ON I-DUO RINGS

AMADOU LAMINE FALL AND MAMADOU SANGHARE

This paper is dedicated to professor Souleymane NIANG

1. Introduction

Let R be a non commutative associative ring with unit 1. A left R- module Mis said to satisfy property (I) if every injective endomorphism of M is an automorphism. It is well know that every artinian module satisfies property (I), and that the converse is false. A ring R is called left (resp right) I-ring if every left (right)R-module with property (I) is artinian. Recall that a ring R is a left (respright) pure-semi-simple ring if every left (resp right) R-module is a direct sum of indecomposables left (right) R-modules . R is of finite representation type if R is left (right) artinian and has finite many non isomorphic indecomposable left (right) R-modules. We recall that the concept of finite representation type is left-right symmetric. Following [7] a left R-module M is said to have property (S) if every surjective endomorphism of M is an automorphism; R is called left (right) S-ring if every left(right) R-module with property (S) is noetherian. An R-module is said to be uniserial if its submodules are linearly ordered by inclusion. R is left (right) serial if it is a direct sum of left (right) uniserial R-modules and R is serial if it is both left and right serial. A duo-ring is a ring in which every one sided ideal is two sided. Definitions and notations used in this paper can be found ind [8].

In this paper we prove that for a duo-ring R the following conditions are equivalent.

- 1. R is a left I-ring.
- 2. R is of finite representation type.
- 3. R is left pure-semi-simple.
- 4. R is an artinian principal ideal ring (uniserial).
- 5. R is a left S-ring.
- 6. R is a right I-ring.
- 7. R is right pure semi-simple.
- 8. R is a right S-ring.

2. Preliminary

Definition 2.1. Let R be a ring. A left R-module RM is said to satisfy property (I) if all of its injective endomorphisms are automorphisms. R is called left (right) I-ring if every left (right) R-module with property (I) is artinian. R is an I-ring if it is a left and right I-ring. We recall that a ring R is a left (right) duo-ring if every left (right) ideal of R is a two sided ideal. A left and right duo-ring is called duo-ring.

Proposition 2.1. If R is an I-duo ring then every prime ideal of R is a maximal ideal and further more the set of all prime ideals is finite.

Proof. Let P be a prime ideal of R. the factor ring R/P is an I-duo ring which is a domain. Let K be the classical ring of fraction of R/P; K is a division ring, hence the R/P-module K satisfies property (I). It follows that the module K is artinian and that K = R/P. Let $\{P_l/l \in L\}$ the set of all prime ideals. If $l \neq m$ then $Hom(R/P_l, R/P_m) = \{0\}$, it follows that the R-module $M = \bigoplus_{l \in L} R/P$ satisfies property (I) and hence L is a finite set.

Corollary 2.1. The Jacobson radical J of any I-duo ring R is a nil ideal .

Proposition 2.2. Let R be a semi prime duo ring, then every one sided regular element of R is two sided regular.

Proof. Let x a one sided regular element of R . Assume that x is a right regular; let $y \in R$ such that yx = 0 than

$$(xy)^2 = x(yx)y = 0$$

since R is semi prime and xy is nilpotent we have xy = 0 and hence y = 0.

Proposition 2.3. Let R be a semi prime I-duo ring; then R is artinian.

Proof. Let $R' = S^{-1}R$ be the ring of fraction of R where S is the set of all regular elements of R. Any endomorphism of the left R-module R' is obtained by multiplication by a element of R'; it follows that the R-module R' satisfies property (I). Since R is an I-ring, then R' is an artinian R-module and hence R = R'. So R is artinian.

Theorem 2.1. Let R be an I-duo ring; then R is artinian.

Proof. It follows from corollary 2.1 that the Jacobson radical J of R is a nil ideal. Then every idempotent of R/J can be lifted to a idempotent of R. Since R/J is a semi prime I-duo ring, it result from proposition 2.3is semi simple; and that R is a semi-perfect ring. So R can be written

$$R = Re_1 \bigoplus Re_2 \bigoplus \dots \bigoplus R e_n,$$

where the e_i 's are central idempotents and each Re_i is a local projectif R-module. To prove that R is artinian, it is sufficient to prove that each Re_i is artinian as left R-module. Let $f \neq 0$ be an non surjective endomorphism of Re_i . We have $f(Re_i) \subseteq Je_i$, let us put $f(e_i) = re_i; r \in J$. As J is a nil ideal, there exists an integer $n \in N^*$ such that $r^n e_i \neq 0$ and $r^{n+1} e_i = 0$. For this integer we have $f(r^n e_i) = r^n f(e_i) = r^{n+1} e_i = 0$. It follows that f is not monic. So the R-module Re_i satisfies property (I). Hence Re_i is artinian.

