
Séminaire Laurent Schwartz
EDP et applications

Année 2016-2017

Laurence Halpern and Jeffrey Rauch
Strictly dissipative boundary value problems at trihedral corners
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no XI, 10 p.

<http://slsedp.cedram.org/item?id=SLSEDP_2016-2017____A11_0>

© Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz,
École polytechnique, 2016-2017.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

Institut des hautes études scientifiques
Le Bois-Marie • Route de Chartres
F-91440 BURES-SUR-YVETTE
http://www.ihes.fr/

Centre de mathématiques Laurent Schwartz
CMLS, École polytechnique, CNRS, Université
Paris-Saclay
F-91128 PALAISEAU CEDEX
http://www.math.polytechnique.fr/

cedram
Exposé mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://slsedp.cedram.org/item?id=SLSEDP_2016-2017____A11_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://www.ihes.fr/
http://www.math.polytechnique.fr/
http://www.cedram.org/
http://www.cedram.org/


Strictly dissipative boundary value problems at

trihedral corners

Laurence Halpern ∗ Jeffrey Rauch †

Abstract

For time independent symmetric hyperbolic systems with elliptic
generators, gluing strictly dissipative boundary conditions at a multi-
hedral corner yields a well posed boundary value problem. Uniqueness
of solutions with square integrable boundary traces is proved using the
Laplace transform and an H1/2 regularity theorem.

Keywords. Dissipative boundary value problems, symmetric hyperbolic
systems, capacity

1 Introduction

This talk presents half of the paper [6]. The other half devoted to the
analysis of Bérenger split equations at internal trihedral corners is described
in the earlier seminar [5]. Since the detailed paper has already appeared, we
describe the main ideas and emphasize a number of open problems. There
is an extensive literature on problems with corners discussed in [6]. For
trihedral and higher corners for hyperbolic problems much less is known.

2 Symmetric hyperbolic systems

Aj(x) and B(x) are C∞ matrix valued and constant outside a compact
set in Rd. For each x, Aj(x) is hermitian symmetric. The system
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is symmetric hyperbolic in the sense of Friedrichs [1]. Define symbols and
operators

A(x, ξ) :=
∑

j

Aj(x)ξj , G(x, ∂) := A(x, ∂) +B(x) ,

L := ∂t +G(x, ∂), Z(x) := B(x) +B(x)∗ −
∑

j

∂jAj(x) = G+G∗ .

Ω is a nice subset of Rd and for x ∈ ∂Ω, ν(x) denotes the unit outward
conormal. A(x, ν(x)) is the symbol evaluated at outward conormal. As-
sume that A(x, ∂) is elliptic. Therefore A(x, ν(x) is invertible. The anal-
ysis extends to the Maxwell’s equations for which this hypothesis is violated
by a hidden ellipticity argument in [6].

If Lu = 0 and u is H1([0, T ]× Ω) then

d

dt

∥∥u(t)
∥∥2

L2(Ω)
+
(
Z(x)u , u

)
L2(Ω)

= −
∫

∂Ω

(
A(x, ν(x))u, u

)
dΣ .

3 Dissipative conditions on smooth domains

•Homogeneous linear boundary conditions are prescribed in the form, u(t, x) ∈
N (x) for x ∈ ∂Ω where N (x) ⊂ CN is a smoothly varying linear subspace.

• N is dissipative when u ∈ N implies (A(x, ν(x))u, u) ≥ 0. It is strictly
dissipative when ≥ c‖u‖2 with c > 0.

• It is maximal when the dimension of N is equal to the the dimension of
the positive spectral subspace of A(x, ν(x)).

Friedrichs’ Theorem [2]. For g ∈ L2(Ω) and a maximal dissipative
boundary condition, ∃! solution u ∈ C([0,∞[ : L2(Ω)) with initial value g.
The solution satisfies the energy identity.

Remark. The result is also true for time dependent G,N .

Example. If Z ≥ 0 then ‖u(t)‖L2(Ω) ↘ .

More modern treatments follow the lead of [7].

4 Corner motivation, the simplest example

To solve numerically �1+du = 0 on all of Rd with initial data supported in
{|xj | < 1} one often introduces a finite rectangular computational domain.
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If one is interested in the solutions on {|xj | < r}, compute on the larger
rectangle {|xj | < R}.
In case d = 1 this is easy to do. Thinking in terms of rightward and leftward
going waves shows that the following boundary conditions yield an exact
evaluation.

(D_t − D_x) u = 0

x=Rx=−R
DATA

x

Perfectly absorbing boundaries for d=1

(D_t + D_x) u = 0

In higher dimensions the analogous problem is a reasonalble absorbing bound-
ary condition but is not exact. The two dimensional problem has different
boundary conditions on adjacent edges that touch.

Not so easy when d>1

DATA

Expect solutions to have

singularities at corners

(D_t + D_1) u = 0(D_t − D_1) u = 0

(D_t + D_2) u = 0

(D_t − D_2) u = 0

Not perfectly absorbing

In all dimensions, these problems are associated to a coercive elliptic quadratic
form. Analysis of H1 solutions using this structure follows the standard pro-
cedure.

