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The Artin-Mazur Zeta Function of a Dynamically
Affine Rational Map in Positive Characteristic

par Andrew BRIDY

Résumé. Soit k un corps algébriquement clos de caractéristique
positive. Nous déterminons la rationalité ou la transcendance de la
fonction zêta d’Artin-Mazur d’une fonction dynamiquement affine
P1(k)→ P1(k).

Abstract. We determine the rationality or the transcendence of
the Artin-Mazur zeta function of a dynamically affine self-map of
P1(k) for k an algebraically closed field of positive characteristic.

1. The Artin-Mazur Zeta Function
Let X be a set and let f : X → X define a dynamical system. Let

Pern(f) = {x ∈ X : fn(x) = x}, where fn denotes the composition of f
with itself n times. The Artin-Mazur zeta function of this dynamical system
is the formal power series given by

ζ(f,X; t) = exp
( ∞∑
n=1

# Pern(f) t
n

n

)
.

Assume that # Pern(f) < ∞ for all n, as otherwise ζ is not defined. The
power series ζ(f,X; t) has rational coefficients, and it is not hard to show
that ζ(f,X; t) ∈ Z[[t]] by means of the product formula

ζ(f,X; t) =
∏

cycles C

(
1− t|C|

)−1
.

This zeta function was introduced by Artin and Mazur in [2], where it
is studied for X a manifold and f a diffeomorphism. In this setting, only
the isolated periodic points are counted. This will not be an important
distinction for our purposes.

This paper continues the study of the following question, introduced in [4]
for polynomials, but just as easily phrased for rational functions.

Question 1.1. For which f ∈ Fp(x) is ζ(f,P1(Fp); t) rational?
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The purpose of this paper is to answer this question for rational maps
that are dynamically affine. These are maps that, loosely speaking, come
from endomorphisms of algebraic groups; a precise definition will be given
in Section 2. There are five families of dynamically affine maps in one di-
mension: power maps, Chebyshev polynomials, Lattès maps, additive poly-
nomials, and subadditive polynomials. We will prove this classification in
Sections 3, 4, and 5. (To be precise, this classification only holds up to
conjugacy by Aut(P1), but ζ is a conjugacy invariant.) We determine the
rationality of the zeta function for each of these families, and we show that
when it fails to be rational, it is transcendental.

Let k be an arbitrary algebraically closed field of characteristic p, and
assume that f ∈ k(x) is separable. Our main results are the following.

Theorem 1.2. Let f be a power map, Chebyshev polynomial, or Lattès
map. Then ζ(f,P1(k); t) is transcendental over Q(t).

Theorem 1.3. Let f be an additive or subadditive polynomial. If f ′(0) is
algebraic over Fp, then ζ(f,P1(k); t) is transcendental over Q(t). If f ′(0) is
transcendental over Fp, then ζ(f,P1(k); t) is rational.

These theorems can be seen as the broadest possible generalization of
the work in [4], as the maps considered there are very specific cases of one-
dimensional dynamically affine maps. In order to handle the new cases, we
need to study the arithmetic of the endomorphism rings of one-dimensional
algebraic groups, which can be somewhat complicated in the case of an
elliptic curve.

Inseparable maps are excluded from the above theorems because their
zeta functions are trivially rational. Let f ∈ k(x) be inseparable and of
degree d. The derivative of f is identically zero, so fn(x) − x has distinct
roots for every n and # Pern(f) = dn + 1. Therefore

ζ(f,P1(k); t) = exp
( ∞∑
n=1

(dn + 1)tn

n

)
= 1

(1− t)(1− dt) .

For a general f ∈ k(x), it is not always the case that # Pern(f) = dn+1, but
it is certainly true that # Pern(f) ≤ dn + 1. So if we consider ζ(f,P1(k); t)
as a function of a complex variable, it converges to a holomorphic function
in a positive radius around the origin.

Remark. In higher dimensions, the formula deg(fn) = (deg f)n is not nec-
essarily true. This complicates the above calculation of rationality. See, for
example, [3], [8], and [16] for a discussion of this phenomenon.

Remark. In characteristic zero, the situation is very different. Hinkkanen
shows that every f ∈ C(x) has a rational zeta function [9]. The proof
relies on the fact that there are only finitely many x ∈ P1(C) such that
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(fn)′(x) is a root of unity. This argument fails catastrophically in positive
characteristic because every element of Fp is a root of unity. Nevertheless,
it is somewhat peculiar that the conclusion of Hinkkanen’s theorem holds
in positive characteristic almost exclusively when f is inseparable, which is
a phenomenon that cannot occur in characteristic 0.

The rest of the paper will prove Theorems 1.2 and 1.3. In Section 2 we
define dynamically affine maps, and in Sections 3, 4, and 5 we classify all
dynamically affine maps of P1 and establish some facts about their periodic
points. A crucial and interesting feature of these maps is that we can count
their periodic points by studying the arithmetic of certain endomorphism
rings. Section 6 provides some algebraic lemmas that are useful in this
direction. Our proof also employs the theory of sequences generated by
finite automata. Section 7 sketches the necessary background in this area.
Sections 8 and 9 finish the proof of Theorems 1.2 and 1.3.

The results of this paper suggest the following conjecture.

Conjecture 1.4. If f ∈ Fp(x) is separable, ζ(f,P1(Fp); t) is transcendental
over Q(t).

If f is not dynamically affine, the size of Pern(f) can vary wildly as n
increases, making it difficult to determine the algebraic structure of the zeta
function. Even the low degree map f(x) = x2 + 1 behaves very irregularly
in its periodic point counts (for p /∈ {2, 3}), so the nature of ζ is unclear.
However, note that by Theorem 1.3 the above conjecture is false if we
replace Fp by an algebraically closed field k that is transcendental over Fp.

2. Overview of Dynamically Affine Maps
The following definitions are taken from [13, Ch 6.8].

Definition. Let G be a commutative algebraic group. An affine morphism
of G is a map ψ : G → G that can be written as a composition of a finite
endomorphism of degree at least 2 and a translation.

Definition. Let V be a variety. A morphism f : V → V is dynamically
affine if there exist a connected commutative algebraic group G, an affine
morphism ψ : G → G, a finite subgroup Γ ⊆ Aut(G) and a quotient map
π : G → G/Γ, and a morphism that identifies G/Γ with a Zariski dense
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open subset of V such that the following diagram commutes:

(2.1)

G
ψ //

π
��

G

π
��

G/Γ //

��

G/Γ

��
V

f // V

It is well known that the only dynamically affine maps of P1(C) are
power maps, Chebyshev polynomials, and Lattès maps (up to conjugacy
by fractional linear transformations) [13, p. 378]. These arise when G is
either the multiplicative group Gm or an elliptic curve.

