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A characterization of strictly APF extensions

par Bryden CAIS, Christopher DAVIS et Jonathan LUBIN

Résumé. Soit K une extension finie de Qp. On donne des condi-
tions nécessaires et suffisantes pour qu’une extension infinie et
totalement sauvagement ramifiée L/K soit strictement APF au
sens de Fontaine-Wintenberger. Ces conditions se formulent en
termes d’une certaine suite croissante de corps entre K et L. Ces
conditions conviennent bien à la production d’exemples d’exten-
sions strictement APF, et en particulier notre théorème principal
démontre que les extensions “ϕ-iterate” considérées par les deux
premiers auteurs dans un article antérieur sont strictement APF.

Abstract. Let K denote a finite extension of Qp. We give nec-
essary and sufficient conditions for an infinite totally wildly ram-
ified extension L/K to be strictly APF in the sense of Fontaine-
Wintenberger. Our conditions are phrased in terms of the exis-
tence of a certain tower of intermediate subfields. These conditions
are well-suited to producing examples of strictly APF extensions,
and in particular, our main theorem proves that the ϕ-iterate ex-
tensions previously considered by the first two authors are strictly
APF.

1. Introduction
Let p be a prime and K a finite extension of Qp with residue field k and

valuation vK normalized so that vK(K×) = Z. Fix an algebraic closure K
of K, and for any subfield E of K containing K write GE := Gal(K/E).
Recall [13] that an infinite, totally wildly ramified extension L/K is said
to be arithmetically profinite (APF) if the upper numbering ramification
groups GuKGL are open in GK for all u ≥ 0. The field of norms machin-
ery of Fontaine–Wintenberger [13] functorially associates to any such APF
extension L/K a complete, discretely valued field XK(L) of equicharacter-
istic p and residue field k with the amazing property that the étale sites
of L and XK(L) are equivalent; in particular, one has a canonical isomor-
phism of topological groups GL ' Gal(XK(L)sep/XK(L)) that is compat-
ible with the upper numbering ramification filtrations. In certain special
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cases, this isomorphism plays a foundational role in Fontaine’s theory of
(ϕ,Γ)-modules [6] and in the integral p-adic Hodge theory of Faltings [5],
Breuil [2, 3], and Kisin [7], and in general provides a key ingredient of
Scholze’s recent theory of perfectoid spaces and tilting [10].

A famous theorem of Sen [11] guarantees that any infinite, totally wildly
ramifiedGalois extension L/K with Gal(L/K) a p-adic Lie group is strictly1
APF; however, there are many other interesting and important cases in
which one is given an infinite and totally wildly ramified extension L/K,
and one would like to decide whether or not L/K is strictly APF. Such
examples occur naturally in the theory of p-adic analytic dynamics as fol-
lows: Choosing a uniformizer π1 of K, let ϕ ∈ OK [[x]] be a power series
which reduces modulo π1 to some power of the Frobenius endomorphism
of k[[x]] and which fixes zero, and let {πn}n≥1 be a compatible system (i.e.,
ϕ(πn) = πn−1) of choices of roots of ϕ(n) − π1. The arithmetic of the rising
union L := ∪n≥1K(πn) is of serious interest (e.g., [9]). For example, if G is
a Lubin–Tate formal group over (the valuation ring of) a subfield F of K
and ϕ is the power series giving multiplication by a uniformizer of F , then
one may choose {πn}n≥1 so that L/K is the Lubin–Tate extension gener-
ated by the p-power torsion points of G in K. While it is true that L/K is
strictly APF if its Galois closure Lgal/K is [13, Proposition 1.2.3(iii)], it is
often very difficult or impossible in practice to describe Gal(Lgal/K), and
so Sen’s theorem is of limited use in these cases.

In this note, we establish the following elementary and explicit charac-
terization of strictly APF extensions:

Theorem 1.1. Let L/K be an infinite, totally wildly ramified extension.
Then L/K is strictly APF if and only if there exists a tower of finite exten-
sions {En}n≥2 of E1 := K inside L with L = ∪En and a norm-compatible
sequence {πn}n≥1 with πn a uniformizer of En such that:

(1) The degrees qn := [En+1 : En] are bounded above.
(2) If fn(x) = xqn + an,qn−1x

qn−1 + · · · + an,1x + (−1)pπn ∈ En[x] is
the minimal polynomial of πn+1 over En, then the non-constant
and non-leading coefficients an,i of fn satisfy vK(an,i) > ε for some
ε > 0, independent of n and i.

