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Elementary number theory is done in the ring Z of integers. Here one
is interested in questions like divisibility which is the same as the sol-
vability of xa = b, solvability of diophantine equations including linear
equations, system of linear equations i, e. solvability of matrix equation

X A = B, arithmetical functions, prime factorization andg.c.d. etc...

These questions have been asked over a Dedekind domain ¢ also and can
be asked quite meaningfully in the set M of all matrices (with entries) in
v. We have tackled some such problems in M. At times we deal with ma-

trices over k ; k = the field of quotients of o,
The tools available are :

The theory developed by Siegel (Ann. of Maths, vol. 38, 1937) to deal
with matrices (including singular matrices) over the ring of integers of

an algebraic number field, which has been extended to the case of
Dedekind domains by Bhandari (Ph. D. Thesis, Panjab Univ., Chandigarh,
India, 1975). In particular, we use the existence of units, generalized
inverses, their properties and notion of discriminant of a matrix. To

recall :

Definition : Let A be any matrix in k (notation : A € k). An integral
matrix C (i.e. C € 0) of the same rank as that of A and satisfying CA=A

is called a left unit of A,

Such a unit exists. In fact, these are infinitely many unless the rank r(A)
of A equals the number of rows of A, in which case the identity matrix
is the only left unit of A, Similarly a matrix D € o with r(D) = r(A) and
satisfying AD = A is called a right unit of A. Further, if D] and D2



are right units of A, then DI D2 = Dl ; so that, in particular, units are

idempotents,

Definition : Given a matrix A with a left unit C, there exists a matrix
X with r(X) = r(A) satisfying AX = C. The additional condition DX = X
where D is a right unit of A, makes X unique. This unique X, denoted

by AT , is called the generalized C, D-inverse of A.

For a matrix A in k, §(A) stands for the ideal generated by r{A)-rowed

minors of A. It is called the discriminant of A. If A € o has discrimi-

nant 0, we say A is aprimitive matrix. If A is non-singular,

8(A) = (det A). So, primitive matrix is a generalization of a unimodular

matrix.

A matrix A is said to be left C-reduced (or C-reduced on left) if CA=A.

(2) The theory of modules over Dedekind domains, especially the theorem of
Chevalley and Steinitz, which helps reduce some of the problems to the
case of generalized diagonal matrices (i. e. direct sum of matrices of

rank 1).

{3) The observation that matrices of rank 1 behave almost like elements of ©
and especially the observation that A€ k, r(A) =1 is integral if and only
if 6(A) =o.

Let us first consider the solvability (in o) of

XA =8B (1)

Solvability of (I) imposes certain natural conditions on matrices A and B

e.g. BD =B for any right unit D of A, which incidentally also implies
that r~< (g)) = r(A). We shall assume that these necessary conditions are

always there and therefore we shall not mention them everytime. Clearly,

the solvability of (I) implies the solvability of
XAV =BV for any matrix V € o (11)

On the other hand, solvability of (II) would imply solvability of (I) provided
\/ is a "cancelable" matrix e.g. if V is a unimodular matrix or more gene-

rally if V is a left D-reduced matrix. So XA = B is solvable
® XAV =BV is solvable for any left D-reduced matrix VV € o

® YUAV = BV is solvable for primitive reduced matrices U and V.



This would be of any use if we can find primitive reduced matrices U, V

such that YAV is U'simple!. In this direction, we have proved :

The equivalence class YAV, U and V primitive reduced, contains a

matrix
A] 0O 00 0O O
+*
A =diagEA],...,An]= 0o Ab0. .. O
0 O 0 00O A

-]

where Ai are 2x2 rank 1 matrices and 6<Ai>\ 6<A for each 1.

+1)
Moreover ai = 6<Ai> are uniquely determined and are nothing but

8, (A) <5i—l (A)>—1 ; where by 61 (A) we mean the ideal generated by

i-rowed minors of A,

This is similar to the classical result of Smith over Z,*namely Smith
normal form of a matrix. We shall say therefore that A is in the gene-
ralized Smith normal form (S.N.F.) and write ANA* ; and that ai= 6<Ai
are S.N.F, invariants of A,

Using this we proved :

If r‘<(g>> = r(A) then XA =B has an integral solution

- (&) - e

& <A> ~L A , meaning thereby that 3 a primitive reduced matrix W

S such that WA = (g).

= (5) ~ A

The non-trivial part is to show that if 5((2)) = 6(A), then XA =B has

an integral solution. We first prove it in case A = diag ﬂA], ooy An] ,

and B = (b1 byeee bZn)' The solvability of (I) amounts to solving, for

odd i, (xi xi+l>Ai = <bi bi+l>' We show that under the hypothesis,

6(A1> \ 6<<bi bi+1>> so that (xi xi+l> is a 1x2 matrix whose discri-

minant is an integral ideal and hence is an integral matrix.



