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1. INTRODUCTION

Let R be a non commutative associative ring with unit 1. A left R- module M
is said to satisfy property (I) if every injective endomorphism of M is an auto-
morphism. It is well know that every artinian module satisfies property (), and
that the converse is false. A ring R is called left (resp right) I-ring if every left
(right) R-module with property (I) is artinian. Recall that a ring R is a left (resp
right) pure-semi-simple ring if every left (resp right) R-module is a direct sum of
indecomposables left (right ) R-modules . R is of finite representation type if R is
left (right) artinian and has finite many non isomorphic indecomposable left (right)
R-modules . We recall that the concept of finite representation type is left-right
symmetric. Following [7] a left R-module M is said to have property (S) if every
surjective endomorphism of M is an automorphism; R is called left (right) S-ring if
every left(right) R-module with property (S) is noetherian . An R-module is said
to be uniserial if its submodules are linearly ordered by inclusion . R is left (right)
serial if it is a direct sum of left (right) uniserial R-modules and R is serial if it is
both left and right serial. A duo-ring is a ring in which every one sided ideal is two
sided. Definitions and notations used in this paper can be found ind [8].

In this paper we prove that for a duo-ring R the following conditions are equiv-
alent.

1. Ris aleft I -ring.

R is of finite representation type.

R is left pure-semi-simple.

R is an artinian principal ideal ring (uniserial).
R is a left S-ring .

R is a right I-ring .

R is right pure semi-simple.

R is a right S-ring .

e I e

2. PRELIMINARY

Definition 2.1. Let R be a ring. A left R-module g M s said to satisfy property
(I) if all of its injective endomorphisms are automorphisms. R is called left (right)
I-ring if every left (right) R-module with property (I) is artinian. R is an I-ring
if it is a left and right I-ring. We recall that a ring R is a left (right) duo-ring if
every left (right) ideal of R is a two sided ideal. A left and right duo-ring is called
duo-ring.
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Proposition 2.1. If R is an I-duo ring then every prime ideal of R is a mazimal
ideal and further more the set of all prime ideals is finite .

Proof. Let P be a prime ideal of R. the factor ring R/P is an I-duo ring which
is a domain. Let K be the classical ring of fraction of R/P; K is a division ring,
hence the R/P-module K satisfies property (I). It follows that the module K
is artinian and that K = R/P. Let { P/l € L } the set of all prime ideals. If

I # m then Hom(R/P,, R/P,,) = {0}, it follows that the R-module M = @ R/P
leL
satisfies property (I) and hence L is a finite set. O

Corollary 2.1. The Jacobson radical J of any I—duo ring R is a nil ideal .

Proposition 2.2. Let R be a semi prime duo ring , then every one sided reqular
element of R is two sided regular.

Proof. Let x a one sided regular element of R . Assume that x is a right regular;
let y € R such that yzr =0 than

(zy)* ==z(yz)y =0

since R is semi prime and xy is nilpotent we have xy = 0 and hence y = 0. O

Proposition 2.3. Let R be a semi prime I—duo ring; then R is artinian.

Proof. Let R' = S™'R be the ring of fraction of R where S is the set of all regular
elements of R. Any endomorphism of the left R—module R’ is obtained by multipli-
cation by a element of R’ ; it follows that the R-module R’ satisfies property (I).
Since R is an]—ring, then R/ is an artinian R-module and hence R = R’. So R is
artinian. O

Theorem 2.1. Let R be an I-duo ring ; then R is artinian.

Proof. Tt follows from corollary 2.1 that the Jacobson radical J of R is a nil ideal.
Then every idempotent of R/J can be lifted to a idempotent of R. Since R/J is
a semi prime I—duo ring, it result from proposition 2.3is semi simple; and that R
is a semi-perfect ring. So R can be written

R=Re; @ Res P ... PR en,

where the ¢; ’s are central idempotents and each Re; is a local projectif R-module.
To prove that R is artinian, it is sufficient to prove that each Re; is artinian as
left R-module. Let f # 0 be an non surjective endomorphism of Re;. We have
f(Re;) C Jey, let us put f(e;) = reg;r € J. As J is a nil ideal, there exists an
integer n € N* such that r"e; # 0 and r"Tle; = 0. For this integer we have
f(rte;) = r"f(e;) = r"*le; = 0. Tt follows that f is not monic. So the R—module
Re; satisfies property (I). Hence Re; is artinian. O

