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Stochastic discrete velocity averaging lemmas and

Rosseland approximation

Nathalie Ayi

(in collaboration with T. Goudon)

Abstract

In this note, we investigate some questions around velocity averaging lemmas, a class of
results which ensure the regularity of the “velocity average”

∫
f(x, v)ψ(v) dµ(v) when f and

v · ∇xf both belong to Lp, p ∈ [1,∞) and the measured set of velocities (V , dµ) satisfy a
nondegeneracy assumption. We are interested in the case when the variable v lies in a discrete
subset of RD.
We present results obtained in collaboration with T. Goudon in [2]. First of all, we provide a
rate, depending on the number of velocities, to the defect of H1/2 regularity which is reached
when v ranges over a continuous set. Second of all, we show that the H1/2 regularity holds in
expectation when the set of velocities is chosen randomly. We apply this statement to obtain
a consistency result for the diffusion limit in the case of the Rosseland approximation.

1 Introduction

The physical context associated with the start of our reflection is the one of the Rosseland
approximation. We are interested in the following simple model which can be motivated from
radiative transfer theory:

ε∂tfε + v · ∇xfε =
1

ε
σ(ρε)(ρε − fε) (1.1)

where

ρε(t, x) =

∫

V

fε(t, x, v) dµ(v),

and σ : [0,∞) → [0,∞) is a given nonlinear smooth function. The parameter 0 < ε � 1 is
defined from physical quantities. It is now a well known result that, as it tends to 0, both
fε(t, x, v) and ρε(t, x) converge to ρ(t, x), which satisfies the non linear diffusion equation

∂tρ = ∇x ·
(
A∇xF (ρ)

)
, A =

∫

V

v ⊗ v dµ(v), F (ρ) =

∫ ρ

0

dz

σ(z)
(1.2)

when V = SD−1 is associated with the normalized Lebesgue measure, see [3].
Indeed, the entropy dissipation associated with (1.1) provides key estimate which lead to weak
compactness. The difficulty is then the passage to the limit in presence of the nonlinearity due
to σ. Typically, averaging lemmas are efficient tools to deal with such a problem. Roughly
speaking, they can be explained as follows. Let V ⊂ RD, endowed with a measure dµ. We
consider a sequence of functions fn : RD × V → R. We assume that

a)
(
fn
)
n∈N is bounded in L2(RD × V ),

b)
(
v · ∇xfn

)
n∈N is bounded in L2(RD × V ).

Given ψ ∈ C∞c (RD), we denote the velocity average

ρn[ψ](x) =

∫

V

fn(x, v)ψ(v) dµ(v).
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Then,
(
ρn[ψ]

)
n∈N is bounded in the Sobolev space H1/2(RD). Thus, it is relatively compact

in L2
loc(RD), by virtue of the standard Rellich’s theorem. This basic result has been improved

in many directions: L2 can be replaced by the Lp framework, at least with 1 < p < ∞, and
we can relax b) by allowing derivatives with respect to v and certain loss of regularity with
respect to x; see, among others, [7, 9, 14]. Time derivative or force terms can be considered
as well, see, additionally to the above-mentionned references, [4].

Going back to the problem of the Rosseland approximation, we note that it is possible
to conclude to the convergence with the use of the averaging lemmas. Beyond that, such
an argument plays a crucial role in the stunning theory of “renormalized solutions” of the
Boltzmann equation [6], and more generally for proving the existence of solutions to non linear
kinetic models like in [5]. It is equally a crucial ingredient for the analysis of hydrodynamic
regimes, which establish the connection between microscopic models and fluid mechanics
systems; for the asymptotic of the Boltzmann equation to the incompressible Navier–Stokes
system, which needs a suitable L1 version of the average lemma [10], we refer the reader to
[11, 15, 17]. Finally, it is worth pointing out that averaging lemma can be used to investigate
the regularizing effects of certain PDE (convection-diffusion and elliptic equations, nonlinear
conservation laws, etc) [16].