Remark 2.1. (a) Every artinian duo-ring is a finite direct product of artinian local duo-rings (b) It is proved in [3] that if R is an artinian local duo ring with

Jacobson radical J, then R is uniserial or R/J is a field.

3. Characterization of I-duo rings

In what follows R will denote an artinian local duo-ring with Jacobson radical J satisfying $J^2=0$. It results then from remarks 2.1 that if R has a non principal ideal, then R/J is a field. We have then two cases: Case 1:R/J is an infinite field and $dim_{R/J}J/J^2=2$ Let H be a complete set of representants of $(R/J)\setminus\{\overline{0}\}H$ is a infinite set. For $h\in H$, set $I=R(x_1-hx_2)$ where $\{\overline{x}_1,\overline{x}_2\}$ is a basis of J/J^2 over R/J; and $M_h=R/I_h$.

Lemma 3.1. If $h \neq h'$ are in H then $x_1 - hx_2 \notin I_{h'}$

Proof. Assume that $x_1 - hx_2 \in I_{h'} = R(x_1 - htx_2)$. Let $\alpha \in R \setminus J$ such that $x_1 - hx_2 = \alpha(x_1 - htx_2)$ then $(1 - \alpha)x_1 - (h - \alpha ht) = 0$, it follows that $1 - \alpha \in J$ and $h - \alpha ht \in J$. Let $m \in J$ such that $\alpha = 1 + m$. Since $h - (1 + m)ht \in J$, we have $h - ht \in J$ which contradicts the choice of H.

Lemma 3.2. Let $h, h' \in H, h \neq h'$. If $g: M_h \longrightarrow M_{h'}$ is an homomorphism of R-modules then $g(1+I_h)$ is note invertible in the ring $M_{h'}$. So $g(1+I_h) \in J/I_{h'}$

Notation 3.1. If $x \in R$ and $h \in H$, we set $x + I_h = x_{M_h}$.

Proof of lemma 3.2. We have

$$0_{M_{h'}} = g(0_{M_h}) = g[(x_1 - hx_2) + I_h] = (x_1 - hx_2)g(1 + I_h),$$

hence $g(1+I_h)$ is not invertible in $M_{h'}$ so $g(1+I_h) \in J/I_{h'}$.

Corollary 3.1. Let $f: \bigoplus_{h \in H} M_h \longrightarrow \bigoplus_{h \in H} M_h$ be an endomorphism of the R-module $\bigoplus_{h \in H} M_h$. If i_h and $p_{h'}$ are respectively the canonical injection of M_h in $\bigoplus_{k \in H} M_k$ and the canonical projection of $\bigoplus_{h \in H} M_h$ on $M_{h'}$, then $p_h \circ f \circ i_h$ $(1 + I_h) \in J/I_{h'}$.

If $x \in \bigoplus_{h \in H} M_h = M$, we note $x = \sum_{h \in H} \alpha_h e_h$ where $e_h = 1 + I_h$ and $\alpha_h \in R$, and $f(e_h) = \sum_{h' \in H} \beta_{h'} e_{h'}$ where $\beta_{h'} e_{h'} = p_{h'} \circ f \circ i_h(e_h)$. So $\beta_{h'} \in J$ if $h \neq h'$. Let f be

an injective endomorphism of $M = \bigoplus_{h \in H} M_h$ we have the following lemmas.

Lemma 3.3. For every $h \in H$, $f(e_h) = \beta_h e_h + \sum_{h \neq h'} \beta_{h'} e_{h'}$; where $\beta_h \notin J$.

Proof. Let $h \in H$. If $h' \in H$ and $h' \neq h$ then, by lemma 3.1, we have

$$0_M \neq f[(x_1 - h'x_2)e_h] = (x_1 - h'x_2)\beta_h e_h,$$

it follows that $\beta_h \notin J$.

Lemma 3.4. $J.M \subseteq Imf$.

Proof. Let m be an element of J. For $h \in H$, we have $f(me_h) = m\beta_h e_h$. Since R is a duo ring and $\beta_h \notin J$, there exists $\beta'_h \in R \setminus J$ such that $m\beta_h = \beta'_h m$; we have then $me_h = f(\beta'_h^{-1} me_h)$. So $me_h \in Imf$ and hence $J.M \subseteq Imf$.

Lemma 3.5. For every $h \in H$, $e_h \in Imf$.