No boundary condition is required at singular subset of boundary. The
singular set is codimension 2 in Rd hence negligible for H1.
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Open problem 1. Replace the first order operators ∂t + ν · ∂x by high
order absorbing boundary condition on each face. Trihedral analysis is terra
incognita. Numerically, they work.

Corner problems for symmetric hyperbolic systems are usually not associ-
ated with a coercive second order elliptic boundary value problem. There is
no such easy analytic treatment.

The natural first case to consider is different dissipative boundary conditions
at the faces of a cubic computational domain. That is the subject of this
talk.

5 Geometry of a single high dimensional corner

With notation motivated by the octant when d = 3,

O :=
{
x ∈ Rd : 0 < xj , for, j = 1, 2, . . . , d

}
.

The smooth points of the boundary are those points where exactly one
coordinate xj vanishes.

The singular part of the boundary, denoted S, consist of points where at
least two coordinates vanish.

The set of points where exactly k coordinates vanish are edges of dimension
d− k in S.

6 Instructive example/counterexample

Consider the solution of the radiation problem

�1+dw = f(t) δ(x) , w = f = 0 for t ≤ 0, f ∈ C∞ .

Since δ is even in each xj , the same is true of f(t)δ(x) and therefore w.

Evenness implies that on each face of Rt × (∂O \ S), w satisfies the homo-
geneous Neumann boundary condition ν · ∂xw = 0.

It satisfies �w = 0 in Rt ×O and has vanishing Cauchy data for t < 0 and
homogeneous boundary conditions, yet there are waves in O.

The waves come out of the corner. The Neumann corner problem is well
set for solutions in H1. The example has w /∈ H1. In dimension d = 2
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the solution is H1−ε for any ε > 0, so barely misses. To prove this note
that the right hand side lies in C∞(Rt : H−d/2−ε(Rd)). The right hand
side has wavefront set in {τ = 0} on which � is elliptic. The solution
w ∈ C∞(Rt : H−d/2−ε(Rd). For d = 2 this yields the announced regularity.

No boundary condition needed at the points of the corner. However, H1

regularity there is crucial for the well posedness of the Neumann problem.
Without it there is nonuniqueness.

7 Main theorem

The next theorem asserts existence and uniqueness of solutions that have
square integrable traces on the boundary.

Main Theorem. Assume. a. Time independent Aj and Nj with∑
j Aj(x)∂j elliptic for x ∈ ∂O.

b. Subspaces Nj(x), defined for x ∈ {xj = 0}, are smooth and maximal
strictly dissipative.

Then, ∀ g ∈ L2(O), ∃!u satisfying three conditions.

i. For some C,

e−Ctu ∈ L2
(
]0,∞[×O)

)
, e−CtA(x, ν(x))u|∂O ∈ L2(]0,∞[×∂O) .

ii. Lu = 0 in ]0,∞[×O and u|t=0 = g on Ω.

iii. For each 1 ≤ j ≤ d,

u|{xj=0}∩{∂O\S} ∈ Nj , (no BC at edges/corners)

In addition, for all 0 ≤ t < T <∞ the energy identity is satisfied,

‖u(T )‖2 +

∫

[t,T ]×∂O

(
A
(
x, ν(x)

)
u, u

)
dt dΣ +

∫

[t,T ]×O

(
Z(x)u, u

)
dt dx = ‖u(t)‖2 .

8 Proof of existence, the easy part

Proof. Consider a sequence of smoothed domains Oε obtained by rounding
the edges in an ε neighborhood of the singular set S.

On ∂Oε, construct strictly dissipative boundary space N ε in two steps.
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1. Modify the spaces Nj on a 4ε neighborhood of S so that they are equal
to the positive spectral subspace of A(x, ν(x)) on an 2ε neighborhood of S.

2. Choose a boundary space on ∂Oε that is equal to the positive spectral
subspace of A(x, ν(x)) on the rounded parts of ∂Oε and equal to the original
Nj outside a 4ε neighborhood of S.

The rounded domain has no corner so Friedrichs’ Theorem constructs a
solution uε with uniform L2 estimates in O and uniform L2 estimates for
the trace at the boundary.

Passing to the limit ε → 0 constructs a solution with at most exponential
growth. Satisfies energy inequality on 0 < t < T .

The energy equality is recovered after uniqueness, see [6].

9 Uniqueness, the hard part

The difference of two solutions could be a solution of the homogeneous prob-
lem with waves entering from the corner.

Need to show that such waves cannot be L2 with L2 traces.

Open problems.

2. Do not know if uniqueness is true without the L2 trace assumption.

3. Do not know if uniqueness is true if the ellipticity is dropped.

4. Do not know if uniqueness is true if the coefficients Aj depend also on
time.

Uniqueness can fail if one drops ellipticity and the L2 trace, see [8].