In characteristic p, there are two additional families of dynamically affine
maps, both of which arise from the additive group Ga. These are additive
polynomials, which are maps such as f(x) = xp − x that distribute over
addition, and subadditive polynomials such as f(x) = x(x − 1)p−1, which
arise as the maps induced by additive polynomials on the quotient of Ga

by a group of roots of unity.
We elaborate on these families in the sections that follow. The only con-

nected one-dimensional algebraic groups are Gm, Ga, and elliptic curves.
By considering all of the possibilities for the group Γ, we show that the
maps listed above are all of the dynamically affine maps of P1. First, how-
ever, we establish a lemma that counts Pern(f) in terms of the kernels of
endomorphisms of G.
Lemma 2.1. Let f : V → V be dynamically affine. Assume that the affine
morphism ψ : G → G is surjective. Write ψ as ψ(g) = σ(g) + h, where
σ ∈ End(G), h ∈ G and the group law of G is written additively. Then

# Pern(f) = #(Pern(f) \ (G/Γ)) + 1
|Γ|

∑
γ∈Γ

# ker(σn − γ).

Proof. Recall that G/Γ is identified with a Zariski open subset of V . The
equation above claims that the n-periodic points that lie in this set are
counted by the formula 1

|Γ|
∑
γ∈Γ # ker(σn − γ).

Suppose that z ∈ Pern(f)∩G/Γ. By diagram 2.1, there exists g ∈ π−1(z)
and γ ∈ Γ such that ψn(g) = γ(g), and every such choice of g and γ gives
some z ∈ Pern(f) ∩G/Γ. Therefore

Pern(f) ∩G/Γ = π({g ∈ G : ψn(g) = γ(g) for some γ ∈ Γ}).
By slight abuse of notation, let ker(ψn − γ) = (ψn − γ)−1(0). Define

S =
⋃
γ∈Γ

ker(ψn − γ),
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so that Pern(f) ∩G/Γ = π(S). We claim that Γ acts on S.
Let g ∈ S, so that ψn(g) = δ(g) for some δ ∈ Γ. Let γ ∈ Γ. Observe that

π(ψn(γ(g))) = fn(π(γ(g))) = fn(π(g)) = π(ψn(g)).

As ψn(γ(g)) and ψn(g) have the same image under π, there exists some
δ′ ∈ Γ such that ψn(γ(g)) = δ′(g), and therefore γ(g) ∈ S. (Somewhat
surprisingly, δ′ depends only on γ and not on g, but we do not need this
for our purposes. See [13, Prop 6.77].)

If z ∈ Pern(f) ∩ G/Γ, the set π−1(z) is a Γ-orbit in S, so there is a
bijection between Pern(f) ∩ G/Γ and the set of orbits S/Γ. Let Γg be the
subgroup of Γ that fixes g ∈ S, and let δ be such that ψn(g) = δ(g). Then

#{γ ∈ Γ : g ∈ ker(ψn − γ)} = #{γ ∈ Γ : g = γ−1δ(g)} = |Γg|

By the orbit-stabilizer theorem [10, Cor 4.10],

#S/Γ =
∑
g∈S

|Γg|
|Γ|

= 1
|Γ|

∑
g∈S

#{γ ∈ Γ : g ∈ ker(ψn − γ)}

= 1
|Γ|

∑
γ∈Γ

#{g ∈ S : g ∈ ker(ψn − γ)}

= 1
|Γ|

∑
γ∈Γ

# ker(ψn − γ).

Recall that ψ(g) = σ(g) + h. So ψn(g) = σn(g) + hn for some hn ∈ G, and

ker(ψn − γ) = (ψn − γ)−1(0) = (σn − γ)−1(−hn).

We assumed ψ is surjective, so ker(ψn − γ) is nonempty. Therefore

#(σn − γ)−1(−hn) = # ker(σn − γ),

completing the proof. �

3. Maps from Gm: Power Maps and Chebyshev Polynomials
Let Gm be the multiplicative group. The endomorphism ring End(Gm)

is isomorphic to Z, where the integer d corresponds to the power map
x 7→ xd. So every affine morphism ψ : Gm → Gm has the form ψ(x) = axd.
The automorphism group is Aut(Gm) ∼= Z× = {±1}. There are only two
subgroups Γ ⊆ Aut(Gm): either Γ is trivial or Γ = {x, x−1}.

The underlying scheme of Gm is Spec k[x, x−1] ∼= A1 \ {0}, which is
Zariski open in P1. If Γ is trivial, then a power map arises from the following
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commutative diagram:

Gm
x 7→axd //

o
��

Gm

o
��

A1 \ {0}

��

// A1 \ {0}

��
P1 f // P1

There are many choices for the inclusion map A1 \ {0} ↪→ P1. The most
obvious is the map that extends to the identity map on P1, in which case
f is the “affine power map” f(x) = axd. Other inclusions have the effect of
conjugating f by a fractional linear transformation. Over an algebraically
closed field, we can always conjugate by a linear polynomial x 7→ cx in
order to make f monic, so we may assume f(x) = xd. (Recall that ζ is a
conjugacy invariant.)

There are only two points in P1 that lie outside A1 \ {0}, namely, 0 and
∞. If d > 0, then f fixes these two points, and if d < 0, then f swaps them.
The group law of Gm is written multiplicatively, so if d > 0, Lemma 2.1
gives

(3.1) # Pern(f) = 2 + # ker(xdn−1),

and if d < 0, then

(3.2) # Pern(f) =
{

2 + # ker(xdn−1) : d even
# ker(xdn−1) : d odd

If we let Γ = {x, x−1}, then Gm/Γ ∼= A1, and the quotient can be realized
by the map π(x) = x + x−1. There exists a polynomial f such that the
following diagram commutes [13, Prop 6.6].

Gm
x 7→axd//

π
��

Gm

π
��

A1

��

// A1

��
P1 f // P1

If the inclusion A1 ↪→ P1 extends to the identity map and a = 1, then f is
the dth Chebyshev polynomial Td(x) and satisfies

f(x+ x−1) = xd + x−d.
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As with power maps, choosing other inclusions or a 6= 1 simply results
in fractional linear conjugates of Chebyshev polynomials. Because of the
symmetry in the definition, positive and negative d give rise to the same f .
Here the count of Lemma 2.1 is

(3.3) # Pern(f) = 1 + 1
2
(
# ker(xdn−1) + # ker(xdn+1)

)
.

The kernel of the endomorphism x 7→ xm is the set of |m|th roots of
unity in k. If (p, |m|) = 1, there are |m| of these, and in general

# ker(xm) = |m|
pvp(|m|)

because there are no nontrivial pth roots of unity.
Therefore, for a power map f ∈ k(x) associated to the endomorphism

σ(x) = xd, if d > 0 we have the formula

(3.4) # Pern(f) = 2 + dn − 1
pvp(dn−1) ,

and if d < 0,

(3.5) # Pern(f) =

 2 + |d|n−1
pvp(|d|n−1) : d even

|d|n+1
pvp(|d|n+1) : d odd

For a Chebyshev polynomial f , the formula reads

(3.6) # Pern(f) = 1 + 1
2

( |d|n − 1
pvp(|d|n−1) + |d|n + 1

pvp(|d|n+1)

)
.

