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The Artin-Mazur Zeta Function of a Dynamically
Affine Rational Map in Positive Characteristic

par ANDREW BRIDY

RESUME. Soit k un corps algébriquement clos de caractéristique
positive. Nous déterminons la rationalité ou la transcendance de la
fonction zéta d’Artin-Mazur d’une fonction dynamiquement affine
PY(k) — P(k).

ABSTRACT. We determine the rationality or the transcendence of
the Artin-Mazur zeta function of a dynamically affine self-map of
P! (k) for k an algebraically closed field of positive characteristic.

1. The Artin-Mazur Zeta Function

Let X be a set and let f : X — X define a dynamical system. Let
Per,(f) = {z € X : f*(z) = x}, where f™ denotes the composition of f
with itself n times. The Artin-Mazur zeta function of this dynamical system
is the formal power series given by

) n
C(f, X;t) =exp (Z #Pern(f)n> .
n=1
Assume that # Per, (f) < oo for all n, as otherwise ( is not defined. The
power series ((f, X;t) has rational coefficients, and it is not hard to show
that ((f, X;t) € Z[[t]] by means of the product formula

«rxt=I1 (1 —t‘Cl)_l.

cycles C

This zeta function was introduced by Artin and Mazur in [2], where it
is studied for X a manifold and f a diffeomorphism. In this setting, only
the isolated periodic points are counted. This will not be an important
distinction for our purposes.

This paper continues the study of the following question, introduced in [4]
for polynomials, but just as easily phrased for rational functions.

Question 1.1. For which f € Fy(z) is ((f,PY(F,);t) rational?

Manuscrit regu le 24 février 2014, accepté le 28 juin 2014.
Mathematics Subject Classification. 37P05, 11G20, 11B85.
Mots-clefs. Arithmetic dynamics, algebraic groups, automatic sequences, finite fields.



302 Andrew BRIDY

The purpose of this paper is to answer this question for rational maps
that are dynamically affine. These are maps that, loosely speaking, come
from endomorphisms of algebraic groups; a precise definition will be given
in Section 2. There are five families of dynamically affine maps in one di-
mension: power maps, Chebyshev polynomials, Lattes maps, additive poly-
nomials, and subadditive polynomials. We will prove this classification in
Sections 3, 4, and 5. (To be precise, this classification only holds up to
conjugacy by Aut(P!), but ¢ is a conjugacy invariant.) We determine the
rationality of the zeta function for each of these families, and we show that
when it fails to be rational, it is transcendental.

Let k£ be an arbitrary algebraically closed field of characteristic p, and
assume that f € k(z) is separable. Our main results are the following.

Theorem 1.2. Let f be a power map, Chebyshev polynomial, or Lattés
map. Then ((f,P*(k);t) is transcendental over Q(t).

Theorem 1.3. Let f be an additive or subadditive polynomial. If f'(0) is
algebraic over By, then ((f,P1(k);t) is transcendental over Q(t). If f'(0) is
transcendental over Fy, then ((f,P*(k);t) is rational.

These theorems can be seen as the broadest possible generalization of
the work in [4], as the maps considered there are very specific cases of one-
dimensional dynamically affine maps. In order to handle the new cases, we
need to study the arithmetic of the endomorphism rings of one-dimensional
algebraic groups, which can be somewhat complicated in the case of an
elliptic curve.

Inseparable maps are excluded from the above theorems because their
zeta functions are trivially rational. Let f € k(z) be inseparable and of
degree d. The derivative of f is identically zero, so f™(z) — x has distinct
roots for every n and # Per,,(f) = d" + 1. Therefore

) = o~ (@1 1
C(f,PH(k);t) = exp (; n ) (A=t —dt)

For a general f € k(x), it is not always the case that # Per, (f) = d"+1, but
it is certainly true that # Per,,(f) < d™ + 1. So if we consider ((f,P!(k);t)
as a function of a complex variable, it converges to a holomorphic function
in a positive radius around the origin.

Remark. In higher dimensions, the formula deg(f™) = (deg f)™ is not nec-
essarily true. This complicates the above calculation of rationality. See, for
example, [3], [8], and [16] for a discussion of this phenomenon.