Moreover, if L/K is strictly APF, one may take {En} to be the tower of
elementary subextensions (see Definition 2.4) and {πn} to be any norm-
compatible sequence of uniformizers.

1The meaning of the strictness condition, whose definition (Definition 2.7) is somewhat tech-
nical, is that the norm field XK(L) of L/K admits a canonical embedding into the fraction field
Ẽ of Fontaine’s ring Ẽ+ := lim←−x 7→xp OCK

/(p); see also Remark 2.8 for a geometric interpretation
of strictness.
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As a consequence of our work, we are able to produce many concrete
examples of (typically non-Galois) strictly APF extensions as follows: let
π1 be a uniformizer of E1 := K; for n ≥ 1 and given En and πn ∈ En a
uniformizer, choose a monic polynomial ϕn(x) ∈ OEn [x] satisfying ϕn(0) =
0 and ϕn(x) ≡ xqn mod πnOEn for qn > 1 a power of p, and let πn be a
choice of root of fn(x) := ϕn(x)− πn−1 = 0. If the degrees qn are bounded
above and the non-leading and non-constant coefficients of the fn have vK-
valuation bounded below, then it follows at once from Theorem 1.1 that
L := ∪nEn is a strictly APF extension of K. In particular, the “ϕ-iterate”
extensions described above are always strictly APF.

In §4, we provide several examples of infinite, totally ramified exten-
sions L/K which are not APF, or which are APF but not strictly APF, to
illustrate the subtlety of these conditions.

As any strictly APF extension L/K has norm field XK(L) that is canon-
ically identified with a subfield of Fontaine’s field Ẽ, one can try to find a
canonical and functorial lift of XK(L) to a subring of Ã := W (Ẽ). Such
lifts play a crucial role in Fontaine’s classification [6] of p-adic representa-
tions of GL by étale ϕ-modules. The question of functorially lifting XK(L)
inside Ã is studied in [4] and [1], and the main theorem of the present paper
provides essential input for [4].

Remark 1.2. Much of Theorem 1.1 continues to hold if we allow K to
be an equicharacteristic local field. In particular, for {En} satisfying Con-
ditions (1) and (2), the field L := ∪En is a strictly APF extension of K.
Conversely, for L/K infinite totally wildly ramified and strictly APF and for
{En} the tower of elementary subextensions and {πn} a norm-compatible
sequence of uniformizers, Condition (2) continues to hold. (The proofs given
below in the mixed characteristic case work in the equal characteristic case
as well.) However, Example 4.4 below shows we cannot expect Condition (1)
to hold in general.

Remark 1.3. The proofs below produce an explicit lower bound for the
constant c(L/K) appearing in the definition of strictly APF (Definition 2.7).
The lower bound is given in terms of max qn and ε as in Theorem 1.1.

2. Transition functions and ramification
Following [8, §2], we briefly review the definition and properties of the

Herbrand transition functions, and recall the definitions of APF and strictly
APF as in [13, 1.2].

Let L/K be a finite, totally ramified extension contained in K, and πL
a uniformizer of L. Write vL for the valuation of K, normalized so that
vL(πL) = 1. Denote by G the Galois set of all K-embeddings of L into K,
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and for real t ≥ 0 set

Gt := {σ ∈ G : vL(σ(πL)− πL) ≥ t}.

We define the transition function

φL/K(u) := 1
[L : K]

∫ u

0
|Gt| dt;

it is a continuous, piecewise linear and increasing bijection on [0,∞), so we
may define ψL/K := φ−1

L/K , which is again continuous, piecewise linear and
increasing. For L′/L any finite, totally ramified extension contained in K,
one has the transitivity relations

(2.1) φL′/K = φL/K ◦ φL′/L and ψL′/K = ψL′/L ◦ ψL/K .