4. Maps from Ga: Additive and Subadditive Polynomials
Let Ga be the additive group. In characteristic zero, all endomorphisms

of Ga are of the form x 7→ cx, so End(Ga) ∼= k. In positive characteristic,
the Frobenius map φ(x) = xp and its iterates are also endomorphisms, and
End(Ga) is the noncommutative polynomial ring k〈φ〉 with multiplication
rule φc = cpφ for c ∈ k.

The only automorphisms of Ga are the nonzero maps x 7→ cx, as the
Frobenius morphism φ is a bijection on k-valued points (k is algebraically
closed) but is not an isomorphism on the underlying scheme, which is A1.
Therefore Aut(Ga) ∼= k×. The finite subgroups Γ ⊆ Aut(Ga) are all cyclic
by a basic fact of field theory [10, Lem 17.12], so there is some d such that
Γ ∼= µd, the group of dth roots of unity.

Let ψ : Ga → Ga be an affine morphism, that is, an element of k〈φ〉
composed with a translation. If Γ = {1}, then π : Ga → G/Γ ∼= A1 is the
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identity morphism on the underlying scheme. There always exists an f that
fits into the following diagram:

Ga
ψ //

π
��

Ga

π
��

A1

��

// A1

��
P1 f // P1

There are many possible inclusions A1 ↪→ P1, but as with power maps, f is
determined up to conjugacy. Therefore we may assume that the inclusion
extends to the identity, in which case f fixes ∞ and is a polynomial. We
call f an additive polynomial, as f(x+ y) = f(x) + f(y) for all x, y ∈ k.

If Γ ∼= µd for d > 1 and (p, d) = 1, then the map π : Ga → Ga/µd ∼= A1

can be taken to be π(x) = xd. In this case there exists an f to make
the diagram commute if and only if ψ satisfies ψ(ωdx) = ωdψ(x) for a
primitive dth root of unity ωd. (This happens if and only if ψ(x), written
as a polynomial, has terms whose degrees are all 1 mod d.) If there is such
an f , we call it a subadditive polynomial.

Let σ ∈ k〈φ〉 be an endomorphism of Ga. The size of kerσ depends on
the divisibility of σ by φ, that is,

# kerσ = deg σ
pvφ(σ) .

Here vφ(σ) is the largest power of the two-sided maximal ideal (φ) = φk〈φ〉
that contains σ.

Let ψ(x) = σ(x) + c for some c ∈ Ga. For an additive or subadditive
polynomial f , Lemma 2.1 and the above observation yield

(4.1) # Pern(f) = 1 + 1
d

∑
ω∈µd

# ker(σn − ω) = 1 + 1
d

∑
ω∈µd

(deg σ)n

pvφ(σn−ω) .

Note that deg(σn − ω) = deg(σn) because ω : Ga → Ga is the linear
polynomial ω(x) = ωx, and deg σ = degψ ≥ 2 by assumption.

5. Maps from Elliptic Curves: Lattès Maps
Let E be an elliptic curve and let ψ : E → E be an affine morphism. The

endomorphism ring End(E) can be identified with either Z, an order in an
imaginary quadratic field, or a maximal order in a quaternion algebra [14,
Thm V.3.1]. There are only six possibilities for Aut(E): it may be a cyclic
group of order 2,3,4, or 6, or a certain nonabelian group of order 12 or
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24 [14, Thm III.10.1]. Let Γ be a nontrivial subgroup of Aut(E). We say
that f is a Lattès map if the diagram commutes:

E
ψ //

π
��

E

π
��

E/Γ

o
��

// E/Γ

o
��

P1 f // P1

As E is projective, the curve E/Γ is isomorphic to P1, unlike in the cases
coming from Gm and Ga. For a given choice of ψ and Γ, there is not
necessarily an f that makes the diagram commute.
Remark. A Lattès map is often defined to be f ∈ k(x) such that there
exists a morphism ψ : E → E with degψ ≥ 2 and a finite separable cover
π : E → P1 such that the following diagram commutes.

E
ψ //

π
��

E

π
��

P1 f // P1

This is equivalent to our definition. Any self-morphism of an elliptic curve
can be written as the composition of an isogeny and a translation [14, p
75], so any morphism ψ : E → E with degψ ≥ 2 is affine. Also, if there
exists a diagram as above, then there exists such a diagram with the same
f and a possibly different triple (E′, ψ′, π′) where the map π′ is the quotient
of E′ by a subgroup of automorphisms. This result is due to Milnor over
C [12], and Ghioca and Zieve in arbitrary characteristic [7]. For a sketch of
the Ghioca-Zieve proof, see [15, pp. 54-56].

By a general fact about morphisms of elliptic curves [14, Thm III.4.10(a)],

# kerσ = degs σ = deg σ
degi σ

.

Here degs and degi denote separable and inseparable degrees. In the rest
of this section we develop a formula for degi(σ) in terms of the arithmetic
of End(E).

First we set some notation. Let N, tr : End(E)⊗Q→ Q denote the norm
and trace maps, or the reduced norm and trace in the case that End(E)⊗Q
is a quaternion algebra. Let φm : E → E(pm) be the pmth power Frobenius
morphism. For an isogeny σ : E1 → E2, write σ̂ : E2 → E1 for the dual
isogeny. The j-invariant of E is denoted by j(E). For our purposes, E is
defined over an algebraically closed field k of characteristic p, so j(E) ∈ k.
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Proposition 5.1. Suppose that j(E) is transcendental over Fp and let
σ ∈ End(E). Then σ ∈ Z and

degi(σ) = pvp(σ).

Proof. If j(E) /∈ Fp, then End(E) ∼= Z [14, p 145]. The multiplication by
p map [p] : E → E has inseparable degree p, because [p] = φ̂1 ◦ φ1 and
the dual isogeny φ̂1 is separable [14, Thm V.3.1]. The multiplication by m
map is separable if (p,m) = 1. Therefore the isogeny [m] : E → E has
inseparable degree equal to pvp(m). �

For the rest of this section suppose that j(E) is algebraic over Fp, so
that up to isomorphism, E is defined over a finite field. In this situation the
endomorphism ring End(E) can be identified with an order in an imaginary
quadratic field if E is ordinary or a maximal order in a quaternion algebra
if E is supersingular [14, Thm V.3.1].

Proposition 5.2. Let E be ordinary and let K = End(E) ⊗ Q. Let p be
the extension to OK of the ideal in End(E) consisting of all inseparable
isogenies. Then p is prime, and for any σ ∈ End(E),

degi(σ) = pvp(σ).

Proof. By [14, Cor II.2.12] we can write σ = λ ◦ φm where pm = degi(σ)
and λ : E(pm) → E is separable. It follows that degi(σ) ≥ pm if and only if
σ factors through φm : E → E(pm). (If σ = 0, we set degi(σ) =∞.)