Remark. In characteristic zero, the situation is very different. Hinkkanen
shows that every f € C(z) has a rational zeta function [9]. The proof
relies on the fact that there are only finitely many = € P'(C) such that
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(f™)(x) is a root of unity. This argument fails catastrophically in positive
characteristic because every element of Fp is a root of unity. Nevertheless,
it is somewhat peculiar that the conclusion of Hinkkanen’s theorem holds
in positive characteristic almost exclusively when f is inseparable, which is
a phenomenon that cannot occur in characteristic 0.

The rest of the paper will prove Theorems 1.2 and 1.3. In Section 2 we
define dynamically affine maps, and in Sections 3, 4, and 5 we classify all
dynamically affine maps of P! and establish some facts about their periodic
points. A crucial and interesting feature of these maps is that we can count
their periodic points by studying the arithmetic of certain endomorphism
rings. Section 6 provides some algebraic lemmas that are useful in this
direction. Our proof also employs the theory of sequences generated by
finite automata. Section 7 sketches the necessary background in this area.
Sections 8 and 9 finish the proof of Theorems 1.2 and 1.3.

The results of this paper suggest the following conjecture.

Conjecture 1.4. If f € F,(z) is separable, ((f,P1(F,);t) is transcendental
over Q(t).

If f is not dynamically affine, the size of Per,(f) can vary wildly as n
increases, making it difficult to determine the algebraic structure of the zeta
function. Even the low degree map f(x) = 22 4 1 behaves very irregularly
in its periodic point counts (for p ¢ {2,3}), so the nature of ¢ is unclear.
However, note that by Theorem 1.3 the above conjecture is false if we
replace [F,, by an algebraically closed field k that is transcendental over F),.

2. Overview of Dynamically Affine Maps
The following definitions are taken from [13, Ch 6.8].

Definition. Let G be a commutative algebraic group. An affine morphism
of G is a map 9 : G — G that can be written as a composition of a finite
endomorphism of degree at least 2 and a translation.

Definition. Let V' be a variety. A morphism f : V — V is dynamically
affine if there exist a connected commutative algebraic group G, an affine
morphism ¢ : G — G, a finite subgroup I' C Aut(G) and a quotient map
m : G — G/T, and a morphism that identifies G/I" with a Zariski dense
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open subset of V' such that the following diagram commutes:

G G
(2.1) Gl/;ﬁal/;
L,

1% 1%

It is well known that the only dynamically affine maps of P}(C) are
power maps, Chebyshev polynomials, and Lattés maps (up to conjugacy
by fractional linear transformations) [13, p. 378|. These arise when G is
either the multiplicative group G,, or an elliptic curve.

In characteristic p, there are two additional families of dynamically affine
maps, both of which arise from the additive group G,. These are additive
polynomials, which are maps such as f(z) = aP — x that distribute over
addition, and subadditive polynomials such as f(z) = x(z — 1)P~!, which
arise as the maps induced by additive polynomials on the quotient of G,
by a group of roots of unity.

We elaborate on these families in the sections that follow. The only con-
nected one-dimensional algebraic groups are G,,, G4, and elliptic curves.
By considering all of the possibilities for the group I', we show that the
maps listed above are all of the dynamically affine maps of P'. First, how-
ever, we establish a lemma that counts Per,(f) in terms of the kernels of
endomorphisms of G.

Lemma 2.1. Let f: V — V be dynamically affine. Assume that the affine
morphism v : G — G is surjective. Write ¢ as ¥ (g) = o(g) + h, where
o € End(G), h € G and the group law of G is written additively. Then

4 Per,(f) = #(Pera (/) (G/T)) + = 3 #ker(0™ — 7).

18Pt
Proof. Recall that G/T" is identified with a Zariski open subset of V. The

equation above claims that the m-periodic points that lie in this set are
counted by the formula |T1\ > ver #ker(o" — 7).