In practice, we may compute φL′/L as follows:

Proposition 2.1 ([8, Lemma 1]). Let L/K be finite and let L′/L be a finite,
totally ramified extension. Choose a uniformizer πL′ of L′ and let f(x) ∈
L[x] be the minimal polynomial of πL′ over L. Set g(x) := f(x+πL′) ∈ L′[x],
and let Ψg be the function whose graph is the boundary of the Newton
copolygon of g(x) =

∑
n≥1 bnx

n formed by the intersection of the half-planes
{y ≤ ix+ vK(bi)}i≥1. Then

(2.2) φL′/L(x) = eL/KΨg(x/eL′/K).

If L/K is finite Galois, then the Gt are the usual lower-numbering ram-
ification subgroups of G, and we define the ramification subgroups in the
upper-numbering to be Gt := GψL/K(t). Unlike the lower-numbering groups,
the Gt are well-behaved with respect to quotients: if K ′ is a finite Galois
extension of K contained in L then for H := Gal(L/K ′) E G one has
(G/H)t = GtH/H for all real t ≥ 0. It follows that by taking projective
limits, we may define the upper numbering filtration {Gt}t≥0 for any Galois
extension L/K, finite or infinite, contained in K; this is a separated and
exhaustive decreasing filtration of G by closed normal subgroups.

Remark 2.2. Because of our desire to have the simple description of φL′/L
given in Proposition 2.1, our transition functions differ from the ones consid-
ered by Serre [12] and Wintenberger [13] by a shift. Indeed, following [8, §2],
if SφL′/L and SψL′/L denote the transition functions defined by Serre [12,
IV §3], then one has the relations

φL′/L(x) = 1 + SφL′/L(x− 1) and ψL′/L(x) = 1 + SψL′/L(x− 1).

Correspondingly, the relation between our ramification groups Gt and Gt
and those defined by Serre SGt, SGt is through a shift of one: Gt = SGt−1
and Gt = SG

t−1.
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For any extension E of K contained in K, we define

(2.3) i(E/K) := sup
t≥0
{t : GtKGE = GK}.

Definition 2.3. Let L/K be an arbitrary (possibly infinite) totally ram-
ified extension of K contained in K. We say that L/K is arithmetically
profinite (APF) if GuKGL is open in GK for all u ≥ 0. If L/K is APF, we
define

(2.4) ψL/K(u) :=
∫ u

0
[GK : GvKGL] dv,

which is a continuous and piecewise linear increasing bijection on [0,∞),
and we write φL/K := ψ−1

L/K .

Observe that any finite totally ramified extension L/K is APF, and the
functions φL/K and ψL/K of Definition 2.3 coincide with the previously
defined transition functions of the same name. It follows from the definition
that if L/K is an infinite APF extension, then the set of ramification breaks
{b ∈ R≥0 : Gb+εK GL 6= GbKGL ∀ ε > 0} is discrete and unbounded, so we
may enumerate these real numbers as b1 < b2 < . . ..

Definition 2.4. The n-th elementary subextension of L/K is the subfield
Kn of K fixed by Gbn

KGL.

We note that each Kn is a finite extension of K contained in L, that
L is the rising union of the Kn, and that Kn+1/Kn is elementary of level
in for in := i(Kn+1/Kn) = i(L/Kn) in the sense that there is a unique
break at u = in in the filtration {GuKn

GKn+1}u≥0 of GKn . Equivalently, the
transition function φKn+1/Kn

is the boundary function of the intersection
of the two half-planes y ≤ x and y ≤ [Kn+1 : Kn]−1(x − in) + in, and has
a single vertex at (in, in). As in [13, 1.4.1], it follows that {in}n≥1 is an
increasing and unbounded sequence, and that one has

(2.5) bn = i1 + i2 − i1
[K2 : K1] + i3 − i2

[K3 : K1] + · · ·+ in − in−1
[Kn : K1] ,

with {bn}n≥1 increasing and unbounded. It follows easily from definitions
that the vertices of the function φL/K of Definition 2.3 are {(in, bn)}n≥1, and
the slope of the segment immediately to the right of (in, bn) is [Kn+1 : K]−1.