We know that End(E) is an order in OK for some imaginary quadratic
field K, and the conductor of End(E) is prime to p [6]. Let Im be the mth
inseparable ideal of End(E), defined as follows:

Im = {σ ∈ End(E) : degi(σ) ≥ pm}.
It is routine to show that Im is an ideal. If στ ∈ Im, then

degi(στ) = degi(σ) degi(τ) ≥ pm.
If σ /∈ Im then necessarily degi(τ) ≥ p, so degi(τm) ≥ pm and τm ∈ Im. For
m = 1 this shows that I1 is prime, and for m > 1 that Im is I1-primary.

If End(E) were a Dedekind domain, it would follow that Im = (I1)m for
each m > 1, but orders of Dedekind domains are not in general Dedekind
domains. Instead, consider the integral extension OK/End(E) and the
prime ideal p of OK lying over I1. The multiplication by p map [p] : E → E
is inseparable, so p ∈ I1, and therefore pOK ⊆ I1OK ⊆ p. So I1OK is either
p or pOK = pp̂ (as p splits in OK [6]).

This shows that the ideal I1OK is prime to the conductor of End(E).
For ideals in an order that are prime to the conductor, extension to OK
and contraction are inverses, and unique factorization holds [5, Prop 7.20].
Therefore I1OK = p and the I1-primary ideal Im equals (I1)m for each
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m > 1. It follows easily that (I1)mOK = (I1Ok)m = pm. We conclude that
degi(σ) = pvp(σ). �

Remark. If E is defined over Fp, the pth power Frobenius morphism φ1 is
an element of End(E). In this case, the ideal p in Proposition 5.2 is the
principal ideal φ1OK , and vp(σ) is simply the highest power of φ1 that
divides σ in OK . In general, the ideal p need not be principal.

Proposition 5.3. Let E be supersingular, so that End(E) can be identified
with a maximal order O of the quaternion algebra B. There exists a two-
sided maximal ideal I of O such that

degi(σ) = pvI(σ).

Proof. If we write σ = λ ◦ φm where λ is separable, then deg(λ) is not
divisible by p. If it were, the map λ ◦ λ̂ = [N(λ)] = [deg(λ)] : E → E
would factor through [p] : E → E and would be inseparable, so one of λ
or λ̂ would be inseparable. If λ̂ were inseparable it would factor through
φ1, so λ would factor through φ̂1, which is inseparable [14, Thm V.3.1],
contradicting the fact that λ is separable. Moreover, deg φm is a p-power,
and is therefore the largest power of p that divides deg σ. This shows that

degi σ = deg φm = pvp(deg σ) = pvp(N(σ)).

We have End(E) ∼= O, where O is a maximal order of B, which is
the unique quaternion algebra over Q ramified exactly at p and ∞ [6].
Consider the localization Op = O⊗Zp, which is the unique maximal order
of Bp = B ⊗Q Qp, and the inclusion O ↪→ Op.

In Op there is a uniformizing element π such that πOp is the unique
two-sided maximal ideal of Op, and moreover every ideal of Op is a power
of πOp [17, Ch 2, Thm 1.3]. In particular, pOp = π2Op, so vπOp(p) = 2.
Let I = πOp ∩ O. The ideal I is maximal in O because locally it is either
maximal or the unit ideal: Ip = πOp, and I` = O` for ` 6= p (this is because
p, which lies in I, is invertible in O`). The ideal I is also two-sided because
it is two-sided locally [17, p. 84]. Therefore vI is a valuation on O.

Any supersingular elliptic curve E is defined over Fp2 , and there exists
an automorphism i : E → E such that φ2 = i ◦ [p]. As vI(p) = 2, it follows
that vI(σ) = vp(N(σ)) for all σ ∈ O such that vp(N(σ)) is even, i.e. such
that σ = λ ◦ [pn] for some separable λ. If vp(N(σ)) is odd then vp(N(σ2))
is even, so vI(σ2) = vp(N(σ2)), and therefore vI(σ) = vp(N(σ)). �

Write ψ : E → E as ψ(x) = σ(x) + P for σ ∈ End(E) and P ∈ E. The
above propositions together with Lemma 2.1 prove the following formulas.
If j(E) is transcendental, then necessarily Γ = {±1}, and

(5.1) # Pern(f) = 1
2

( |σn − 1|
pvp(σn−1) + |σn + 1|

pvp(σn+1)

)
.
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If j(E) is algebraic and E is ordinary, then there exists p such that

(5.2) # Pern(f) = 1
|Γ|

∑
γ∈Γ

N(σn − γ)
pvp(σn−γ) .

If j(E) is algebraic and E is supersingular, then there exists I such that

(5.3) # Pern(f) = 1
|Γ|

∑
γ∈Γ

N(σn − γ)
pvI(σn−γ) .

The sequence n 7→ N(σn−γ) that appears in the above equations satisfies
a linear recurrence relation and is therefore periodic when reduced mod
any prime `. We record for future reference the next proposition, which
determines its possible periods.

Proposition 5.4. Let j(E) ∈ Fp and let an = N(σn − γ), where σ, γ ∈
End(E). For any prime `, the sequence (an (mod `)) is periodic of period
dividing (`− 1)(`2 − 1)`A for some integer A.

Proof. Let T = tr(σ) and N = N(σ). We compute

an = ̂(σn − γ)(σn − γ)
= σ̂nσn − σnγ̂ − σ̂nγ + γ̂γ

= Nn − tr(σnγ̂) +N(γ).
Let bn = Nn, cn = tr(σnγ̂), and dn = N(γ). Certainly bn = Nbn−1 and
dn = dn−1; this shows that the linearly recurrent sequences (bn) and (dn)
have characteristic polynomials x−N and x− 1 in the sense of [11, Ch 6].

Whether End(E) is an order in an imaginary quadratic field or an order
in a quaternion algebra, any σ ∈ End(E) satisfies the Cayley-Hamilton
identity σ2 − Tσ +N = 0. For n ≥ 2,

cn − Tcn−1 +Ncn−2 = tr(σnγ̂)− T tr(σn−1γ̂) +N tr(σn−2γ̂)
= tr((σ2 − Tσ +N)σn−2γ̂)
= tr(0)
= 0.