Suppose that z € Per, (f)NG/T'. By diagram 2.1, there exists g € 7 1(2)
and v € I such that ¥"(g) = 7(g), and every such choice of g and 7 gives
some z € Per,(f) NG /I'. Therefore

Pera(f) NG/T = n({g € G : 4"(g) = 1(g) for some 7 € T}).
By slight abuse of notation, let ker(y)™ — ) = (™ — v)~1(0). Define

§ = ker(®" ),

vyel
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so that Per,(f) NG/T" = n(S). We claim that I" acts on S.
Let g € S, so that ¥"(g) = 0(g) for some § € I'. Let v € I". Observe that

(" (v(9)) = fH(7(v(9))) = f*(7(9)) = 7(¥"(9))-

As ¢¥™(v(g)) and ¥"™(g) have the same image under 7, there exists some
d’ € T such that ¥"(v(g9)) = §(g), and therefore v(g) € S. (Somewhat
surprisingly, ¢’ depends only on « and not on g, but we do not need this
for our purposes. See [13, Prop 6.77].)

If z € Per,(f) N G/T, the set 7~ 1(z) is a I-orbit in S, so there is a
bijection between Per,(f) N G/T" and the set of orbits S/I". Let I'y be the
subgroup of T" that fixes g € S, and let § be such that ¥"(g) = d(g). Then

#{yel:gekea@" —y)} =#{yel:g=17""3(g)} = Iy
By the orbit-stabilizer theorem [10, Cor 4.10],

w5/ =3 Il
_ L
I

:&Z#{geS:geker(wn—V)}
vel
= ‘;‘ > #ker(¥" — 7).

vyerl’

Recall that 1(g) = o(g) + h. So ¥"(g) = 0"(g) + hy, for some h,, € G, and
ker(v" — ) = (¥" =) 71(0) = (6" =) (~hn).

We assumed ) is surjective, so ker(y)™ — «y) is nonempty. Therefore

#(o" =) (~ha) = #ker(o" — ),
completing the proof. O

Y #{yeT:geker(y" —7)}

ges

3. Maps from G,,: Power Maps and Chebyshev Polynomials

Let G,, be the multiplicative group. The endomorphism ring End(G,,)
is isomorphic to Z, where the integer d corresponds to the power map
x + 2. So every affine morphism v : G,,, — G,, has the form 1(z) = az?.
The automorphism group is Aut(G,,) = Z* = {£1}. There are only two
subgroups I' C Aut(G,,): either T is trivial or T’ = {z,271}.

The underlying scheme of G,, is Speck[z,x~!] = Al \ {0}, which is
Zariski open in P'. If T is trivial, then a power map arises from the following
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commutative diagram:

AN\ {0} —= AN\ {0}

i l

]P>1 4f> ]P>1

There are many choices for the inclusion map Al \ {0} < P!. The most
obvious is the map that extends to the identity map on P!, in which case
f is the “affine power map” f(x) = ax?. Other inclusions have the effect of
conjugating f by a fractional linear transformation. Over an algebraically
closed field, we can always conjugate by a linear polynomial z — cx in
order to make f monic, so we may assume f(z) = x%. (Recall that ¢ is a
conjugacy invariant.)

There are only two points in P! that lie outside A' \ {0}, namely, 0 and
oo. If d > 0, then f fixes these two points, and if d < 0, then f swaps them.
The group law of G,, is written multiplicatively, so if d > 0, Lemma 2.1
gives

(3.1) # Per,,(f) = 2 + #ker(z?" 1),
and if d < 0, then

2+ #ker(z?" 1) :deven

(3.2) # Per,(f) = { 4 ker(z4"1) . d odd

If welet I' = {z,27 '}, then G,,/T' = Al, and the quotient can be realized
by the map 7(z) = x + 2~ !. There exists a polynomial f such that the
following diagram commutes [13, Prop 6.6].

d
Tr—axr
G —— G,

ook

Al — s Al

L,

P! *f>]p1

If the inclusion A! < P! extends to the identity map and a = 1, then f is
the dth Chebyshev polynomial T,;(x) and satisfies

flz4+z ) =ad4+277
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As with power maps, choosing other inclusions or a # 1 simply results
in fractional linear conjugates of Chebyshev polynomials. Because of the
symmetry in the definition, positive and negative d give rise to the same f.
Here the count of Lemma 2.1 is

(3:3) # Per,(f) =1+ % <# ker(z? 1) + #ker(a:dnﬂ)) .