9.1 The H1/2 strategy

Uniqueness of H1 solutions is easy. Simply take the scalar product of the
equation with u and integrate by parts. For u ∈ H1 then the terms in
(Lu, u) are the product of an L2 times an H1. This is more than enough to
justify the integration by parts.

For u ∈ H1/2, the terms are a product of an H1/2 times an H−1/2. This is
a borderline case and it works.

Prove that solutions with zero initial data vanish in three steps.

1. Show that Laplace Transform of a solution with u(0) = 0 vanishes by
showing that the energy identity holds for them.
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2. Use a partition of unity. At interior points use Friedrichs’ classical mol-
lifiers. At the boundary use an elliptic argument to show that the solution
is H1/2. The L2 trace is used for this.

3. A capacity argument yields the energy identity for H1/2 solutions.

9.2 Laplace transform

Laplace transform ũ(τ, x) satisfies

τ ũ+G(x, ∂x)ũ = 0 , ũ|∂O\S ∈ N .

The strategy is to take the the real part of the L2(O) scalar product with u.
An integration by parts yields

(
(Re τ + Z)ũ , ũ

)
+

∫

∂O
(A(x, ν(x))ũ , ũ) dΣ = 0 .

If this is justified it yields ũ = 0 for Re τ > ‖Z‖L∞ .

Decompose ũ using a partition of unity.

Friedrichs [1] treats interior points.

At points of ∂O \ S, ũ ∈ C∞ since strictly dissipative boundary conditions
satisfy elliptic lopatinski for the transformed equation.

The hard part is to justify integration by parts for pieces of ũ
touching S.

9.3 Extension by zero and parametrix

Justify integration by parts for τ + G and v supported compactly near S
satisfying

v ∈ L2(O), Gv ∈ L2(O), A(x, ν(x)) v
∣∣
∂O ∈ L

2(∂O \ S) .

Key step is to show that v ∈ H1/2(O).

Denote by v the extension by zero. Then

Gv = f + A(x, ν(x))v|∂O\S dΣ , f ∈ L2(O)

Choose a classical properly supported pseudodifferential parametrix P (x,D) ∈
Op(S−1(Rd)) of G on a neighborhood of S. Then

P (x,D)(f +A(x, ν(x))v|∂OdΣ) − v ∈ ∩sHs(Rd) .
P ∈ Op(S−1) =⇒ Pf ∈ H1(Rd) .
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9.4 Regularity modulo a layer potential

Denote Hj := {xj > 0}. Decompose

A(x, ν(x)) v|∂O\S =
∑

gj , gj ∈ L2
compact(∂Hj ∩ ∂O) .

To show v ∈ H1/2(O), suffices to show the layer potentials wj := P (x,D)(gj dΣ)
belong to H1/2(O). Prove the stronger assertions, wj ∈ H1/2(Hj).

For p := 2d/(d+1) < 2, the trace ofW 1,p(Rd) belongs to L2(∂Hj). Therefore

gj dΣ ∈
(
W 1,p(Rd)

)′
= W−1,q(Rd),

1

q
+

1

p
= 1, q > 2 .

9.5 Regularity of the layer potential

P ∈ OpS−1 properly supported and gj dΣ ∈W−1,q(Rd) yield

wj := P (x,D)
(
gj dΣ

)
∈W 0,q

cpct(R
d) = Lqcpct(R

d) ⊂ L2
cpct(Rd)

In addition
Gwj − gj dΣ := hj ∈ ∩sHs(Rd)

Since gj dΣ vanishes on O

G(wj)|Hj = hj |Hj ∈ ∩sHs(Hj) (∗)

Principal symbol of G is odd in ξj ⇒ principal symbol P−1 = G−1
1 is odd.

This is the transmission condition for ∂Hj .

The transmission condition and gj ∈ L2(∂Hj) yield

wj |∂Hj
= P (x,D)

(
gj dΣ

)
|∂Hj

∈ L2(∂Hj) (∗∗)

The overdetermined boundary value problem (∗), (∗∗) is coercive. Elliptic
regularity implies wj |Hj ∈ H1/2(Hj).

Open problem 5. Find regularity theorems à la Grisvard [3],[4] asserting
that modulo finite dimensional sets of singular corrector functions there is
standard elliptic gain of one.
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10 Final capacity argument

Choose ψε cutoff functions vanishing on an ε/2 neighborhood of S and equal
to one outside an ε neighborhood. The energy identity for ψεv is satisfied
as there is no corner

Re
(
Gψεv, ψεv

)
+
(
Zψεv, ψεv

)
= −

∫

∂O

(
A(x, ν(x))ψεv, ψεv

)
dΣ .

Passing to the limit, the troublesome terms occur when the derivatives hit
ψε. They are

.
∫

dist (x,S)≤ε

1

ε
|v|2 dx .

This tends to zero as ε→ 0 because v ∈ H1/2 on a neighbhorhood of S in O.

Passing to the limit justifies the energy identity for the parts of ũ near S.
Summing all the local energy identities yields the global identity. That
implies ũ(τ) = 0 for Re τ > ‖Z‖L∞ . �
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