Therefore (cn) is a linearly recurrent sequence. Its characteristic polynomial
is x2−Tx+N . It follows from [11, Thm 6.55] that (an) is linearly recurrent
with characteristic polynomial equal to

g(x) = (x− 1)(x−N)(x2 − Tx+N) ∈ F`[x].
Recall that if g(0) 6= 0, ord g(x) is defined to be the least n such that g(x)
divides xn− 1. By [11, Thm 6.27], the least period of (an (mod `)) divides
ord g(x), and by [11, Thm 3.11], there is some A ≥ 0 such that

ord g(x) = LCM [ord(x− 1), ord(x−N), ord(x2 − Tx+N)]`A.
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The integer A reflects the possible presence of repeated factors of g(x). If
x− 1, x−N , and x2 − Tx+N are coprime in F`[x], then A = 0. �

6. Lifting the Exponent
The periodic point counts established in the previous sections all contain

an expression of the form vP (xn − γ), where P is a prime ideal of an
endomorphism ring R. In this section we develop formulas for writing these
expressions in terms of vp(n). These resemble a result in elementary number
theory popularly known as “lifting the exponent”, which is related to (but
does not follow from) Hensel’s Lemma.

Lemma 6.1. Let K be a number field. Let p be a prime of OK lying over
the rational prime p, and let e be the ramification index of p over p. Let
x, y ∈ OK be such that x, y /∈ p and x − y ∈ p. If e + 1 ≥ p − 1, further
assume that vp(x− y) ≥ e+1

p−1 . Then

vp(xn − yn) = vp(x− y) + evp(n).

Proof. The proof is by induction on vp(n). Assume that x 6= y; otherwise
the proposition holds trivially.

First suppose that vp(n) = 0, which guarantees vp(n) = 0. We compute

vp(xn − yn) = vp(x− y) + vp(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1).

As x− y ∈ p, we have xn−1 + xn−2y + · · ·+ xyn−2 + yn−1 ≡ nxn (mod p),
and nxn /∈ p. Therefore vp(xn− yn) = vp(x− y), proving the proposition in
this case.

If we show that the proposition holds for n = p, it follows for all n by
induction. Let v = vp(x− y), so that x = y + z for some z ∈ pv \ pv+1. By
the binomial theorem,

xp =
p∑
i=0

(
p

i

)
ziyp−i ≡ yn + pzyn−1 (mod pv+e+1).

For i ≥ 2, the ith term of the expansion is in pv+e+1. If i 6= p this is
because p divides

(p
i

)
, so

(p
i

)
∈ pe and

(p
i

)
ziyn−i lies in pe+iv ⊆ pv+e+1,

as v ≥ 1. If i = p, this is because we assumed that v = vp(z) ≥ e+1
p−1 , so

vp(zp) = pv ≥ v + e+ 1 and zp ∈ pv+e+1. The i = 1 term is not in pv+e+1,
as vp(pz) = e+ 1. Therefore xp− yp ∈ pv+e \ pv+e+1, so vp(xp− yp) = v+ e
and we are done. �

Lemma 6.2. Let p be a prime. Let B be the unique quaternion algebra
over Q ramified precisely at p and ∞, and let O be a maximal order of B.
Let π be a uniformizer for Op, and let I = πOp ∩ O. Let x, y ∈ O be such
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that x, y /∈ I and x − y ∈ I. If p = 3, assume further that vI(x − y) ≥ 2,
and if p = 2, assume further that vI(x− y) ≥ 3. Then

vI(xn − yn) = vI(x− y) + 2vp(n).

Proof. The proof is essentially the same as the proof of Lemma 6.1, and is
omitted. �

Lemma 6.3. Let k be an algebraically closed field of characteristic p, and
let k〈φ〉 be the noncommutative polynomial ring with the multiplication rule
φc = cpφ for c ∈ k. Let x ∈ k〈φ〉 be such that x− 1 ∈ φk〈φ〉. Then

vφ(xn − 1) = vφ(x− 1)pvp(n).

Proof. First assume that vp(n) = 0. Then

xn − 1 = (1 + (x− 1))n − 1 ≡ n(x− 1) (mod φ2vφ(x−1)k〈φ〉),

and vφ(xn − 1) = vφ(x− 1).
Next let n = p. As xp − 1 = (x− 1)p, we have vφ(xp − 1) = pvφ(x− 1).

The proposition follows by induction on vp(n). �

7. Background from Automatic Sequences
This section contains several results from the theory of finite automata

and automatic sequences. A sequence (an) is k-automatic if it can be pro-
duced as the output of a deterministic finite automaton that takes as input
the base-k expansion of the integer n. The theorems in this section are
stated so that they can be used later without any specific knowledge of
finite automata or automatic sequences. A good introduction to the theory
can be found in [1].

The next two theorems underlie our proof of transcendence. Christol’s
theorem gives a correspondence between automatic sequences and algebraic
power series, and Cobham’s theorem shows that the only sequences that
are automatic with respect to two multiplicatively independent bases are
eventually periodic sequences.

Theorem 7.1 (Christol). The formal power series
∑∞
n=0 ant

n ∈ Fp[[t]] is
algebraic over Fp(t) if and only if the sequence (an) is p-automatic.

Proof. [1, Thm 12.2.5]. �

Theorem 7.2 (Cobham). Suppose p and q are positive integers that are
multiplicatively independent (i.e. log p/ log q /∈ Q). If the sequence (an) is
both p-automatic and q-automatic, then it is eventually periodic.

Proof. [1, Thm 11.2.2]. �

The converse to Cobham’s theorem is also true.
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Theorem 7.3. Let (an) be eventually periodic. Then (an) is k-automatic
for every positive integer k.

Proof. [1, Thm 5.4.2]. �

The following is a corollary to Christol’s theorem that will be used to
derive the contradiction that shows that ζf is transcendental.

Corollary 7.4. If
∑∞
n=0 ant

n ∈ Z[[t]] is algebraic over Q(t), then for every
prime p, the reduced sequence ((an) mod p) is p-automatic.

Proof. [1, Thm 12.6.1]. �

The next two propositions shows that the set of p-automatic sequences
over a ring is closed under both the pointwise application of arithmetic
operations and the operation of extracting subsequences that are indexed
by arithmetic progressions.

Proposition 7.5. Let (an) and (bn) be p-automatic sequences with entries
in the ring R, and let c ∈ R. The sequences (an + bn), (anbn), and (can)
are p-automatic, as is the sequence (a−1

n ) if each an is invertible. Also, the
subsequence (amn+b) is p-automatic for any m, b ∈ Z+.

Proof. The closure properties under arithmetic operations are special cases
of the general theorem that the set of p-automatic sequences with entries in
the set ∆ is closed under the pointwise application of any binary operation
(·, ·) : ∆×∆→ ∆ [1, Cor 5.4.5] and the completely trivial theorem that it is
closed under the pointwise application of any unary operation (·) : ∆→ ∆
(this follows directly from the definition of an automatic sequence). For the
claim about the subsequences (amn+b), see [1, Thm 6.8.1]. �

Propositions 7.6 and 7.7 are the major technical results of this section.
They will be needed to produce a contradiction at key moments in the proof
of Theorems 1.2 and 1.3.

Proposition 7.6. Let p and ` be distinct primes. Suppose a ∈ Z+, a 6≡ 1
(mod `), and (a, `) = 1. Also suppose α, β ∈ Z, α 6= 0, and vp(α) ≤ vp(β).
Let the sequence (an) with entries in Z/`Z be defined by

an = avp(αn+β) (mod `).
The sequence (an) is not `-automatic.