We will make use of the following characterization:
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Proposition 2.5. Let {En}n≥2 be a tower of finite extensions of E1 := K
and let L = ∪n≥1En be their rising union. Set Φn := φEn/K and define
αn := sup{x : Φn+1(x) = Φn(x)}. Then L/K is APF if and only if the
following two conditions hold:

(1) We have limn→∞ αn =∞. In particular, the pointwise limit Φ(x) :=
limn→∞Φn(x) exists, and moreover, for fixed x1, we have Φ(x) =
Φn(x) for all x ≤ x1 and all n sufficiently large.

(2) The function Φ(x) of (1) is piecewise linear and continuous, with
vertices {(in, bn)}n≥1 where {in} and {bn} increasing and unbounded
sequences.

If L/K is APF, then Φ(x) = φL/K for φL/K as in Definition 2.3.

Proof. Assume first that the two numbered conditions hold. From the as-
sumption that the {bn} sequence is unbounded, we know the inverse func-
tion Φ−1(x) is defined for all x ≥ 0 and is the pointwise limit of Φ−1

n (x) (for
any x, we have Φ−1(x) = Φ−1

n (x) for all n suitably large). By definition,
Φ−1
n (x) = φ−1

En/K
(x) = ψEn/K(x). Thus, the convergence condition (and

the definition of ψ) implies that for any u we have [GK : GuKGEn ] = [GK :
GuKGEn+1 ] for all n suitably large. Writing momentarily K ′ for the fixed
field of GuK acting on K, it follows that K ′ ∩ En = K ′ ∩ En+1 for all n
sufficiently large. Hence this intersection is also equal to K ′ ∩L and so, for
fixed u, we find [GK : GuKGEn ] = [GK : GuKGL] for n suitably large. In
particular, GLGuK is of finite index—and hence open—in GK for every u,
and L/K is APF.

Now assume L/K is APF, and let {Kn} be the associated tower of el-
ementary extensions as in Definition 2.4. We have limn→∞ i(L/Kn) = ∞
by [13, 1.4.1]. This implies that for any fixed u, there exists n0 := n0(u)
with [GKn : GuKn

GL] = 1 and hence ψL/Kn
(u) = u for all n ≥ n0. As

L = ∪Em, for any u there exists m0 = m0(u) with Em ⊇ Kn0(u) when-
ever m ≥ m0(u). We then have αm+1 ≥ u for all m ≥ m0(u); as u
was arbitrary, this implies (1). It follows that Φ := limn→∞Φn is well-
defined, piecewise linear and continuous, and is the unique such function
with Φ′(u) = [GK : GuKGL]−1 whenever u is not the x-coordinate of a ver-
tex. In particular, Φ = φL/K for φL/K as in Definition 2.3; since L/K is
APF we conclude that (2) holds. �

Corollary 2.6 ([13, 1.4.2]). Set E1 := K and for n ≥ 1, assume that
En+1/En is elementary of level in with {in} strictly increasing and un-
bounded, and let {bn} be given by (2.5). Then L := ∪nEn is an APF ex-
tension of K if and only if {bn} is unbounded. Moreover, if L/K is APF,
then En is the n-th elementary subextension of L/K as in Definition 2.4.
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Definition 2.7 ([13, 1.4.1]). Let L/K be an infinite APF extension with
associated elementary tower {Kn}, and recall the function i(·) of (2.3). We
define

c(L/K) := inf
u≥i(L/K)

ψL/K(u)
[GK : GuKGL] = inf

n

in
[Kn+1 : K]

for in := i(Kn+1/Kn) = i(L/Kn). We say that L/K is strictly APF if
c(L/K) > 0.

Remark 2.8. If L/K is an infinite APF extension, it follows immediately
from Definition 2.7 and the discussion preceding Proposition 2.5 that the
constant c(L/K) is equal to inf vnmn where vn is the x-coordinate of the n-
th vertex of φL/K and mn is the slope of the segment of φL/K immediately
to the right of vn. Thus, L/K is strictly APF if and only if the sequence
{vnmn} is bounded below by a constant c > 0. More geometrically, the
strictness condition is equivalent to [GK : GuKGL]−1 ≥ c/u for u ≥ i(L/K),
which, upon integrating, is equivalent to the bound

φL/K(x) ≥ c log(x) + d for d := i(L/K)− c log(i(L/K))

for all x ≥ i(L/K).