However, the discussion above hides the fact that we need some assumptions on the mea-
sured set of velocities (V , dµ) in order to obtain the regularization property of the velocity
averaging. Roughly speaking, we need “enough” directions v when we consider the derivatives
in b). More technically, the compactness statement holds provided for any 0 < R <∞ we can
find CR > 0, δ0 > 0, γ > 0 such that for 0 < δ < δ0 and ξ ∈ SN−1, we have

meas
({
v ∈ V ∩B(0, R), |v · ξ| ≤ δ

})
≤ CRδγ .

This assumption appears in many statements about regularity of the velocity averages; as
far as we are only interested in compactness issue, it can be replaced by the more intuitive
assumption (see e. g. [8, Th. 1 in Lect. 3]): for any ξ ∈ SN−1 we have

meas
({
v ∈ V ∩B(0, R), v · ξ = 0

})
= 0. (1.3)

Clearly these assumptions are satisfied when the measure dµ is absolutely continuous with
respect to the Lebesgue measure (with, for the sake of concreteness, V = RD or V = SD−1).
However, they fail for models based on a discrete set of velocities. For instance let V =
{v1, ..., vN}, with vj ∈ RD, and dµ(v) = 1

N

∑N
j=1 δ(v = vj); it suffices to pick ξ ∈ SN−1

orthogonal to one of the vj ’s to contradicts (1.3).
This is precisely this framework that we wish to investigate. Actually, despite the absence

of gain of regularity in the discrete case, when the discrete velocities come from a discretization
grid of the whole space, the averaging lemma can be recovered asymptotically letting the mesh
step go to 0, as shown in [13], motivated by the convergence analysis of numerical schemes for
the Boltzmann equation.

The results we obtained in [2] aim at investigating further these issues. The paper is
organized as follows : in section 2, we start by precising the analysis of [13] and obtain a
rate on the defect to the H1/2 regularity of the velocity average, depending on the mesh
size. We give along a sketch of the proof. In section 3, we state stochastic versions of the
averaging lemmas. We are still working with a finite number of velocities on bounded sets;
however, choosing the velocities randomly, the “compactifying” property of assumption b) can
be restored by dealing with the expectation of ρn[ψ]. This is a natural way to involve “enough
velocities”, by looking at a large set of realizations of the discrete velocity grid. Some ideas of
the proof will be given. Finally, in section 4, we go back to the Rosseland approximation and
explain a consistency result with a random discretization of the velocity variable.
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2 Discrete Velocities and Averaging Lemma in the
Deterministic Case

As mentioned above, though the averaging lemma fails for discrete velocity models, Mischler
established in [13] that the compactness of velocity averages is recovered asymptotically when
we refine a velocity grid in order to recover a continuous velocity model. Here, we wish to
quantify the defect of compactness when the number of velocities is finite and fixed. This
is the aim of the following claim which shows that the macroscopic density ρ[ψ] “belongs to
H1/2(RD) +O( 1√

N
)L2(RD)”.

Proposition 2.1. Let N ∈ N \ {0} and define

AN =

(
1

N
Z
)D
∩ [−0.5, 0.5]D.

Let f, g ∈ L2(RD ×AN ) satisfy for all k ∈ ZD,

vk · ∇xf(x, vk) = g(x, vk). (2.1)

We suppose that the L2 norm of f and g is bounded uniformly with respect to N . Then, for
all ψ ∈ C∞c (RD), the macroscopic quantity

ρ[ψ](x) =
1

(N + 1)D

∑

k

f(x, vk)ψ(vk)

can be split as ρ[ψ](x) = Θ[ψ](x) + 1√
N

∆[ψ](x) where Θ[ψ] and ∆[ψ] are bounded uniformly

with respect to N in H1/2(RD) and L2(RD) respectively.

Sketch of the proof. The beginning of the proof consists in applying the Fourier transform to
(2.1). Then for all k ∈ Z and ξ ∈ RD, we get

ξ · vk f̂(ξ, vk) = (−i)ĝ(ξ, vk).

We denote

F (ξ) :=

(
1

(N + 1)D

∑

k

|f̂(ξ, vk)|2
)1/2

, G(ξ) :=

(
1

(N + 1)D

∑

k

|ĝ(ξ, vk)|2
)1/2

.