Proof. Let d be the multiplicative order of a mod `. It follows from the
assumptions that d exists and d > 1. The sequence n 7→ avp(n) is a function
of the equivalence class of vp(n) mod d, so it is p-automatic by [4, Lem 6].
Therefore the sequence (an) is p-automatic by Proposition 7.5.

Assume by way of contradiction that (an) is `-automatic. Any distinct
primes are multiplicatively independent, so by Cobham’s theorem, (an) is
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eventually periodic. Let c be its eventual period, so that an+xc = an for
sufficiently large n and every positive x. This means that

(7.1) avp(αn+β) ≡ avp(α(n+xc)+β) (mod `),
which implies that
(7.2) vp(αn+ β) ≡ vp(α(n+ xc) + β) (mod d).

Let α′ = α/pvp(α) and β′ = β/pvp(α). It is clear that (p, α′) = 1, and it
follows from our assumption that vp(α) ≤ vp(β) that β′ is an integer. So

(7.3) vp(α′n+ β′) ≡ vp(α′(n+ xc) + β′) (mod d).
Let m = vp(c) so that c′ = c/pm and (p, c′) = 1. We can solve

(7.4) α′n ≡ −β′ + pm (mod pm+2)
for n, and choose such an n to be large enough so that the sequence (an)
is periodic at n. Therefore vp(α′n+ β′) = m. We can also solve

(7.5) α′c′x ≡ p− 1 (mod pm+2)
for x, and choose such an x to be positive. Adding Equation 7.4 and pm

times Equation 7.5 gives
(7.6) α′(n+ xc) ≡ −β′ + pm+1 (mod pm+2)
and therefore vp(α′(n+ xc) + β′) = m+ 1. So by Equation 7.3,
(7.7) m ≡ m+ 1 (mod d).
As d > 1, this is a contradiction. �

Proposition 7.7. Let a ∈ Z+ and let p and ` be primes so that ` > pap
a.

If p is odd, also assume that (p, ` − 1) = 1. If p = 2, instead assume that
` ≡ 7 (mod 8). Let the sequence (an) with entries in Z/`Z be defined by

an = pap
vp(n)

(mod `).
The sequence (an) is not `-automatic.

Proof. Let d be the multiplicative order of pa mod `. Since ` > pap
a , we

have d > pa. The sequence an is a function of the equivalence class of pvp(n)

mod d.
First assume that p is odd. Then (pa, `− 1) = 1, and as d divides `− 1,

also (pa, d) = 1. Let e be the multiplicative order of pa mod d, and note that
e ≥ 2. So an = am iff pvp(n) ≡ pvp(m) (mod d) iff vp(n) ≡ vp(m) (mod e).
In particular, an is a function of the equivalence class of vp(n) mod e. By [4,
Lem 6], (an) is p-automatic.

If instead p = 2, then ` ≡ 7 (mod 8), so 2 is a quadratic residue mod `.
It follows that d divides `−1

2 , so d is odd and (p, d) = 1. Let e be the
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multiplicative order of pmod d, and again note that e ≥ 2, so again an = am
if and only if vp(n) ≡ vp(m) (mod e). In particular, (an) is p-automatic.

Assume that (an) is also `-automatic. It follows from Cobham’s theorem
that (an) is eventually periodic. Let c be its eventual period. For n large
and x > 0,

(7.8) vp(n+ xc) ≡ vp(n) (mod e).

But this is impossible by the argument in the proof of Proposition 7.6;
simply set α = 1 and β = 0. �

8. Proof of Theorem 1.2
Let k be an algebraically closed field of characteristic p, and let f ∈ k(x)

be a separable power map, Chebyshev polynomial, or Lattès map. Let ζ =
ζ(f,P1(k); t). Assume by way of contradiction that ζ is algebraic over Q(t).
Its derivative ζ ′ is algebraic, so its logarithmic derivative ζ ′/ζ is algebraic.
We compute

ζ ′/ζ = (log ζ)′ =
∑
n≥1

# Pern(f)tn−1.

By Corollary 7.4, for any prime `, the reduction mod ` of the sequence
(# Pern(f)) is `-automatic. By carefully choosing `, we will produce a con-
tradiction, showing that ζ is transcendental.

8.1. Power Maps and Chebyshev Polynomials. Let f be the power
map f(x) = xd, and note that (p, d) = 1 because f is separable. Let m be
even and such that dm ≡ 1 (mod p). Let ` > p be a prime to be determined,
and consider the sequence (an) with entries in F` given by

an = # Permn(f) (mod `).

By Proposition 7.5, (an) is `-automatic. As mn is even, Equation 3.4 and
Proposition 6.1 give

an = 2 + dmn − 1
pvp(dmn−1) = 2 + (dmn − 1)(p−1)vp(dm−1)+vp(n).

First suppose p is odd. Note that (dmn − 1) = dm − 1 when n ≡ 1
(mod `− 1), and that dm − 1 6≡ 0 (mod `). Consider the subsequence

bn = (dm − 1)(pvp(dm−1))−1(a(`−1)n+1 − 2)−1,

which is `-automatic by proposition 7.5. Then

bn = pvp((`−1)n+1).

Choose ` such that ` ≡ 2 (mod p). Then vp(` − 1) = 0 = vp(1), and by
Proposition 7.6, (bn) is not automatic, which is a contradiction.
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Now suppose p = 2. Letm = 2, so that dm ≡ 1 (mod 4) (the separability
of f forces d to be odd). Let bn be given by

bn = (d2 − 1)(pvp(d2−1))−1(a(`−1)n+2 − 2)−1,

so that
bn = pvp((`−1)n+2).

Choose ` such that ` ≡ 3 (mod 4) and (`, d2 − 1) = 1. Then we have
vp(`− 1) = 1 = vp(2), and again Proposition 7.6 gives a contradiction.

Now let f be the dth Chebyshev polynomial. Again it must be true that
(p, d) = 1, because otherwise the ψ(x) that fits into Diagram 2.1 factors
through the pth power map and is inseparable, so f is also inseparable.
Let m be such that dm ≡ 1 (mod p), and let an = # Permn(f) (mod `) for
some ` to be determined. By equation 3.6 and Proposition 6.1,

an = 1 + 1
2

(
dmn − 1
pvp(dmn−1) + dmn + 1

pvp(dmn+1)

)
= 1 + 1

2
(
(dmn − 1)(p−1)vp(dm−1)+vp(n) + (dmn + 1)(p−1)vp(dmn+1)

)
.

First suppose p is odd. Then vp(dmn + 1) = 0 because vp(dmn − 1) > 0
by Proposition 6.1. The sequence

n 7→ (dmn + 1)

is periodic, and so is `-automatic. Let bn be defined by

bn = (2(a(`−1)n+1 − 1)− (dm(`−1)n+1))(dm − 1)−1(pvp(dm−1)).