The kernel of the endomorphism x +— 2™ is the set of |m|th roots of
unity in k. If (p,|m|) = 1, there are |m/| of these, and in general

m|

#ker(z™) = ———
pore(iml)

because there are no nontrivial pth roots of unity.
Therefore, for a power map f € k(z) associated to the endomorphism
o(x) = z?, if d > 0 we have the formula

d” —1
(3.4) #Per,(f) =2+ A=
and if d < 0,
3.5 P _ 2+ }% : d even
(3.5) #Pery(f) =9 00 oo
pop ([T +1) :d o

For a Chebyshev polynomial f, the formula reads

CL/dr—1 dr 4t
(3.6) #Pern(f) =143 <pvp<dn—1> + pvp(|d|n+1)> '

4. Maps from G,: Additive and Subadditive Polynomials

Let G, be the additive group. In characteristic zero, all endomorphisms
of G, are of the form x — cx, so End(G,) = k. In positive characteristic,
the Frobenius map ¢(z) = 2P and its iterates are also endomorphisms, and
End(G,) is the noncommutative polynomial ring k(¢) with multiplication
rule ¢c = P¢ for ¢ € k.

The only automorphisms of G, are the nonzero maps z +— cx, as the
Frobenius morphism ¢ is a bijection on k-valued points (k is algebraically
closed) but is not an isomorphism on the underlying scheme, which is A!.
Therefore Aut(G,) = k*. The finite subgroups I' C Aut(G,,) are all cyclic
by a basic fact of field theory [10, Lem 17.12], so there is some d such that
I' & pg, the group of dth roots of unity.

Let ¢ : G, — G, be an affine morphism, that is, an element of k{(¢)
composed with a translation. If T' = {1}, then 7 : G, — G/T' = Al is the
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identity morphism on the underlying scheme. There always exists an f that
fits into the following diagram:

Ga LG(I

Pk

Al — s Al

L

]P>1 *f> IP)I

There are many possible inclusions A! < P!, but as with power maps, f is
determined up to conjugacy. Therefore we may assume that the inclusion
extends to the identity, in which case f fixes co and is a polynomial. We
call f an additive polynomial, as f(z + y) = f(z) + f(y) for all x,y € k.

IfI' = pg for d > 1 and (p,d) = 1, then the map 7 : G, — Gq/pg = Al
can be taken to be m(z) = 2% In this case there exists an f to make
the diagram commute if and only if 1 satisfies ¥(wgx) = wgp(z) for a
primitive dth root of unity wy. (This happens if and only if ¢ (x), written
as a polynomial, has terms whose degrees are all 1 mod d.) If there is such
an f, we call it a subadditive polynomial.

Let 0 € k(¢) be an endomorphism of G,. The size of ker o depends on
the divisibility of o by ¢, that is,

deg o

#keraz W

Here vy (o) is the largest power of the two-sided maximal ideal (¢) = ¢k(®)
that contains o.

Let ¢(z) = o(z) + ¢ for some ¢ € G,. For an additive or subadditive
polynomial f, Lemma 2.1 and the above observation yield

dega
(4.1)  #Per,(f) = 1+ Z #ker(o 1+ Z e
weud wEu
Note that deg(c™ — w) = deg(c™) because w : G, — G, is the linear
polynomial w(z) = wz, and dego = degv > 2 by assumption.

5. Maps from Elliptic Curves: Lattées Maps

Let E be an elliptic curve and let ¢ : E — E be an affine morphism. The
endomorphism ring End(F) can be identified with either Z, an order in an
imaginary quadratic field, or a maximal order in a quaternion algebra [14,
Thm V.3.1]. There are only six possibilities for Aut(E): it may be a cyclic
group of order 2,3,4, or 6, or a certain nonabelian group of order 12 or
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24 [14, Thm II1.10.1]. Let I" be a nontrivial subgroup of Aut(E). We say
that f is a Lattes map if the diagram commutes:

E—" . E
ook
EJT —> E/T
P

IP)I L_ IP)I
As E is projective, the curve E/I is isomorphic to P!, unlike in the cases
coming from G,, and G,. For a given choice of ¥ and I', there is not
necessarily an f that makes the diagram commute.

Remark. A Lattés map is often defined to be f € k(x) such that there
exists a morphism ¢ : £ — E with degy > 2 and a finite separable cover
7 : E — P! such that the following diagram commutes.