By assumption, we have F,G ∈ L2
ξ. Following the standard arguments, we pick δ > 0 and we

split

ρ̂[ψ](ξ) =
1

(N + 1)D

∑

k

f̂(ξ, vk)ψ(vk)

=
1

(N + 1)D

∑

|ξ·vk|<δ|ξ|
f̂(ξ, vk)ψ(vk) +

1

(N + 1)D

∑

|ξ·vk|≥δ|ξ|
f̂(ξ, vk)ψ(vk).

Using Cauchy–Schwarz inequality and (2.1), we obtain the two following bounds

∣∣∣∣∣∣
1

(N + 1)D

∑

|ξ·vk|<δ|ξ|
f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞F (ξ)


 1

(N + 1)D

∑

|ξ·vk|<δ|ξ|
1




1/2

(2.2)

and
∣∣∣∣∣∣

1

(N + 1)D

∑

|ξ·vk|≥δ|ξ|
f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣
≤ ‖ψ‖∞G(ξ)


 1

(N + 1)D

∑

|ξ·vk|≥δ|ξ|

1

|ξ · vk|2




1/2)

. (2.3)

Then, the only terms left to control are

 ∑

|ξ.vk|<δ|ξ|
1


 and


 ∑

|ξ.vk|≥δ|ξ|

1

|ξ.vk|2


.
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(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 1: The delimited area corresponds to |ξ · vk| < δ|ξ| for ξ colinear to e1.

We start by dealing with the particular case of a ξ aligned with an axis (see Figure 1). On
each horizontal line we find 2bδNc+ 1 velocities such that |ξ · vk| < δ|ξ|, where bsc stands for
the integer part of s. Thus, since there is (N + 1)D−1 such lines on the domain AN , we obtain

∑

|ξ·vk|<δ|ξ|
1 = (2bδNc+ 1)(N + 1)D−1 = 2

(
δ +

1

N

)
(N + 1)D.

Coming back to (2.2), we arrive at

∣∣∣∣∣∣
1

(N + 1)D

∑

|ξ·vk|<δ|ξ|
f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣
≤ C F (ξ)

√
δ +

1

N
.

where C > 0 is a generic constant which does not depend on N and ξ.

(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 2: Splitting of the velocity space in strips of width δ. This space being
symmetric, we only deal with the part corresponding to positive abscissae.

The second term is handled quite similarly using the additional idea of splitting the velocity
space in strips of width δ (see Figure 2). We denote by Sp the p-th strip delimited by the
straight lines x = pδ and x = (p+1)δ. Each velocity on the strip Sp satisfies pδ ≤ v1

k ≤ (p+1)δ.
Moreover, given a strip Sp, we cannot find more than bδNc+1 abscissae in the strip and there

Nathalie Ayi
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is (N + 1)D−1 lines in the domain. It follows that

∑

|ξ·vk|≥δ|ξ|

1

|ξ · vk|2
≤ 1

|ξ|2 2


∑

p≥1

1

p2


 1

δ

(
1 +

1

δN

)
(N + 1)D.

Thus, we deduce from (2.3) that

∣∣∣∣∣∣
1

(N + 1)D

∑

|ξ·vk|≥δ|ξ|
f̂(ξ, vk)ψ(vk)

∣∣∣∣∣∣
≤ C G(ξ)

1

|ξ|
√
δ

(
1 +

1

δN

)1/2

.

We conclude that

|ρ̂[ψ](ξ)| ≤ C

(
F (ξ)

√
δ +

1

N
+G(ξ)

1

|ξ|
√
δ

(
1 +

1

δN

)1/2
)
. (2.4)

holds when ξ is aligned to the axis. The general case is actually not much difficult to prove
using the following splitting of the space. It is left to the reader.

(−0.5,−0.5)
•

(0.5, 0.5)
•

ξ

Figure 3: The area corresponding to |ξ · vk| ≤ δ|ξ| is delimited as previously.
The complementary set is split into strips of width δ.

Therefore, we have established that for all ξ 6= 0, we get (2.4) for all δ > 0. We take

δ =
1

|ξ|1{N≥|ξ|} +
1

N
1{N<|ξ|}

and we denote

ΘN (ξ) := ρ̂[ψ](ξ)1{N≥|ξ|}, ∆N (ξ) := ρ̂[ψ](ξ)1{N<|ξ|}.