Proof. Let $h \in H$. By lemma 3.3 we have

$$f(e_h) = \beta_h e_h + \sum_{h \neq h'} \beta_{h'} e_{h'} \beta_h \notin J \text{ and } \beta_{h'} \in J, forh \neq h'.$$

Then
$$\beta_h e_h = f(e_h) - \sum_{h \neq h} \beta_{h'} e_{h'}$$
, so $e_h = f(\beta_h^{-1} e_h) - \sum_{h \neq h'} \beta_h^{-1} \beta_h' e_{h'}$. Since $f(\beta_h^{-1} e_h)$ and $\sum_{h \neq h'} \beta_h^{-1} \beta_h' e_{h'}$ are in Imf then $e_h \in Imf$.

We can now state the following assertion.

Theorem 3.1. Let R be a local artinian duo ring with maximal ideal J such that $J^2 = 0$. If R/J is an infinite field and $\dim_{R/J} J/J^2 \geq 2$ then there exists an non artinian R-module M with property (I).

Case 2: We assume that R/J is a finite field and that $dim_{R/J}J/J^2=2$. In this

case the characteristic of the field R/J is a prime number p and the characteristic of R is p or p^2 . and hence R/J is a separable finite extension of $Z(R)/J \cap Z(R)$ where Z(R) is the center of R. It follows from[6] that there exists an artinian principal ideal subring B of R such that $R = B \bigoplus Bc$ as B— modules, where $c \in J$. So let us set Bb the Jacobson radical of B, we have $b^2 = bc = c^2 = 0$. In what follows homomorphism will be in the opposite side of the scalars. Let

$$M_R = R_R^{(N^*)} = \bigoplus_{i \in N_*} e_i R$$
 where $e_i = (\delta_i^j)_{j \in N^*}$ and

$$\delta_i^j = \left\{ \begin{array}{l} 1_R, \ if \ i = j \\ \\ i_{0_R}, \ if \ i \neq j \end{array} \right.$$

and let $\sigma: M_R \longrightarrow M_R$ be the endomorphism of M_R given by :

$$\sigma(e_i) = \begin{cases} 0, & \text{if } i = 1 \\ e_{i-1}, & \text{if } i \ge 2 \end{cases}$$

If $z\in R$ we denote L_z the endomorphism of M_R defined for $m\in M_R$ by $L_z(m)=zm$. Let Λ be the subring of $EndM_R$ generated by $d=L_c\circ\sigma$ and the elements $L_x,\,x\in B$. By the ring homomorphism

$$R = B \bigoplus Bb \longrightarrow \Lambda$$

$$x + yb \longrightarrow L_x + L_y \circ d.$$

M has a structure of left R- module defined as follows

$$(x+yc)m = (L_x + L_y \circ d)(m).$$

Let now f be an injective endomorphism of ${}_RM$, we have (d.m)f=d.(m)f for $m\in M$. We shall prove the following lemmas.

Lemma 3.6. For every $n \in \mathbb{N}^*$, we have $d(e_n)f = (ce_{n-1})f$, for $n \geq 2$, and $0 = d(e_1)f$.

Lemma 3.7. For every $n \in \mathbb{N}^*$, we have

$$(e_n)f = \sum_{in} \alpha_{k,n} e_k$$

where $\alpha_{n,n}$ is invertible in R, and $\alpha_{k,n} \in J$ for k > n.

Proof. Set $(e_1)f = \alpha_{1,1}e_1 + \sum_{i>1} \alpha_{i,1}e_i$. Since $ce_1 \neq 0$, then

$$c(\alpha_{1,1} + \sum_{i>1} \alpha_{i,1} e_i) = (ce_1)f \neq 0$$
 (1).

But
$$c(\sum_{i>1} \alpha_{i,1}e_{i-1}) = c\sigma(\alpha_{1,1}e_1 + \sum_{1<1} \alpha_{i,1}e_i) = c\sigma[(e_1)f] = (c\sigma e_1)f = (0)f = 0$$
 (2).

So by (2), $\alpha_{i,1} \in Jfori > 1$ and by $(1)\alpha_{1,1} \notin J$.