E-Y.F

.
IP)l 4f> Pl
This is equivalent to our definition. Any self-morphism of an elliptic curve
can be written as the composition of an isogeny and a translation [14, p
75], so any morphism ¢ : E — E with degt > 2 is affine. Also, if there
exists a diagram as above, then there exists such a diagram with the same
f and a possibly different triple (E’,¢)', 7’) where the map 7’ is the quotient
of E' by a subgroup of automorphisms. This result is due to Milnor over
C [12], and Ghioca and Zieve in arbitrary characteristic [7]. For a sketch of
the Ghioca-Zieve proof, see [15, pp. 54-56].
By a general fact about morphisms of elliptic curves [14, Thm I11.4.10(a)],
dego

#kero = deg,o = deg, o

Here deg, and deg, denote separable and inseparable degrees. In the rest
of this section we develop a formula for deg;(o) in terms of the arithmetic
of End(FE).

First we set some notation. Let N, tr : End(E£) @ Q — Q denote the norm
and trace maps, or the reduced norm and trace in the case that End(E)®Q
is a quaternion algebra. Let ¢, : E — E®™) be the p™th power Frobenius
morphism. For an isogeny o : Fy — FEs, write 6 : Es — FE; for the dual
isogeny. The j-invariant of F is denoted by j(E). For our purposes, E is
defined over an algebraically closed field k of characteristic p, so j(E) € k.



310 Andrew BRIDY

Proposition 5.1. Suppose that j(E) is transcendental over F, and let
o € End(E). Then o € Z and

deg; (o) = p*(7).

Proof. 1f j(E) ¢ F,, then End(E) & Z [14, p 145]. The multiplication by
p map [p| : E — E has inseparable degree p, because [p] = b1 0 1 and
the dual isogeny 451 is separable [14, Thm V.3.1]. The multiplication by m
map is separable if (p,m) = 1. Therefore the isogeny [m] : E — FE has
inseparable degree equal to p?»("). O

For the rest of this section suppose that j(E) is algebraic over [, so
that up to isomorphism, F is defined over a finite field. In this situation the
endomorphism ring End(F) can be identified with an order in an imaginary
quadratic field if F is ordinary or a maximal order in a quaternion algebra
if E is supersingular [14, Thm V.3.1].

Proposition 5.2. Let E be ordinary and let K = End(E) @ Q. Let p be
the extension to Ok of the ideal in End(FE) consisting of all inseparable
isogenies. Then p is prime, and for any o € End(FE),

deg;(0) = p™).

Proof. By [14, Cor 11.2.12] we can write ¢ = A o ¢,, where p™ = deg;(0)
and \ : E®™) — E is separable. It follows that deg;(c) > p™ if and only if
o factors through ¢, : E — E®™). (If ¢ = 0, we set deg;(c) = c0.)

We know that End(F) is an order in O for some imaginary quadratic
field K, and the conductor of End(F) is prime to p [6]. Let I,,, be the mth
inseparable ideal of End(E), defined as follows:

I, ={0o € End(F) : deg;(c) > p™}.
It is routine to show that I, is an ideal. If o7 € I,,,, then
deg;(o7) = deg;(0) deg;(7) = p"™.

If o ¢ I, then necessarily deg,;(7) > p, so deg;(7™) > p" and 7™ € I,,,. For
m = 1 this shows that I is prime, and for m > 1 that I, is I;-primary.

If End(FE) were a Dedekind domain, it would follow that I,,, = (I;)™ for
each m > 1, but orders of Dedekind domains are not in general Dedekind
domains. Instead, consider the integral extension O /End(E) and the
prime ideal p of O lying over ;. The multiplication by p map [p] : E — E
is inseparable, so p € I, and therefore pOx C I1Ox C p. So I1 Ok is either
p or pOx = pp (as p splits in Ok [6]).

This shows that the ideal I;Of is prime to the conductor of End(E).
For ideals in an order that are prime to the conductor, extension to O
and contraction are inverses, and unique factorization holds [5, Prop 7.20].
Therefore I1Og = p and the I[j-primary ideal I,,, equals (I1)™ for each
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m > 1. It follows easily that (I1)" Ok = ([1O0f)™ = p™. We conclude that
deg;(0) = p* (). O

Remark. If E is defined over F,, the pth power Frobenius morphism ¢y is
an element of End(FE). In this case, the ideal p in Proposition 5.2 is the
principal ideal ¢1Ok, and vy(o) is simply the highest power of ¢; that
divides ¢ in Ok. In general, the ideal p need not be principal.