Lemma 2.9. Let {En}n≥2 be a tower of finite extensions of E1 := K and
L := ∪nEn. Suppose that L/K is APF, and let Φ and Φn be the transition
functions of Proposition 2.5. Let Vn be the set of x-coordinates of vertices
of Φn, and for v ∈ Vn let mv be the slope of the segment of Φn immediately
to the right of v. Then

c(L/K) ≥ lim inf
n→∞

(
min
v∈Vn

vmv

)
.

Proof. Writing V for the set of x-coordinates of vertices of Φ, we have
c(L/K) = infv∈V vmv by Remark 2.8. This means that for any ε > 0, we can
find v ∈ V such that vmv < c(L/K) + ε. It follows from Proposition 2.5(1)
that any vertex v of Φ is a vertex of Φn for all n sufficiently large, and the
slopes of the segments on Φ and Φn to the immediate right of v agree. Thus
minv∈Vn vmv < c(L/K) + ε for all n sufficiently large, which completes the
proof. �

3. Proof of Theorem 1.1
From now until the end of Proposition 3.3, fix an infinite totally wildly

ramified extension L/K with a tower of subextensions {En} satisfying Con-
ditions (1) and (2) from Theorem 1.1. We will show that such an extension
L/K is strictly APF, thus proving one direction of Theorem 1.1.
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Lemma 3.1. Let fn(x) and πn be as in Theorem 1.1(2). Write
fn(x) = xqn + an,qn−1x

qn−1 + · · ·+ an,1x+ (−1)pπn,
so

(3.1) gn(x) := fn(x+ πn+1) =
qn∑
i=1

bn,ix
i, for bn,i :=

∑
j≥i

an,j

(
j

i

)
πj−in+1.

Let 1 > ε > 0 be such that vK(an,i) > ε for all 0 < i < qn. If 0 < i < qn,
then vK(bn,i) > ε.

Proof. If j 6= qn, then vK(an,j) > ε by hypothesis, so vK
(
an,j

(j
i

)
πj−in+1

)
> ε.

If j = qn and 0 < i < qn, then vK
(j
i

)
≥ vK(p) ≥ 1. �

Proposition 3.2. The extension L/K is APF.

Proof. We prove this by verifying Conditions (1) and (2) of Proposition 2.5.
We begin with Condition (1). Because Φn+1(x) = Φn(φEn+1/En

(x)), we
know that Φn+1(x) = Φn(x) for all x ≤ v, where v is the x-coordinate of
the first vertex of φEn+1/En

(x). Let q := max(qn), let ε be as in Lemma 3.1,
and set x0 := ε

q . We claim that v ≥ eEn+1/Kx0, which will complete the
verification of Condition (1). By Proposition 2.1, it suffices to show that
the first vertex of Ψgn(x) has x-coordinate at least x0, where as usual
gn(x) := fn(x + πn+1) and fn(x) is the minimal polynomial of πn+1 over
En. From Lemma 3.1, the only contribution to the Newton copolygon of
gn(x) with y-intercept 0 occurs with slope qn. All other contributions to
the Newton copolygon have positive slope and y-intercept at least ε. The
line y = qnx crosses the line y = ε at x = ε/qn ≥ ε/q, as required.

We now verify that Condition (2) of Proposition 2.5 holds. We have seen
that Φ(x) = Φn(x) for all x ≤ eEn+1/Kx0. If max(qn) = ps, then Φn(x)
has at most ns vertices and so ins+1 ≥ eEn+1/Kx0, and in particular, the
sequence {in} is unbounded. It remains to check that the {bn} sequence
is unbounded. Because Φ(x) is monotone increasing, it suffices to show
that limx→∞Φ(x) = ∞. This will follow from the claim that for any x ≥
eEn+1/Kx0, we have Φ(x) ≥ q1x0 + (q2−1)x0 + · · ·+ (qn−1)x0. To see this,
notice that between x = eEi/Kx0 and x = eEi+1/Kx0, the slope of Φ(x) is at
least 1

eEi/K
= 1

q1···qi−1
. We then compute that for x ≥ eEn+1/Kx0, we have

Φ(x) ≥ q1x0 + 1
q1

(q1q2 − q1)x0 + · · ·+ 1
q1 · · · qn−1

(q1 · · · qn − q1 · · · qn−1)x0,

which completes the proof. �

Proposition 3.3. The extension L/K is strictly APF.