As before, bn is `-automatic, but

b−1
n = pvp((`−1)n+1).

Choosing ` ≡ 2 (mod p) gives a contradiction by Proposition 7.6.
If p = 2, then let m = 2. In this case, d2n ≡ 1 (mod 4) for all n, so

vp(d2n + 1) = 1. The sequence

n 7→ (d2n + 1)

is still eventually periodic, so using the same manipulations as above, the
sequence

b−1
n = pvp((`−1)n+2)

is `-automatic. If we pick ` such that ` ≡ 3 (mod 4) and (`, d2 − 1) = 1,
then vp(`− 1) = 1 and again this is a contradiction by Proposition 7.6.
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8.2. Lattès Maps. Let f be a Lattès map associated to the elliptic curve
E. If j(E) is transcendental over Fp, then σ ∈ Z, and as f is separable we
have (p, σ) = 1 (otherwise σ would be inseparable). By equation 5.1,

# Pern(f) = 1
2

( |σn − 1|
pvp(σn−1) + |σn + 1|

pvp(σn+1)

)
.

If σ > 0, then this is the same as the periodic point count for the degree |σ|
Chebyshev polynomial T|σ|, and we have already shown that there exists
an ` such that # Pern(f) (mod `) is not `-automatic. In fact, the argument
also goes through if σ < 0, as we simply choose an even m and use the
subsequence # Permn(f) (mod `), in which case σmn is always positive.

Now suppose j(E) ∈ Fp and E is ordinary. The ring End(E) is an order
in an imaginary quadratic field K, and Aut(E) is cyclic of order 2,4, or 6.
Therefore Γ is isomorphic to one of µ2, µ3, µ4, or µ6. By Proposition 5.2,
there is a prime p of OK such that

# Pern(f) = 1
|Γ|

∑
γ∈Γ

N(σn − γ)
pvp(σn−γ) ,

and p is the extension to OK of the ideal in End(E) that consists of all
inseparable isogenies, so σ /∈ p.

Assume for the moment that p /∈ {2, 3}. Let m be the multiplicative
order of the image of σ in the residue field OK/p, so that σm − 1 ∈ p. By
Proposition 6.1,

vp(σmn − 1) = vp(σm − 1) + vp(n).

In particular, σmn − 1 ∈ p for n ≥ 1. We argue that σmn − γ /∈ p for
γ ∈ Γ \ {1}.

If σmn − γ were in p, then 1 − γ would be in p, and p = N(p) would
divide N(1− γ). We compute

N(1− γ) = (1− γ)(1− γ̂) = 1− tr(γ) +N(γ) = 2− tr(γ).

As γ is a root of the kth cyclotomic polynomial for some k ∈ {2, 3, 4, 6},
it follows that tr(γ) ∈ {−2,−1, 0, 1}. Therefore N(1 − γ) ∈ {1, 2, 3, 4}, so
vp(N(1− γ)) = 0 and 1− γ /∈ p, so σmn − γ /∈ p. Therefore

# Permn(f) = 1
|Γ|

N(σmn − 1)
pvp(σm−1)+vp(n) + 1

|Γ|
∑

γ∈Γ\{1}
N(σmn − γ).

Let ` > p be a rational prime to be determined. For now, assume that
(`,N(σ)) = (`, |Γ|) = 1. Each sequence n 7→ N(σmn−γ) (mod `) is periodic
and therefore `-automatic. It follows that the sequence given by

an = 1
|Γ|

N(σmn − 1)
pvp(σm−1)+vp(n) (mod `)



320 Andrew Bridy

is `-automatic. By Proposition 5.4, the sequence n 7→ N(σmn− 1) (mod `)
is periodic of period dividing (` − 1)(`2 − 1)`A for some A. Let c be this
period. Choose ` ≡ 2 (mod p) subject to the previous restrictions on ` and
such that (`,N(σm − 1)) = 1. Therefore

N(σm(cn+1) − 1) ≡ N(σm − 1) 6≡ 0 (mod `).
By the closure properties of Proposition 7.5, the sequence given by

n 7→ pvp(cn+1) (mod `)
is `-automatic. We know (p, `) = (p, ` − 1) = (p, `2 − 1) = 1, so vp(c) = 0.
So vp(c) ≤ vp(1) = 1, and this is a contradiction by Proposition 7.6.

If p ∈ {2, 3}, then Aut(E) ∼= µ2, as the only possible larger automorphism
groups in characteristic 2 or 3 are nonabelian and cannot be realized as
subgroups of O×K [14, Appendix A]. Therefore Γ = Aut(E) = {±1}.

First assume that p = 3. Everything in the above argument holds, ex-
cept possibly that c, the period of n 7→ N(σmn − 1) (mod `), might be
divisible by 3. Choose ` such that ` ≡ 2 (mod 9) and (`,N(σ3m − 1)) = 1.
By Proposition 5.4, v3(c) ≤ v3((` − 1)(`2 − 1)`A) = 1. The contradiction
by Proposition 7.6 now comes from manipulating (acn+3) to produce the
sequence

n 7→ 3v3(cn+3) (mod `).
Now assume that p = 2. As σ /∈ p, the image of σ in the finite ring

OK/p2 is invertible. Let m be the multiplicative order of the image of σ,
so that σm − 1 ∈ p2. Using Lemma 6.1 and following the above argument,
we arrive at

# Permn(f) = 1
2

(
N(σmn − 1)
2vp(σmn−1) + N(σmn + 1)

2vp(σmn+1)

)
As vp(σm − 1) ≥ 2, we have vp(σmn − 1) ≥ 2 for all n. By properties of
valuations,

vp(σmn + 1) = min(vp(σmn − 1), vp(2)) = 1,
where vp(2) = 1 because 2 splits in K. Therefore

# Permn(f) = 1
2

(
N(σmn − 1)
2vp(σmn−1) + N(σmn + 1)

2

)
.

Again the only difficulty is that c, the period of n 7→ N(σmn−1) (mod `),
might be even. Choose ` ≡ 3 (mod 8) such that (`,N(σ16m− 1)) = 1. Now
v2(c) ≤ v2((` − 1)(`2 − 1)`A) = 4, and the same contradiction comes from
the sequence

n 7→ 2v2(cn+16) (mod `).
Now suppose that E is supersingular. In this case End(E) can be iden-

tified with a maximal order O of a rational quaternion algebra B that
is ramified only at p and ∞. Let I be the two-sided maximal ideal of O
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from Proposition 5.3. As σ : E → E is separable, σ /∈ I. Let m be the
multiplicative order of σ in the residue field O/I, so that vI(σm − 1) ≥ 1.

Assume first that p /∈ {2, 3} so that Γ ∼= µ2, µ3, µ4, or µ6. By Proposi-
tion 5.3 and Lemma 6.2,

vI(σmn − 1) = vI(σm − 1) + 2vp(n).