Proposition 5.3. Let E be supersingular, so that End(E) can be identified
with a mazimal order O of the quaternion algebra B. There exists a two-
sided mazximal ideal I of O such that

deg; (o) = p*1(.

Proof. If we write 0 = X o ¢, where A is separable, then deg()) is not
divisible by p. If it were, the map Ao A = [N(A\)] = [deg(\)] : E — E
would factor through [p] : E — E and would be inseparable, so one of A
or A would be inseparable. If \ were inseparable it would factor through
#1, so A would factor through ¢y, which is inseparable [14, Thm V.3.1],
contradicting the fact that A is separable. Moreover, deg ¢,, is a p-power,
and is therefore the largest power of p that divides dego. This shows that

degi o= deg d)m — p”P(degU) — pvp(N((r)).

We have End(E) = O, where O is a maximal order of B, which is
the unique quaternion algebra over QQ ramified exactly at p and oo [6].
Consider the localization O, = O ® Z,,, which is the unique maximal order
of B, = B ®g Qp, and the inclusion O — O,,.

In O, there is a uniformizing element 7w such that 7O, is the unique
two-sided maximal ideal of O, and moreover every ideal of O, is a power
of 7O, [17, Ch 2, Thm 1.3]. In particular, pO, = 720, so vro,(p) = 2.
Let I = 7O, N O. The ideal I is maximal in O because locally it is either
maximal or the unit ideal: I, = 7O,, and I, = Oy for £ # p (this is because
p, which lies in [, is invertible in Op). The ideal I is also two-sided because
it is two-sided locally [17, p. 84]. Therefore vy is a valuation on O.

Any supersingular elliptic curve E is defined over [F2, and there exists
an automorphism i : F — E such that ¢o =i 0 [p]. As vr(p) = 2, it follows
that vr(o) = v,(N(0)) for all ¢ € O such that v,(N(o)) is even, i.e. such
that o = X\ o [p"] for some separable A. If v,(N (o)) is odd then v,(N(c?))
is even, so vr(0?) = v,(N(0?)), and therefore vi(o) = v,(N(0)). O

Write ¢ : E — E as ¢(x) = o(xz) + P for 0 € End(F) and P € E. The
above propositions together with Lemma 2.1 prove the following formulas.
If j(E) is transcendental, then necessarily I' = {£1}, and

1 /0" =1 o +1
(5.1) wpera(f) =3 (AL L),

2 pUp (o™—1) pUp (o™+1)
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If j(E) is algebraic and E is ordinary, then there exists p such that

(5-2) #Per” ‘F‘ Z 'Up(Un_’Y

If j(E) is algebraic and F is supersmgular then there exists I such that
(5.3) # Pern(f |F| Z I o"fw

The sequence n — N (o™ —7) that appears in the above equations satisfies
a linear recurrence relation and is therefore periodic when reduced mod
any prime ¢. We record for future reference the next proposition, which
determines its possible periods.

Proposition 5.4. Let j(E) € F, and let a,, = N(c" — v), where 0,7y €
End(FE). For any prime £, the sequence (a, (mod {)) is periodic of period
dividing (¢ — 1)(£2 — 1)¢2 for some integer A.

Proof. Let T = tr(c) and N = N(o). We compute

(0" =7)(c" =)

:& o — "y ="y + 4y

= N" —tr(c"4) + N(v).
Let b, = N", ¢, = tr(c"¥), and d,, = N(v). Certainly b, = Nb,_; and
d, = d,—1; this shows that the linearly recurrent sequences (b,) and (d,)
have characteristic polynomials x — N and = — 1 in the sense of [11, Ch 6].

Whether End(F) is an order in an imaginary quadratic field or an order
in a quaternion algebra, any o € End(FE) satisfies the Cayley-Hamilton
identity 02 — To + N = 0. For n > 2,
en—Tep1+ Neyo = tr(c™) — Ttr(c™ 14) + Ntr(o"24)

=tr((oc* — To + N)o" ?7)
= tr(0)
=0.