We finally deduce from (2.4)

|ξ|ΘN (ξ)2 ≤ C(G2(ξ) + F 2(ξ)),

and

∆2
N (ξ) ≤ C

N

(
F 2(ξ) +G2(ξ)

)
,

which are also satisfied when ξ = 0. This concludes the proof by assumption on f and g.

Exp. no X— Stochastic discrete velocity averaging lemmas and Rosseland approximation
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3 Stochastic Discrete Velocity Averaging Lemmas

In this section, we now deal with random discrete velocities. Indeed, we can expect to make
the defect vanish when taking the expectation of the velocity averages. This is indeed the case
as shown in the following statement.

Theorem 3.1. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables,
distributed according to the continuous uniform distribution on [−0.5, 0.5]D. We set

dµ =
1

N

N∑

k=1

δ(v = Vk).

Let f, g ∈ L2(RD × RD × Ω, dxdµ(v) dP) satisfy for all x ∈ RD, ω ∈ Ω, and k ∈ {1, ...,N }

Vk · ∇xf(x, Vk) = g(x, Vk). (3.1)

Then, for all ψ ∈ C∞c (RD), the macroscopic quantity

ρ[ψ](x) :=
1

N

N∑

k=1

f(x, Vk)ψ(Vk) =

∫

RD

f(x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H1/2(RD) (and it is bounded in this space if the L2 norm of f and g is
bounded uniformly with respect to N ).

The proof is actually straightforward using the same strategy as in the previous section.
The difference with what has been done before appears when counting the velocities to bound
the terms involved in the macroscopic quantity. Denoting Mp the number of velocities in the
p-th strip (see Fig. 2), with the distribution adopted for the velocities, Mp actually follows a
binomial distribution of parameters N and δ. This leads to

|Eρ̂[ψ](ξ)| ≤ C
(
F (ξ)

√
δ +

G(ξ)

|ξ|
√
δ

)

and applying this inequality with δ = G(ξ)
|ξ|F (ξ)

, it leads to

|Eρ̂[ψ](ξ)| ≤ C
√
F (ξ)G(ξ)

1√
|ξ|
.

which concludes the proof by using the assumptions on f and g.

We can also adapt this stochastic averaging lemma to the case when the variable v lies on
the sphere, which is more adapted to our model which belongs to the radiative transfer theory.

Theorem 3.2. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables,
distributed according to the continuous uniform distribution on SD−1. We set

dµ =
1

N

N∑

k=1

δ(v = Vk).

Let f, g ∈ L2(RD × RD × Ω, dxdµ(v) dP) satisfy for all x ∈ RD, ω ∈ Ω, and k ∈ {1, ...,N }

Vk · ∇xf(x, Vk) = g(x, Vk).

Then, for all ψ ∈ C∞c (SD−1), the macroscopic quantity

ρ[ψ](x) :=
1

N

N∑

k=1

f(x, Vk)ψ(Vk) =

∫

RD

f(x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H1/2(RD).

The results can be extended to the Lp cases for 1 < p < ∞ by using an interpolation
argument as in [9, Theorem 2].

Nathalie Ayi
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Corollary 3.3. In Theorems 3.1 and 3.2, we assume that f and g belong to Lp(RD × V ×
Ω, dxdµ(v) dP) for some 1 < p < ∞, with V either RD or SD−1. Then Eρ[ψ] lies in the
Sobolev space W s,p(RD) with 0 < s < min(1/p, 1− 1/p) < 1.

We can equally extend the compactness statement to the L1 framework, by following [10].

Corollary 3.4. We consider a random set of velocities defined as inTheorem 3.1 or 3.2. Let(
fn
)
n∈N and

(
gn
)
n∈N be two sequences of functions defined on RD × V × Ω such that

i)
{
fn, n ∈ N

}
is a relatively weakly compact set in L1(RD × V × Ω, dxdµ(v) dP),

ii)
{
gn, n ∈ N

}
is bounded in L1(RD × V × Ω, dxdµ(v) dP),

iii) we have Vk · ∇xfn(x, Vk) = gn(x, Vk).