As in the case of E ordinary, for ξ ∈ Γ\{1}, ξ is a root of the kth cyclotomic
polynomial some for k ∈ {2, 3, 4, 6}, so N(1−ξ) ∈ {1, 2, 3, 4}. Norm consid-
erations show that σmn− ξ /∈ I for n ≥ 1, so # ker(σmn− ξ) = N(σmn− ξ).
Therefore

# Permn(f) = 1
|Γ|

N(σmn − 1)
pvI(σm−1)+2vp(n) + 1

|Γ|
∑

ξ∈Γ\{1}
N(σmn − ξ).

The same reasoning as in the ordinary case shows that there is a prime `
such that # Permn(f) (mod `) is not `-automatic.

Now assume that p ∈ {2, 3}. If j(E) 6= 0, then Aut(E) = {±1}, and the
argument proceeds exactly as when E is ordinary. Therefore assume that
j(E) = 0. For both the cases p = 2 and p = 3, the maximal order O has
trivial class group and is therefore the unique maximal order of B up to
conjugacy [17, Ch 1, Cor 4.11]. Therefore, for the purposes of identifying
End(E) with O, we may take O to be any maximal order of B.

First let p = 2. In this case, B is the Hamilton quaternions given by(
−1,−1

Q

)
= Q(i, j) where i2 = j2 = −1 and k = ij. A maximal order of B

is given by the Hurwitz quaternions

O = Zi+ Zj + Zk + Z(1 + i+ j + k)/2.

Here Aut(E) ∼= SL2(F3) can be described explicitly as

Aut(E) ∼= O× = {±1,±i,±j,±k, (±1± i± j ± k)/2}.

For γ ∈ Aut(E), explicit calculation of norms shows that vI(1 − γ) = 0
unless γ ∈ {±1,±i,±j,±k} ∼= Q8, which is the unique Sylow 2-subgroup
of Aut(E). As σ /∈ I, the image of σ is invertible in O/I3. Pick m such that
σm − 1 ∈ I3, i.e. vI(σm − 1) ≥ 3. Then for γ 6= 1,

vI(σmn − γ) = min{vI(σmn − 1), vI(1− γ)} =


2 : γ = −1
1 : γ = ±i,±j,±k
0 : otherwise

So for each γ ∈ Γ, there exists a constant C(γ) such that

# Permn(f) = 1
|Γ|

 N(σmn − 1)
2vI(σm−1)+2v2(n) +

∑
γ∈Γ\{1}

N(σnm − γ)
C(γ)





322 Andrew Bridy

Choosing ` appropriately, we can reduce this to the sequence

n 7→ 4v2(cn+16)

and get a contradiction as before.
Now let p = 3, so that B =

(
−1,−3

Q

)
= Q(i, j) where i2 = −1, j2 = −3,

and k = ij. A maximal order O is given by
O = Z + Zi+ Z(1 + j)/2 + Z(i+ k)/2

and again Aut(E) ∼= C3 o C4 has an explicit description as
Aut(E) ∼= O× = {±1,±i, (±1± j)/2, (±i± k)/2}.

For γ ∈ Aut(E), another norm calculation shows that vI(1− γ) = 0 unless
γ ∈ {1, −1±j

2 } ∼= C3, the unique Sylow 3-subgroup of Aut(E). Pick m such
that vI(σm − 1) ≥ 2. If γ 6= 1,

vI(σmn − γ) = min{vI(σmn − 1), vI(1− γ)} =
{

1 : γ = (−1± j)/2
0 : otherwise

As above, there are C(γ) so that

# Permn(f) = 1
|Γ|

 N(σmn − 1)
3vI(σm−1)+2v3(n) +

∑
γ∈Γ\{1}

N(σmn − γ)
C(γ) )

 .
We can reduce this to the sequence

n 7→ 9v3(cn+3)

and the same argument gives a contradiction.

9. Proof of Theorem 1.3
Let k be an algebraically closed field of characteristic p, and let f ∈ k[x]

be an additive or subadditive polynomial. The map f fits into Diagram 2.1
with G = Ga, Γ ∼= µd, and π(x) = xd, where possibly d = 1. Therefore
ψ(x)d = f(xd). As usual, let ψ be the endomorphism σ composed with a
translation.

Let a be the constant term of σ ∈ k〈φ〉, so that σ = a + (φ) (that is,
σ(x) = ax + g(x) for some g ∈ (φ)). If d = 1, then f(x) is σ(x) composed
with a translation, so f ′(0) = a. If d ≥ 2, then ψ(ωdx) = ωdψ(x), so
ψ(0) = 0 and ψ = σ. So σd = ad + (φ), and f ′(0) = ad. Therefore f ′(0) is
algebraic if and only if a is algebraic.

By equation (4.1),

# Pern(f) = 1 + 1
d

∑
ω∈µd

(deg σ)n

pvφ(σn−ω) .

As σ is separable, vφ(σ) = 0, so a 6= 0.
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If f ′(0) is transcendental, then so is a. The constant term of σn − ω is
an − ω, which is never zero (if it were, a would be algebraic). Therefore

# Pern(f) = 1 + 1
d

∑
ω∈µd

(deg σ)n = 1 + (deg σ)n.

It follows easily that ζ(f,P1(k); t) is rational.
Suppose f ′(0) is algebraic over Fp, so a is algebraic and therefore is

a root of unity. Aiming for a contradiction, assume that ζ(f,P1(k); t) is
algebraic. There exists m such that the image of σm in k〈φ〉/(φ) is 1, and
so σm − 1 ∈ (φ). By Lemma 6.3, for n ≥ 1,

vφ(σmn − 1) = vφ(σm − 1)pvp(n).

In particular, σmn − 1 ∈ (φ). Therefore, for ω ∈ µd \ {1}, we must have
σmn − ω /∈ (φ), because otherwise 1− ω would be in (φ). But the element
1 − ω ∈ k〈φ〉 represents the linear polynomial x 7→ (1 − ω)x, which does
not factor through φ : x 7→ xp. Therefore

# Permn(f) = 1 + 1
d

 (deg σ)n

pvφ(σm−1)pvp(n) +
∑

ω∈µd\{1}
(deg σ)n

 .
Let ` be a prime. If p is odd, choose ` such that ` ≡ 2 (mod p), and
if p = 2, choose ` ≡ 7 (mod 8). Let an = # Permn (mod `). Note that
n 7→ (deg σ)n is periodic and therefore `-automatic. By Proposition 7.5, we
can manipulate an to arrive at the sequence

bn = (deg σ)np−p
(vφ(σm−1)pvp(n))

,

which is `-automatic. The subsequence b(`−1)n is `-automatic, as is its re-
ciprocal

(b(`−1)n)−1 = pp
(vφ(σm−1)pvp(n))

.

For a large enough prime `, the above sequence satisfies the assumptions
of Proposition 7.7, so it is not `-automatic, which is a contradiction.
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