Proof. By Proposition 3.2, we know that L/K is APF; let Φn(x) and Φ(x)
be the functions of Proposition 2.5 and let Vn be the set of x-coordinates
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of vertices of Φn. For x0 = ε/q as in the proof of Proposition 3.2, we will
prove that
(3.2) min

v∈Vn

vmv ≥ x0;

it will then follow from Lemma 2.9 that L/K is strictly APF.
We will prove (3.2) using induction on n. In the proof of Proposition 3.2,

we showed that any v ∈ V2 satisfies v ≥ q1x0; on the other hand, the slopes
of Φ2(x) are all at least 1/q1. This settles the base case n = 2. For the
inductive step, let v ∈ Vn+1 and consider the following two cases:

(1) Assume v < eEn+1/Kx0. In this range, Φn+1(x) = Φn(x) and we are
finished by the inductive hypothesis.

(2) Assume v ≥ eEn+1/Kx0. Then

vmv ≥ eEn+1/Kx0mv ≥ eEn+1/Kx0 · e−1
En+1/K

= x0. �

Proposition 3.3 concludes the proof that L/K is strictly APF, giving
one direction of Theorem 1.1. The remainder of this section is devoted to
proving the converse.

We now fix an infinite and totally wildly ramified strictly APF extension
L/K, and let {Kn}n≥1 be the associated tower of elementary extensions as
in Definition 2.4, so that K1 = K and Kn+1/Kn is elementary of level in;
we set qn := [Kn+1 : Kn], so that [Kn+1 : K] = q1q2 · · · qn. Let πn ∈ Kn be
any choice of a norm-compatible family of uniformizers.2

Proposition 3.4. Let
fn(x) = xqn + an,qn−1x

qn−1 + · · ·+ an,1x+ (−1)pπn
denote the minimal polynomial of πn+1 over Kn. Then the valuations of the
coefficients vK(an,i) for 0 < i < qn are bounded below by a positive constant
(independent of n and i).

Proof. We prove this by contradiction. As L/K is strictly APF, there exists
c > 0 such that

(3.3) inf
n

in
q1 · · · qn

≥ c.

Suppose that
(3.4) vK(an,i) < c

for some n and i. From (3.3) and (3.4) we will reach a contradiction.
2Such a choice exists as L/K is (strictly) APF. Indeed, the norm field of L/K is by definition

XK(L) := lim←−E∈EL/K
E, where EL/K is the collection of finite extensions of K in L and the

limit is taken with respect to the Norm mappings. For any nonzero (αE)E ∈ XK(L), one defines
v(α) := vK(αK). By [13, 2.2.4, 2.3.1], one knows that (XK(L), v) is a complete, discretely
valued field with residue field k, and any choice of uniformizer in XK(L) corresponds to a norm-
compatible sequence (πE)E with πE a uniformizer of E.
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Because Kn+1/Kn is elementary, from the discussion following
Definition 2.4 we know that the transition function φKn+1/Kn

(x) has a
unique vertex (in, in). By Proposition 2.1, this means that for gn(x) :=
fn(x+πn+1), the copolygon boundary function Ψgn(x) has a unique vertex
with x-coordinate in/(q1 · · · qn). By the correspondence between Newton
polygons and copolygons (see for example [8, §1]), we know that the New-
ton polygon of gn has exactly one segment of slope

(3.5) −in
q1 · · · qn

≤ −c,

where the inequality follows from (3.3). On the other hand, writing gn(x) =∑
j≥1 bn,ix

i we have

(3.6) vK(bn,i) = vK

∑
j≥i

an,j

(
j

i

)
πj−in+1

 = min
j≥i

vK

(
an,j

(
j

i

)
πj−in+1

)
as the valuations of the nonzero terms in the sum are all distinct: in fact,
they are all distinct modulo 1/(q1 · · · qn−1). Now, using (3.4), we have
vK(bn,i) ≤ vK

(
an,i

(i
i

)
π0
n+1

)
< c.