Suppose now that

$$(e_{n-1})f = \sum_{i < n-1} \alpha_{i,n-1}e_i + \alpha_{n-1,n-1}e_{n-1} + \sum_{i > n-1} \alpha_{i,n-1}e_i,$$

where $\alpha_{n-1,n-1} \notin J$. and $\alpha_{i,n-1} \in J$ for i > n-1; and let us set $(e_n)f = \sum_{i \geq 1} \alpha_{i,n} e_i$. Then

$$c\sigma(\sum_{i\geq 1}\alpha_{i,n}e_{i}) = c\sigma(e_n)f = c(e_{n-1})f = (ce_{n-1})f \neq 0.$$

Since $c(\sum_{i\geq 2}\alpha_{i,n}e_{i-1}.)=c\sigma(e_n)f=c(e_{n-1})f=\sum_{i< n-1}c\alpha_{i,n-1}e_i+c\alpha_{n-1,n-1}e_{n-1},$ where $c\alpha_{n-1,n-1}e_{n-1}\neq 0$, then $c\alpha_{n,n}\neq 0$ and $c\alpha_{i,n}=0$ for i>n. It follows then that $\alpha_{n,n}\notin J$ and $\alpha_{i,n}\in J$ for i>n.

Lemma 3.8. For every $n \in \mathbb{N}^*$, we have $J.e_n \subseteq Imf$.

Proof. Let $m \in J$ we have $(me_1)f = m(e_1)f = m\alpha_{1,1}e_1$. Let $\alpha'_{1,1} \in R \setminus J$ such that $m\alpha_{1,1} = a'_{1,1}m$, then $(me_1)f = \alpha'_{1,1}me_1$ hence $me_1 = (\alpha'_{1,1})^{-1}(me_1)f \in Imf$.

Suppose that $Je_k \subseteq Imf$ for $k \le n-1$ and let $m \in J$, we have :

$$(me_n)f = \sum_{i,1} c_{i,1}e_i$$

where $\alpha_{1,1} \notin J$ and $\alpha_{i,1} \in J$ for i > 1.

Assume that for every k < n, $e_k \in \text{Im } f$. Since

$$(e_n)f = \sum_{\in} c_{k,n} e_k$$

where $\alpha_{n,n}$ is invertible and $c_{k,n} \in J$, we have

$$\alpha_{n,n}e_n = (e_n)f - \sum_{i \in I} c_{k,n}e_k \in \operatorname{Im} f$$

and so

$$e_n(\alpha_{n,n}^{-1}e_n)f - \sum_{n>i}\alpha_{i,n}^{-1}e_i - \bigoplus_{nn}Je_i$$

of $_{R}M$ is strictly decreasing.

We have proved the following result:

Theorem 3.2. Let R be an artinian local duo ring with maximal ideal J such that $J^2 = (0)$. If R/J is a finite field and $\dim_{R/J} J/J^2 \geq 2$ then there exists a non artinian R-module with property (I).

We have the following theorem:

Theorem 3.3. Let R be a duo ring. The following statements are equivalent.

- 1. R is a left I-ring.
- 2. R is an uniserial ring.
- 3. R is a left S-ring.
- 4. R is a left pure semi-simple ring.
- 5. R has a finite representation type.
- 6. R is a right I-ring.
- 7. R is a right S-ring.
- 8. R is a right pure semi-simple ring.

Proof. It suffices to proved the equivalence $1) \iff 2$.

- 1) \Longrightarrow 2). By theorem 2.1 R is Artinian and by theorem 3.1 and theorem 3.2 R is necessarily a principal ideal ring .
- $(2)\Longrightarrow (1)$ If R is an uniserial ring than every left R-module is a direct sum of cyclic modules . Let M be an artinian R- module , since there is only finite non isomorphic cyclic R-modules we can write $M=K^{(N^*)}\bigoplus L$ where K is cyclic submodule of M. Since $K^{(N^*)}$ does not satisfy property (I), it follows that M does not satisfy property (I).

References

- 1. Anderson, F.W. and Fuller, K.R., Rings and categories of modules, Springer Verlag (1973).
- Courter, R.C., finite dimensional right duo algebras are duo, Prooc . A.M.S 84(02) 1982, 157-161.
- Habeb, J., on azumaya 's exact rings and artinian duo rings .comm., in algebra 17(1) (1989) 237-245.
- Kaidi, A.M. et Sanghare, M., une caracterisation des anneaux artiniens à idéaux pricipaux, Lec.Notes in Maths 1328, Springer -verlag, 245-254
- Leradji, A. On duo rings, pure-semi simplicity and finite representation type, comm.in algebra 25(12) (1997) 3947-3952.
- 6. Pop, H.C., On the structure of artinian rings, comm.in algebra 15(11) (1987), 2327-2348.
- 7. Sanghare, M., On S-duo rings, comm. in algebra 20(8) (1992) 2183-2189.
- 8. WEIMIN XUE, Rings with Morita duality, Lec. Notes in Maths, 1523, Springer-Verlag(1992).

Département de Mathématique et informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Sénégal