Remark 2.1. (a) Every artinian duo-ring is a finite direct product of artinian
local duo-rings (b) It is proved in [3] that if R is an artinian local duo ring with

Jacobson radical J, then R is uniserial or R/J is a field.
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3. CHARACTERIZATION OF I-DUO RINGS

In what follows R will denote an artinian local duo-ring with Jacobson radical
J satisfying J? = 0. It results then from remarks 2.1 that if R has a non principal
ideal, then R/J is a field. We have then two cases : Case 1 : R/J is an infinite field
and dimp,;J/J* =2 Let H be a complete set of representants of (R/J)\ {0} H is
a infinite set. For h € H , set I = R(x1 — haa) where {T1 T2} is a basis of J/J?
over R/J ; and My, = R/I;.

Lemma 3.1. Ifh# h' are in H then x1 — has ¢ I

Proof. Assume that ©1 — hxy € Iy = R(x1 — hixe). Let @« € R\J such that
21 — hxy = a(x; — h'xzg) then (1 — @)z1 — (h— ah’) =0, it follows that 1 —«a € J
and h—ah’ € J Let m € J such that @ =1+ m. Since h — (1 + m)h' € J, we
have h — h' € J which contradicts the choice of H. O

Lemma 3.2. Let h,h' € H h # h'. If g : My — My, is an homomorphism of
R—modules then g(1+41y) is note invertible in the ring My:,. So g(1+1y) € J/1I},

Notation 3.1. If € R and h € H, we set x + I}, = xpr, -
Proof of lemma 3.2. We have
O, = 9(0ar,,) = gl(z1 — haz) + In] = (z1 — haz)g(1 + In),
hence ¢(1+ Ip,) is not invertible in My so g(1 4+ Ip,) € J/Ip: .
Corollary 3.1. Let f: @ My — & My, be an endomorphism of the R—module

heH heH
@ My,. If in and pp are respectively the canonical injection of My in € My
heH keH
and the canonical projection of @ My, on My, then ppo foin (1+1p) € J/Ip .
heH

If € @ M, =M, we note x = Y apep where e, = 1+ I}, and oy, € R, and

heH heH
f(eh) = E ﬂh/eh/ where Bh/eh/ = Phn’ © f o ih(eh). So ,Bh/ cJifh 75 h/. Let f be
h'eH

an injective endomorphism of M = @ M}, we have the following lemmas.
heH

Lemma 3.3. For every h € H, f(e) = Bren + Y. Bren; where By, & J.
h£h!

Proof. Let he H. If b € H and h' # h then, by lemma 3.1, we have

On # fl(z1 — Waz)en] = (21 — W'az)Bren,
it follows that §;, ¢ J . O
Lemma 3.4. JM CImf .

Proof. Let m be an element of J. For h € H, we have f(mey) = mfBrep. Since R
is a duo ring and 8y, ¢ J, there exists 8, € R\ J such that mg;, = §,m; we have
then mey, = f(B;;lmeh). So meyp € Imf and hence J.M C Imf. O

Lemma 3.5. For everyh e H ,ep, € Imf.
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Proof. Let h € H. By lemma 3.3 we have

flen) = Buen+ > BuewBn & J and By € J, forh # 1.

hath

Then Brep = f(eh) — Z Brrepr, S0 ep = f(ﬁ,:leh) - Z B;lﬂ;ﬁh/. Since f(ﬂ;leh)
hZh hZh!

and Y ﬂ;lﬁ;leh/ are in Imf then e, € Imf. O

h#h!
We can now state the following assertion.

Theorem 3.1. Let R be a local artinian duo ring with mazimal ideal J such thatJ? =
0. If R/J is an infinite field and dz’mR/JJ/J2 > 2 then there exists an non
artinian R-module M with property (I).