We now compute the Newton polygon associated to gn. It must pass
through the point (qn, 0) and by the discussion in the previous paragraph,
it must pass below the point (i, c). Such a Newton polygon has slope strictly
greater than (i.e., negative and smaller in absolute value than) −c

qn−i ≥ −c.
This contradicts (3.5). �

Proposition 3.5. With notation as in Proposition 3.4, the degrees qn are
bounded above.
Proof. The proof is similar to the proof of Proposition 3.4. As L/K is
strictly APF, we can find a positive constant c such that for all n,

in
q1 · · · qn

≥ c.

Since Kn+1/Kn is elementary, the Newton polygon of fn(x+πn+1) consists
of a single segment with slope having absolute value greater than or equal
to c. In the notation of (3.6), this implies that

c ≤ vK(bn,1)
qn − 1 =

vK
(∑

j≥1 an,j
(j

1
)
πj−1
n+1

)
qn − 1 ≤

vK
(
qnπ

qn−1
n+1

)
qn − 1

=
vK(p) · logp(qn) + qn−1

q1···qn

qn − 1 .(3.7)

This implies {qn}n≥1 is bounded. �

Remark 3.6. Notice that in the equicharacteristic case, the term vK(p)
appearing in (3.7) is vK(0), and so our argument fails. See also Example 4.4.
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Proof of Theorem 1.1. The content of Theorem 1.1 is that, in order for L/K
to be strictly APF, it is necessary and sufficient that there exist a tower of
subfields satisfying Conditions (1) and (2). That an infinite totally wildly
ramified extension containing such a tower of subextensions is strictly APF
follows from Proposition 3.3. That the tower of elementary subextensions
of a strictly APF extension, together with any norm-compatible family of
uniformizers, satisfies Conditions (1) and (2) follows from Proposition 3.4
and Proposition 3.5. �

4. Examples
We conclude with examples which illustrate the subtlety of the APF and

strictly APF conditions.

Example 4.1. Fix a sequence of positive integers {rn}n≥1 and set qn :=
prn . Let K be a finite extension of Qp, choose a uniformizer π1 of K, and for
n ≥ 1 recursively choose a root πn+1 of fn(x) := xqn + π1x+ (−1)pπn = 0.
Set E1 := K and for n ≥ 2 let En+1 := En(πn+1) and put L = ∪n≥1En.

We first claim that En+1/En is elementary of level in=q1q2 · · · qn/(qn−1).
As in the proof of Proposition 3.4, we would like to show that the Herbrand
transition function φEn+1/En

(x) has exactly two segments: a segment of
slope 1 from x = 0 to x = in, and a segment of slope 1/qn for x > in.
Equivalently, it suffices to show that the Newton polygon of fn(x + πn+1)
has exactly one segment of slope −in/eEn+1/K . (As always, we use the vK
valuation for drawing Newton polygons.)

Using that qn is a power of p, the binomial theorem shows that the
Newton polygon of fn(x + πn+1) is the lower convex hull of the collection
of vertices containing (1, 1), (qn, 0), and other vertices with y-coordinate
at least 1. Hence the Newton polygon consists of a single segment of slope
−1/(qn − 1). Thus in = q1q2 · · · qn/(qn − 1), as desired.

Notice that the sequence {in}n is strictly increasing. We may thus use
Corollary 2.6 to analyze the extension L/K. Define bn as in (2.5). Sub-
stituting in = q1q2 · · · qn/(qn − 1) into the definition of the terms bn, we
find

bn = q1
q1 − 1 +

n∑
k=2

(
qk

qk − 1 −
1

qk−1 − 1

)
,

and it follows from Corollary 2.6 that L/K is APF for every choice of qn
(i.e., for every choice of rn). On the other hand, by Definition 2.7, L/K is
strictly APF if and only if

inf
n>0

in
[En+1 : K] = inf

n>0

1
(qn − 1) > 0.