As it may not always be easy to apply these conditions, we give in terms

of S.N.F. invariants of A, a sufficient condition for the solvability of

(I); namely : If the last S.N.F. invariant @  of A divides the first S.N.F,
invariant b, of B i,e. if Gnl bl . Clearly di| bi Viis a necessary con-

1
dition for solvability of (I).

So it is of interest to determine S. N.F. invariants of matrices., We have

shown that

(i) S.N.F. invariants of A™! are just 0:\',... » 8, where Gyye0ey O

are S.N, F, invariants of A.

(ii) If (6(A), 6(8)) =0, A and B have a common unit then S.N.F. inva-
riants of AB are just e, bl yeoes ann where Qyseee, O are S.N.F.
invariants of A and bl’ ceny bn are S.N.F. invariants of B. This
is a generalization of a result of Newmann, In the absence of the con-
dition (G(A), 6(B)> =0, the result is false e. g. take A = (l ') and

0a
5-(_1 )

(iii) We generalize another result of Newmann and determine S.N.F. in-

A O . _ .
o B), under the condition (NA), 5(B)> =0, in terms

of those of A and B.

variants of (

Next we discuss the solvability of matrix equation
AX+YB =T (111)

under natural reduction conditions. If (NA), 6(B)> = 0, then (III) has

an integral solution. Consequently, in case <5(A), 5(B)> = o,

(% ;) ~ <% g) and S. N. F. invariants of (AO‘ -Br> are S.N,F, inva-
riants of 'g é))

Another question is the solvability of bilinear equation
XAY =b (1v)

This problem over Z was studied by Frobenius. In case of Dedekind

domains, we prove (a necessary and sufficient condition) :

If r(A) 22, then (IV) has an integral solution © 61 (A) | ob.



In case r(A) = 1, the result is false e. g. IetA=(3_V-_—5— 2+:\5/:—5>€Z[\/:—5—]
and b =1,

Next we take up another problem. If X A =B has an integral solution, then

we shall say that A is a right divisor of B (notation : AI B). Notice that

for any right unit D of B, AD=A. We fix up a right unit D of B and
consider only such divisors as are right D-reduced. Obviously the num-
ber of such A is infinite, because if A| B then for every primitive redu-
ced matrix VV, the matrix VA] B. So we identify A with the left equiva-
lent class containing A and ask if we can count the number of left inequi-
valent right divisors i. e. divisor classes of B. Again this number is infi-
nite unless the residue class ring 0/ ¢ is finite for all ideals @ 750. We
impose this condition on © and count the number of divisor classes of B.
Since divisors of equivalent matrices are in one-one correspondence,

we count the number of divisor classes of S.N.F. of B. To count this :

(i) We find, in left equivalence class of A, a matrix T in the generalized

Hermite normal form (H.N.F.). In case of rank 2, a matrix in {gene-

T 0

ralized) H.N.F. looks like T =( 1 > where T. are 2x1 matrices
T2 T3 i

and T3 belongs to a fixed system of "remainders! modulo T].

{ii) Count the number of right divisors in H.N.F, of S.N.F. of B.

This number turns out to be finite, We denote it by d(B) and call it
Ndivisor function!, In case r(B) =1, d(B) = d(8(B)). In case r(B) =2,
d(B) has recently been evaluated. In case r(B) = 3, the problem of
explict evaluation of d(B) is still unsoived, even for the special case
o=LZ,

As an application of S.N.F. of a matrix, we have shown the following :
If 8(A) = P1 . ps is the prime ideal decomposition of &(A), then there
exist matrices pl, ceny ps with é(pi) = Pi such that A = p1 cos ps. More-
over, p; and Pi+q have a common unit, Once it is proved for s = 2, it
follows for any s. In view of S. N,F., of A, it is enough to prove it in
case r{(A)=1. To tackle the problem there, the crucial result is :

ab
cd

ideal. Then there exists a 2x2 rank 1 matrix Ma = <

) be a rank 1 primitive matrix and let @ be any integral
9,8 g,b
9,¢ 9,d

Let M= <
) with



6<Ma> =4a, [f, in addition, M is an idempotent, then MMa = M‘1 .

Another application of these results is made by Sunder L al and V. C. Nanda
in their joint paper '"On coprime symmetric matrix pairs over Algebraic
number fields! to appear in Abh. Math. Sem. Univ. Hamburg Band 51,

U. Chirstian had considered ¢ function for matrices overZ, (#(c) = the num-
ber of coprime symmetric residue classes mod c). They extended the defini-
tion of ¢ to matrices over the ring of integers of an algebraic number field
and have given a recurrence formula for the evaluation of # and shown the

multiplicativity of ¢&.
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