Case2: We assume that R/J is a finite field and that dimpg,;J/J? =2. In this

case the characteristic of the field R/J is a prime number p and the characteristic
of Ris p or p?. and hence R/J is a separable finite extension of Z(R)/J N Z(R)
where Z(R) is the center of R. It follows from[6] that there exists an artinian
principal ideal subring B of R such that R = B@ Bc as B— modules, where
c € J. Solet us set Bb the Jacobson radical of B, we have b% = bc = ¢ = 0.
In what follows homomorphism will be in the opposite side of the scalars. Let

Mg = R%N*) = @ e;R where e; = (07)jen- and
i€ N
1Ra ZfZ :.]
5 =
Gog, 1f T F ]
and let o:Mpr — Mg be the endomorphism of Mg given by :
0,ifi=1
o(ei) =
ei—1, if1>2

If 2z € R we denote L, the endomorphism of Mpr defined for m € Mg by
L.(m) = 2zm . Let A be the subring of EndMp generated by d = L.oo and
the elements L,, v € B . By the ring homomorphism

R=B@Bb— A

r4+yb— Ly + Lyod.
M has a structure of left R- module defined as follows
(x +yc)m = (Lg + Ly o d)(m).

Let now f be an injective endomorphism of rkM, we have (d.m)f = d.(m)f for
m € M. We shall prove the following lemmas.

Lemma 3.6. For every n € N*, we have d(e,)f = (cen—1)f, for n > 2, and
0= d(el)f
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Lemma 3.7. For every n € N*, we have

(en)f = knex

where o, 5 s tnvertible in R, and oy, € J for k > n.

Proof. Set (e1)f = aq,1e1 + > ;1€ Since cey # 0, then
i>1

clarg+ Y ine;) = (cer)f #0 (1)

i>1
But C(Z ai1ei—1) = co(on1e1 —|—Zamei) = col(e1)f] = (coer)f = (0)f =0 (2).
i>1 <1

So by (2), a1 € Jfori > 1 and by (1)ai 1 ¢ J.

Suppose now that

(en—1)f = E Qjp—1€; + Qp—1n—16n—1 + E O n—1€4,

<n—1 i>n—1
where ap_1n-1 ¢ J. and o1 € J for i > n — 1 ; and let us set (e,)f =
ZiZI a; ne;. Then
CU(Z ainei.) = colen)f = clen—1)f = (cen—1)f # 0.
i>1

Since (Y59 @inei-1.) = colen)f = clen—1)f = i1 CQin—1€i+Cn_1n—1€n-1,
where cay—1 n—1€n—1 # 0, then coy, n, # 0 and coy,, = 0 for @ > n. It follows then
that o, ¢ J and o, , € J for ¢ > n. O

Lemma 3.8. For every n € N*, we have J.e, C Imf.

Proof. Let m € J we have(me;)f = m(e1)f = maie;. Let oy, € R\ J such
that may ;= aj ;m, then (me;)f = o yme; hence me; = (af ;)" (me1)f € Imf.

Suppose that Jep C Imf for k <n—1 and let m € J, we have :

(men)f =Y cires
i,1

where a1 ¢ J anday; € J for i > 1.

Assume that for every k < n, e; € Im f. Since

(en)f = § Ck,n€k
€
where o,y is invertible and ¢, € J, we have

Qp n€Cn = (en)f - ch,nek € Imf
€

and so

en(ap hen)f — Za;ﬁei - @Jei
n>i nn
of gRM is strictly decreasing. O

We have proved the following result :
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Theorem 3.2. Let R be an artinian local duo ring with mazimal ideal J such that
J? = (0). If R/J is a finite field and dimp,; J/J? > 2 then there exists a non
artinian R-module with property (I).

We have the following theorem :

Theorem 3.3. Let R be a duo ring. The following statements are equivalent.
R is a left I—ring.

R is an uniserial Ting.

R is a left S—ring.

R is a left pure semi-simple ring.

R has a finite representation type.

R is a right I—ring.

R is a right S—ring.

8. R is a right pure semi-simple ring.

Nooe W

Proof. Tt suffices to proved the equivalence 1) <= 2).

1) = 2). By theorem 2.1 R is Artinian and by theorem 3.1 and theorem 3.2
R is necessarily a principal ideal ring .

(2) = (1) If R is an uniserial ring than every left R—module is a direct sum of
cyclic modules . Let M be an artinian R— module , since there is only finite non
isomorphic cyclic R—modules we can write M = KN @ L where K is cyclic
submodule of M . Since KV") does not satisfy property (I), it follows that M
does not satisfy property (I). O
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