Therefore (¢, is a linearly recurrent sequence. Its characteristic polynomial
is 22— Tz + N. It follows from [11, Thm 6.55] that (a,) is linearly recurrent
with characteristic polynomial equal to

g(z) = (x —1)(z — N)(z® = Tz + N) € Fy[z].

Recall that if g(0) # 0, ord g(z) is defined to be the least n such that g(x)
divides 2™ — 1. By [11, Thm 6.27], the least period of (a, (mod ¢)) divides
ord g(z), and by [11, Thm 3.11], there is some A > 0 such that

ord g(z) = LCM[ord(z — 1),ord(z — N),ord(z? — Tz 4+ N)J¢A.



Zeta Functions of Dynamically Affine Maps in Characteristic p 313

The integer A reflects the possible presence of repeated factors of g(x). If
z—1,2— N, and 22 — Tz + N are coprime in Fy[z], then A = 0. a

6. Lifting the Exponent

The periodic point counts established in the previous sections all contain
an expression of the form vp(a2™ — ), where P is a prime ideal of an
endomorphism ring R. In this section we develop formulas for writing these
expressions in terms of v,(n). These resemble a result in elementary number
theory popularly known as “lifting the exponent”, which is related to (but
does not follow from) Hensel’s Lemma.

Lemma 6.1. Let K be a number field. Let p be a prime of Ok lying over
the rational prime p, and let e be the ramification index of p over p. Let
z,y € Ok be such that z,y ¢ p and x —y € p. If e+ 1 > p — 1, further
assume that vy(z —y) > ;J_r—}. Then

vp(2" —y") = vp(x — y) + evp(n).

Proof. The proof is by induction on vy(n). Assume that x # y; otherwise
the proposition holds trivially.
First suppose that v,(n) = 0, which guarantees v,(n) = 0. We compute

vp(a" = y") = vp(x —y) +op(a" T F 2" Py - Ty ).

Asz—yep, wehave 2" 1 + 2" 2y + - + 2y 2 + ¢y = na" (mod p),
and nz"™ ¢ p. Therefore vy (2™ —y") = vp(x — y), proving the proposition in
this case.

If we show that the proposition holds for n = p, it follows for all n by
induction. Let v = vy(z — y), so that x = y + z for some z € p¥ \ p**1. By
the binomial theorem,

1

p
P = Z <p> Zzypfl = yn _’_pzynfl (mod pereJrl)‘
=0

For i > 2, the ith term of the expansion is in p?Te*l. If i # p this is
because p divides (%), so (1) € p® and (2)2'y"" lies in pet™ C pvtetd
vp(2P) = pv > v +e+1and 2P € p*T°L. The i = 1 term is not in p?+et,
as vp(pz) = e+ 1. Therefore aP — yP € p*+e\ pvTeTl g0 vy (2P —yP) =v+e
and we are done. O

as v > 1. If i = p, this is because we assumed that v = vp(2) > S0)

Lemma 6.2. Let p be a prime. Let B be the unique quaternion algebra
over Q ramified precisely at p and oo, and let O be a mazximal order of B.
Let m be a uniformizer for Oy, and let I = 1O, N O. Let x,y € O be such
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that z,y ¢ I and x —y € I. If p = 3, assume further that vi(z — y) > 2,
and if p = 2, assume further that vi(x —y) > 3. Then

vr(z" —y") = vr(z —y) + 2vp(n).

Proof. The proof is essentially the same as the proof of Lemma 6.1, and is
omitted. O

Lemma 6.3. Let k be an algebraically closed field of characteristic p, and
let k(@) be the noncommutative polynomial ring with the multiplication rule

pc =P for c € k. Let x € k(¢) be such that x — 1 € ¢pk{¢p). Then
v (2" — 1) = vy (a — 1)p*r™.
Proof. First assume that v,(n) = 0. Then
" —1=(14+@-1))"—1=n(z—1) (mod ¢*"s@ VE(e)),

and vg(2" — 1) = vy(z — 1).
Next let n = p. As 2P — 1 = (x — 1)?, we have vg(aP — 1) = pvy(z — 1).
The proposition follows by induction on v, (n). O

7. Background from Automatic Sequences

This section contains several results from the theory of finite automata
and automatic sequences. A sequence (ay,) is k-automatic if it can be pro-
duced as the output of a deterministic finite automaton that takes as input
the base-k expansion of the integer n. The theorems in this section are
stated so that they can be used later without any specific knowledge of
finite automata or automatic sequences. A good introduction to the theory
can be found in [1].