Then Eρn[ψ](x) = E
∫
fn(x, v)ψ(v) dµ(v) lies in a relatively compact set of L1(B(0, R)), for

any 0 < R <∞ (for the strong topology).

4 Application to the Rosseland Approximation

We go back to the problem of the Rosseland Approximation and more precisely we are in-
terested in the asymptotic behavior of the solutions of (1.1). Using our previous stochastic
averaging lemma, we actually are able to establish the following result.

Theorem 4.1. Let (Ω,A,P) be a probability space. Let V1, ..., VN be i.i.d. random variables
distributed according to the continuous uniform law on V . Then, we obtain a set VN of 2N
velocities in V by setting VN +j = −Vj, for all j ∈ {1, ...,N }. We denote the associated
discrete measure on V by

dµN (v) =
1

2N

2N∑

k=1

δ(v = Vk).

Let fε
∣∣
t=0

= f0
ε ≥ 0 satisfy

sup
ε>0, N ∈N

(
E
∫

RD

∫

V

(1 + ϕ(x) + | ln f0
ε |)f0

ε dµN (v) dx+ ‖f0
ε ‖L∞(Ω×Rd×V )

)
= M0 < +∞.

(4.1)
Let fε be a solution of the following equation

∂tfε(t, x, Vj) +
1

ε
Vj · ∇xfε(t, x, Vj) =

1

ε2
σ(ρε,N ) [ρε,N (t, x)− fε(t, x, Vj)] , (4.2)

with ρε,N (t, x) := 1
2N

∑2N
i=1 fε(t, x, Vj). We suppose that ρ ∈ [0,∞) 7→ σ(ρ) is a nonnegative

function such that for any 0 < R < ∞, there exists σ?(R) > 0 verifying 0 < 1/σ?(R) ≤
σ(ρ) ≤ σ?(R) and |σ′(ρ)| ≤ σ?(R) for any 0 ≤ ρ ≤ R. Then Eρε,N converges to EρN in
L2((0, T )× RD) as ε goes to 0 with 0 < T <∞ where EρN is solution of

∂tEρN + div(JN ) = 0,

σ(EρN )JN = −EAN ∇xEρN +O

(
1√
N

)
,

with AN the D ×D matrix with random components defined by

AN :=
1

2N

2N∑

j=1

Vj ⊗ Vj ,

and EρN

∣∣
t=0

is the weak limit of
∫
Ef0

ε dµ(v).

Sketch of the proof. The beginning consists in, after establishing them, using the following
entropy estimates :

sup
ε>0, N∈N

{
sup

0≤t≤T
E
∫

Rd

∫

V
(1 + ϕ(x) + | ln fε|)fε dµN (v) dx

+‖fε‖L∞(Ω×(0,T )×Rd×V)

}
≤ C(T ) < +∞

(4.3)

Exp. no X— Stochastic discrete velocity averaging lemmas and Rosseland approximation
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and

sup
ε>0, N∈N

E
∫ T

0

∫

Rd

∫

V

σ(ρε,N )

ε2
(fε − ρε,N ) ln

(
fε
ρε,N

)
dµN (v) dxdt ≤ C(T ). (4.4)

We recognize the Dunford-Pettis Criterion in (4.3) and it yields

fε ⇀ fN weakly in L1(Ω× (0, T )× Rd × VN ). (4.5)

Furthermore, we deduce from (4.4) that fε behaves like its macroscopic part, i.e. fε = ρε,N +
εgε,N with

sup
ε>0, N

E
∫ T

0

∫

RD

∣∣∣∣
∫

V
gε,N dµN (v)

∣∣∣∣
2

dxdt ≤ C(T ).

Indeed, we deduce it from the following inequality
∫

V

|fε − ρε,N |dµN (v) =

∫

V

(
√
fε +

√
ρε,N )

∣∣∣
√
fε −√ρε,N

∣∣∣ dµN (v)

≤
(∫

V

(
√
fε +

√
ρε,N )2 dµN (v)

)1/2(∫

V

(
√
fε −√ρε,N )2 dµN (v)

)1/2

≤ C√ρε,N
(∫

V

(fε − ρε,N ) ln(fε/ρε,N ) dµN (v)

)1/2

using the Cauchy-Schwarz inequality

|
√
b−√a|2 =

∣∣∣∣
∫ b

a

ds

2
√
s

∣∣∣∣
2

≤
∣∣∣∣
∫ b

a

ds

4s

∣∣∣∣
∣∣∣∣
∫ b

a

ds

∣∣∣∣ =
1

4
(b− a) ln(b/a).

