Theorem 1 and of the wellposedness
theory in H* [5].

XIV-7
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In the case 0 < s < 1/2, a first idea is to combine the stability esti-
mate (5), the invariance of the flow by translation on T, and the fol-
lowing representation of the H® norm,

lu(x + h) — u(z)|?
wm—mm+/ D e an.

-1 T

However, this provides a result which does not take into account the
conservation of the H/? norm. Therefore we prefer to use the following
interpolation argument, which was suggested to us by D. Tataru. Given
A > 1, one can decompose uy € H® as

uy = ug™ + ug™
with ||ug?|lsmo < 1,
lus e S AT llugH e S A7
Then, by the conservation of the Hl/2 norm, u<* := Z(u0<)‘) satisfies

[ () e S X270
while the stability estimate (5) yields, with a(t) = e Xl and K =
K([luollBymo),
lu(t) = w (B2 < lluo — ug[*® S A=
Therefore the the dyadic component Agu(t) of u(t) can be estimated,
for every A > 0, as

||AkU(t)||L2 <27 k/Q)\’_S + )\—Sa(t) )
Choosing A\ = \(k,t) optimally, we obtain
”Aku(t)HLQ < 9—ksa(t)/(1-2s+2sa(t))

?

and therefore u(t) € H*® with

Seme

s(t) =

1 — 25 + 2se— Kl
for every K > K. This completes the proof.

4. PROOF OF THEOREM 2

The arguments for Theorem 2 are an adaptation of a method de-
veloped by Elgindi and Masmoudi in [2], which leads to ill-posedness
for the incompressible Euler equation at the C* regularity. The crucial
step is the following lemma.

Lemma 2. Let ug € C(T). There exists a sequence (u") of smooth
solutions to the (1) such that

|u™(0) — wo||p~ — 0,

XIV-8
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and a sequence of times T,, > 0 tending to 0 such that

sup ||u™(t)]| e — o0 .
te[0,17)

Let us show how Lemma 2 implies Theorem 2. For every uy €
BMO_(T) and every t € R, we denote by Z(t)(ug) the value u(t) at
time t of the solution u := Z(ug) of (4) provided by Theorem 1. For
every integer p > 1, denote by (2, the subset of those ug € C(T)) such
that, for some r, € |0, 1], we have

sup sup |Z(t)(uo) (rpe™)| > p .
te[0,1/p] €T

We claim that €2, is an open subset of C (T). Indeed, for every r < 1,
the map

u € L2(T) = u, € L2(T) , up(e™) := u(re™)
is continuous in view of the Cauchy integral formula, and the mapping
o € Co(T) - Z(ug) € C([0, 1], 12 (T))
is continuous in view of Theorem 1.

Next we claim that €, is dense in C'(T). Given uy € C(T), we apply
Lemma 2. The sequence provided by this lemma converges to ug in
C4(T). Furthermore, for n big enough, 7,, < 1/p and

sup [[u"(t)[|z > p -
te[0,T5]

Since, for every f € L(T),
| fl| L = supsup ‘f(rem)‘ ,
r<l zeT

we conclude that u" belongs to €2,,.

Introduce

G={1%.

p>1

Since C'{(T) is a Banach space, the Baire theorem shows that G is a
dense G subset of C'y(T). Furthermore, if ug € G, we have, for every
T > 0 and every p > T7!,

sup sup sup |Z(t)ug(re”)‘ >p,
te[0,T) r€[0,1] z€T

hence Z(ug) ¢ L>=([0,T] x T).

XIV-9



PATRICK GERARD AND HERBERT KocH

4.1. Proof of Lemma 2. We shall make use of a Banach algebra B
of functions on the torus, invariant by II, included into L*°, such that
(11) Juv][p < C([ullz<lv]l5 + [[ullsllv]z) ,

and which, roughly speaking, has the same scaling properties as L.
An example is provided by the Besov space

B =By} = {u€ L’(T): |lull s = [@(0)] + ) 2**|| Ayul| 2 < o0} ,
k=0

where Ajgu denotes the usual dyadic component of u. Indeed, II(B) C
B from the definition, the inclusion B C L* is a consequence of the
standard inequality

ARl oo S 272 Agul| 2

and the tame estimate (11) follows from paralinearising the product
uv. The subspace B = II(B) of LY can also be characterised by the
condition

(12) lulp, = /1 %(7@’ (7“e”‘”)|2 dx) 1/2d7“ <00,

where ' is the holomorphic derivative of u, the norm [u(0)| + [u]g,
being equivalent to ||u|/z on By.

We now fix a € ]0, oo[ and introduce, for every p € ]0, 1],
fp(z) — (1 _ pz)ia _ eialog(l—pz)’ |Z| <1,
with log(1 — pz) € R+i[-7F, 7]

Lemma 3. The following estimates hold as p tends to 1,

1
Ifollz= < €l folls < Clog § —

and for every trigonometric polynomial g = g(z) € L% with g(1) # 0,

1
T £ol*9) 1= > e(g) log +— >

for some ¢(g) > 0.