The next two theorems underlie our proof of transcendence. Christol’s
theorem gives a correspondence between automatic sequences and algebraic
power series, and Cobham’s theorem shows that the only sequences that
are automatic with respect to two multiplicatively independent bases are
eventually periodic sequences.

Theorem 7.1 (Christol). The formal power series Y o2 ant™ € Fp[[t] is
algebraic over Fy(t) if and only if the sequence (ay) is p-automatic.

Proof. [1, Thm 12.2.5]. O

Theorem 7.2 (Cobham). Suppose p and q are positive integers that are
multiplicatively independent (i.e. logp/logq ¢ Q). If the sequence (ay) is
both p-automatic and q-automatic, then it is eventually periodic.

Proof. [1, Thm 11.2.2]. O

The converse to Cobham’s theorem is also true.
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Theorem 7.3. Let (ay,) be eventually periodic. Then (ay) is k-automatic
for every positive integer k.

Proof. [1, Thm 5.4.2]. O

The following is a corollary to Christol’s theorem that will be used to
derive the contradiction that shows that (; is transcendental.

Corollary 7.4. If >°0° , ant™ € Z[[t]] is algebraic over Q(t), then for every
prime p, the reduced sequence ((ay) mod p) is p-automatic.

Proof. [1, Thm 12.6.1]. O

The next two propositions shows that the set of p-automatic sequences
over a ring is closed under both the pointwise application of arithmetic
operations and the operation of extracting subsequences that are indexed
by arithmetic progressions.

Proposition 7.5. Let (a,,) and (by,) be p-automatic sequences with entries
in the ring R, and let ¢ € R. The sequences (ay + by), (anby), and (cay,)
are p-automatic, as is the sequence (a;;') if each ay, is invertible. Also, the
subsequence (amntp) 18 p-automatic for any m,b € Z.

Proof. The closure properties under arithmetic operations are special cases
of the general theorem that the set of p-automatic sequences with entries in
the set A is closed under the pointwise application of any binary operation
(,) s AxA — A1, Cor 5.4.5] and the completely trivial theorem that it is
closed under the pointwise application of any unary operation (-) : A — A
(this follows directly from the definition of an automatic sequence). For the
claim about the subsequences (a,,+4), see [1, Thm 6.8.1]. O

Propositions 7.6 and 7.7 are the major technical results of this section.
They will be needed to produce a contradiction at key moments in the proof
of Theorems 1.2 and 1.3.

Proposition 7.6. Let p and £ be distinct primes. Suppose a € Z4, a 1
(mod ¢), and (a,l) = 1. Also suppose o, B € Z, a # 0, and vy(a) < vp(f).
Let the sequence (a,) with entries in Z/CZ be defined by

an = a8 (mod 0).
The sequence (ay) is not (-automatic.

Proof. Let d be the multiplicative order of a mod £. It follows from the
assumptions that d exists and d > 1. The sequence n — (™ is a function
of the equivalence class of v,(n) mod d, so it is p-automatic by [4, Lem 6].
Therefore the sequence (ay,) is p-automatic by Proposition 7.5.

Assume by way of contradiction that (a,) is f-automatic. Any distinct
primes are multiplicatively independent, so by Cobham’s theorem, (ay,) is
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eventually periodic. Let ¢ be its eventual period, so that api.c = a, for
sufficiently large n and every positive x. This means that

(7.1) a0 th) = gup(alnte)+6) (o d ¢),

which implies that

(7.2) vp(an + B) = vp(a(n + xzc) + f) (mod d).

Let o = a/p*® and §/ = B/p*(®. 1t is clear that (p,o’) = 1, and it
follows from our assumption that v,(a) < v,(3) that 5’ is an integer. So

(7.3) vp(a'n+ B) =vy(a/