We denote

Jε,N (t, x) :=
1

2N
2N∑

i=1

Vi
ε
fε(t, x, Vi), Pε,N (t, x) :=

1

2N
2N∑

i=1

Vi ⊗ Vifε(t, x, Vi).

Integrating (4.2) with respect to the velocity variable v yields

∂tρε,N + div(Jε,N ) = 0 (4.6)

and multiplying by v and integrating leads to

ε2∂tJε,N + div(Pε,N ) = −σ(ρε,N )Jε,N . (4.7)

Since fε = ρε,N + εgε,N , we have

Jε,N =

∫
vgε,N dµN (v),

and

Pε,N =

∫
v ⊗ v dµN (v)ρε,N + εKε,N (t, x)

with

Kε,N (t, x) :=

∫
v ⊗ vgε,N (t, x, v) dµN (v)

and using (4.5), we deduce that the sequence
(
Jε,N

)
ε>0

and the components of
(
Kε,N

)
ε>0

are bounded in L2(Ω× (0, T )× RD). Therefore (4.7) can be rewritten

ε
(
ε∂tJε,N + div(Kε,N )

)
+AN∇xρε,N = −νε,N

with νε,N := σ(ρε,N )Jε,N . Passing to the limit, up to subsequences, we are led to

{
∂tρN + div(JN ) = 0,

AN ∇ρN = −νN
(4.8)

where νN is the weak limit as ε→0 of νε,N , which is a bounded sequence in L2(Ω×(0, T )×RD).
It remains to establish a relation between νN , ρN and JN , or more precisely the expectation

Nathalie Ayi
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of these quantities. To this end, we are going to use the strong compactness of Eρε,N
by using the averaging lemma. Indeed, we know that Eρε,N belongs to a bounded set in
L2(0, T ;H1/2(RD)); the proof follows exactly the same argument as for Theorem 3.1 taking
the Fourier transform with respect to both the time and space variables t, x. However, because
of the ε in front of the time derivative, we can not expect a gain of regularity with respect to
the time variable. Then, we need to combine this estimate with another argument as follows:

(i) by using the Weil-Kolmogorov-Fréchet theorem, see [12, Th. 7.56], we deduce from the
averaging lemma that

lim
|h|→0

(
sup
ε

∫ T

0

∫

RD

|Eρε,N (t, x+ h)− Eρε,N (t, x)|2 dx dt

)
= 0,

(ii) Going back to (4.6),we deduce from above that ∂tEρε,N = −div(EJε,N ) is bounded,
uniformly with respect to ε, in L2(0, T ;H−1(RD)).

Then, this is enough to deduce that Eρε,N strongly converges to EρN in L2((0, T )×RD) (see
e.g. [1, Appendix B] for a detailed proof).
We conclude noticing that

EJε,N = E
(

νε,N
σ(ρε,N )

)
=

Eνε,N
σ(Eρε,N )

+ Erε,N ,

vith rε,N =

[
νε,N

(
1

σ(ρε,N )
− 1

σ(Eρε,N )

)]
. Using the strong convergence established above

and the assumptions on σ yields

EJε,N ⇀ EJN =
EνN

σ(EρN )
+ rN weakly in L2((0, T )× Rd)

where ‖rN ‖L2((0,T )×Rd) ≤
C√
N

. This last point can be easily proved using a classical proba-

bilistic argument.
Furthermore,

E (AN∇xρN ) = −EνN = −σ(EρN )EJN + σ(EρN )rN

and quite similarly we can prove that ,

E (AN∇xρN ) = EAN ∇xEρN + sN

where
sN = E [(AN − EAN )∇xρN ]

with sN of order O(1/
√
N ) in the L2(0, T ;H−1(Rd))−norm.
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