Proof. Notice that, for x € T,
iz _ i%log(1+p2—2pcosz) ,—aA,(x) A . pSiIlCL’
e”)=e2 e r)=arctan | —— | .
o)  Aol) <1 — pcosx
In particular,
[ follzee < ™2
On the other hand,

fi(z) = —iap(l — pz) !

?
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so that

and

1

dr
W&5!¢@wm—m” =

It remains to prove the last statement. Let ¢ = g(z) € L2 be a
trigonometric polynomial. We compute

(|fﬂ|2 /‘fp m ’e iz )

B 1 e —20A,(x )g(ezx)
27 1 — peiz

—T

dx .

The above integral is uniformly bounded as p tends to 1, except for the
contribution of a neighborhood of x = 0. Symmetrizing the integration
domain, we get

K

9 B hy(z) + hy(—2) dx
100 = [ g h e

with
h(l’) = (1 _ peix)672aAp(ac)g<eix) ]
Expanding ¢ near = 0, we obtain,

™

7 T (e204p(@) _ g—2aA,(z)
(1,90 == 00) + (1) [ 4 ) ur

27 (1 —p)%2+2p(1 —cosx)

Notice that function A, is nonnegative on [0, 7] and increasing from

x =0toxz = arccosp ~ /2(1 — p). In particular, the integrand of the
above integral is nonnegative, and we may restrict x to the domain of
integration [1 — p, /T — p|, on which A,(z) 2 7, so that

™

T (GQQAp(m) _ e—2aAp
d > Cq d
/ — + — cos ) r=c / —l—wQ .
(1=p)*+2p(1
0

> ¢y log T

This completes the proof of Lemma 3.

XIv-11
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Next, we consider, for a given trigonometric polynomial g = g(z) € L%
such that ¢g(1) # 0, the family of data

ub=g+ef,.
Applying Lemma 3, we observe that

1
lug® = gllz= = Oe) , l[ug™[lz S O(1) +elog

Furthermore,
T(Jup®[*ug”) = 1(|g[*g) + €[2T(|gI*f,) + TI(g°f,)] +
+ 20111, [*9) + T(f79)] + L £, 1*1,) -
Notice that, if h € LY,
(e ™h) = e “(h — h(0))

belongs to LY with [[II(e ™™ h)|| re < 2||h||1. Since II(|g|*f,) is a finite
linear combination of terms of the form €™ f, and II(e~™ f,) with |n|
not greater than the degree of g, we conclude that II(]g|?f,) is bounded
in LY. Similarly, IT( fgy) is bounded in LS, and so is H(gQ?p), since
it is a finite trigonometric polynomial of degree not greater than twice
the degree of g, with coefficients estimated by the supremum of Fourier
coefficients of f,. Finally, applying (11) and Lemma 3,

(LS P fo) e S (L2 f)ll S 1 folls < log
This leads to

TG Pug)l 2 = £*(c(g) —2C(g)) log 1

L=p

1

—-0(1) .
Choosing ¢ small enough, we infer

—0(), ¢g)>0.

3 15 ~ 1
(13) TP > 23(g) log -

Next we consider u”* = Z(uh®). We claim that, for every positive time
T < 1, there exists p = p(e,T') such that, for e < 1,

limsup sup ||u?©TE|| e = 400 .
e=0  te[0,T]

Indeed, assume by contradiction that, for some T" > 0 and for some M,
we have, for some gq > 0,

supsup sup |[u”||pe < M .
e<eq p<1 t€[0,T]

Then, from the equation
t

u”s(t) = uh® — i/H(|up’E(s)]2u"”E(s)) ds

XIV-12
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and using (11), we have, if t € [0, T7,

sup [[u?(s)||p < [lug®|ls + CM*t sup [[u?(s)| 5,
5€[0,t] s€[0,t]

so that, if t < T* 1= min(7T, (2CM?)1),

(14) sup [|u”(s)[[ 5 < 2l[ug” |5 S O(1) + elog :
s€[0,t] 1—p

Then we write the Taylor formula at second order in ¢,
uP(t) = up” — it (jug®[*ug”) +
t
/(t - 5) [_Q(ﬂup,a(s)‘Q)Q + Hup,e(s)27—7|up,e(s)|2] u”’s(s) ds s
0
so that, using again (11) and (14), for every t € [0, T*],

1
[P (t) = uy” + T (fug *ug )| s < K(M)et*log {

+0(1) .

Using (13), we infer

v € (0.7, u(t)|z > telog ——(Elg)e — tK (M) — O(1)

Choosing t = T** := min(T*,ec(g)/2K(M)) and p = p(e,T) close
enough to 1, we obtain a contradiction.

Summing up, we have proved that, for every trigonometric polynomial
g = g(z) € L% such that g(1) # 0, there exists a sequence of data uf
converging to g in C'(T), and a sequence of positive times 7;, converg-
ing to 0, such that

sup || Z(t)ug||ze — oo .
te[0,17]

Since any ug € C;(T) can be approximated by a sequence of trigono-
metrical polynomials g € L% with g(1) # 0, this completes the proof
of Lemma 2. O
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