In other words, the extension L/K is strictly APF if and only if the degrees
qn are bounded above.
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Example 4.2. Fix an increasing sequence {sn}n≥1 of positive integers and
let K be a finite extension of Qp with absolute ramification index e. Choose
a uniformizer π1 of K, set E1 := K and for n ≥ 2 recursively choose πn+1
a root of xp + πsn

n x− πn = 0 and put En+1 := En(πn+1). Set L = ∪n≥1En.
As in Example 4.1, if we assume that sn ≤ pn−1e, we compute that

En+1/En is elementary of level in = psn/(p − 1), and because we have
chosen sn to be an increasing sequence, we may again apply Corollary 2.6.
With bn as in (2.5), we compute

bn = ps1
p− 1 + p

p− 1

n∑
k=2

sk − sk−1
pk−1 .

As the following examples illustrate, whether or not the extension L/K is
APF, strictly APF, or neither, depends crucially on the choice of sn:

(1) If one takes sn = n, then the bn terms are increasing but bounded.
In this case, the extension L/K is not APF.

(2) Assume p ≥ 5 and take sn = bpn−1/nc. Then {in}n≥1 is strictly
increasing (using the hypothesis p ≥ 5). Moreover, the sequence
{bn}n≥1 is increasing and unbounded and so L/K is APF, but

inf
n>0

in
[En+1 : K] = inf

n>0

sn
pn−1(p− 1) = 0,

and so L/K is APF but not strictly APF.
(3) If we take sn = pn−1, then {bn}n≥1 is increasing and unbounded,

and
inf
n>0

sn
pn−1(p− 1) = 1

p− 1 > 0,

so L/K is strictly APF.

Remark 4.3.
(1) Assume L/K is an infinite totally wildly ramified strictly APF ex-

tension. One cannot expect that Condition (1) of Theorem 1.1 holds
for every tower of subextensions {En}. For example, for K a finite
extension of Qp and π1 a uniformizer of K, consider the exten-
sion L/K formed by recursively extracting roots of the polynomials
fn(x) = xp

n −πn. These polynomials determine the same extension
as the polynomials fn(x) = xp−πn; however the former collection of
polynomials has unbounded degrees, while the degrees in the latter
collection are all equal to p.

(2) The authors do not know whether Condition (2) of Theorem 1.1
holds for every tower of subextensions and every norm-compatible
choice of uniformizers.
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Example 4.4. Here we give an example to show that the full strength of
our theorem does not hold in characteristic p; see Remark 1.2 for positive
results. Assume K is a local field of characteristic p, and let π1 ∈ K denote
a uniformizer. Consider the polynomials

fn(x) = xp
n + πp

n

1 x− πn,

and let πn+1 denote a root of fn(x). Set En+1 := En(πn+1) and L := ∪En.
We claim that L/K is strictly APF, and that {En} is the associated tower
of elementary extensions. Because the degrees deg fn = pn are unbounded,
this shows that Theorem 1.1 is not true for local fields of characteristic p.

We compute fn(x+ πn+1) = xp
n + πp

n

1 x and so the Newton polygon is a
single segment with slope

−pn

pn − 1 = −in
p · p2 · · · pn

,

which implies

in = p · p2 · · · pn · pn

pn − 1 .

This is a strictly increasing sequence, so we can apply Corollary 2.6 as
above. One checks that the sequence {bn} defined by (2.5) is increasing and
unbounded and

inf
n

in
[En+1 : E1] > 0.

Corollary 2.6 then shows that L/K is strictly APF, as desired.

Remark 4.5. Theorem 1.1 is perhaps better suited to producing strictly
APF extensions than to establishing whether a given extension L/K is
strictly APF. For example, consider the extension Qp(µp∞ , p1/p∞)/Qp. This
is a Galois extension with Galois group a p-adic Lie group, hence is strictly
APF extension by Sen’s theorem [11, §4]. However, the authors do not know
how to verify this fact using Theorem 1.1, because we do not know how
to select a tower {En}n≥1 and a norm-compatible family of uniformizers
{πn}n≥1 which is amenable to explicitly computing the polynomials fn as
in the statement of Theorem 1.1.
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