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Fields on the Bottom

par Moshe JARDEN et Carlos VIDELA

Résumé. Nous notons Qtr le corps des nombres totalement réels.
Etant donné un ensemble S de nombres premiers, nous notons
Q(S) l’extension galoisienne maximale de Q de degré seulement
divisible par des nombres premiers dans S. Nous démontrons que
le corps Qtr,S = Qtr ∩ Q(S) n’a pas de sous corps propre M avec
[Qtr,X : M ] <∞.

Abstract. We denote the field of totally real numbers by Qtr.
For a set S of prime numbers we let Q(S) be the maximal Galois
extension of Q whose degree is divisible only by prime numbers
in S. We prove that the field Qtr,S = Qtr ∩ Q(S) has no proper
subfield M with [Qtr,S : M ] <∞.

Introduction
We say that a field F lies on the bottom if F contains no field E with

1 < [F : E] < ∞. By definition, each of the prime fields Q and Fp lies on
the bottom. By a theorem of Artin, every separably closed field of positive
characteristic lies on the bottom (see for example the proof of [7, Cor. 9.3]).
In particular, the absolute Galois group Gal(K) of a field K of positive
characteristic is torsion free.

The same theorem combined with another theorem of Artin [7, p. 452,
Prop. 2.4] implies that every real closed field lies on the bottom. Again,
this implies that the only torsion elements of the absolute Galois group of
a field K are involutions.

By a theorem of F. K. Schmidt, each Henselian closure of Q with respect
to a prime number p lies on the bottom (e.g. [5, Cor. 15.3]).

By the “Bottom Theorem” [4, Thm. 18.7.7], for every positive integer
e and almost all (σ1, . . . , σe) ∈ Gal(Q)e the field Q̃(σ1, . . . , σe) lies on the
bottom. Here Q̃(σ1, . . . , σe) is the fixed field of σ1, . . . , σe in the algebraic
closure Q̃ of Q. The clause “almost all” means “all but a subset of Gal(Q)e

of Haar measure 0”.
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We mention that Lior Bary-Soroker [1] strengthened the bottom theorem
in the following way: Let K be a finitely generated extension of Q and let
e ≥ 2 be an integer. Then, for almost all (σ1, . . . , σe) ∈ Gal(K)e the field
K̃(σ1, . . . , σe) lies on the bottom [1, Thm. 8.2.2].

Next, we recall that a field F is pythagorean if every sum of two squares in
F is a square in F . It follows that every sum of finitely many squares in F is
a square in F . It also follows that the intersection of pythagorean subfields of
a field Ω (which we assume to be algebraically closed) is pythagorean. Note
that every algebraically closed field is pythagorean. Hence, the intersection
of all pythagorean field extensions of a given field K in Ω is the smallest
algebraic extension of K which is pythagorean. We denote it by Kpyt. If
char(K) 6= 2, then Kpyt is a Galois extension of K. Indeed, Kpyt is the
smallest algebraic extension of K closed under extensions with elements of
the form

√
x2 + y2. By [12, p. 176], Qpyt lies on the bottom.

In order to present our results, we consider the field Qtr of all totally
real algebraic numbers. It is the union of all finite extensions K of Q whose
images under all embeddings into C lie in R. It is also the intersection of
all real closures of Q in Q̃. Since the absolute Galois group of a real closed
field has order two, Gal(Qtr) is generated by involutions.

By a result of Florian Pop ([10] and [11, p. 25]), Qtr is PRC. This means
that every absolutely irreducible variety defined over Qtr with a simple
R–rational point for each real closure R of Qtr has a Qtr–rational point.
This result is a consequence of a local-global principle of Laurent Moret-
Bailly [9, Thm. 1.3 and Rem. 1.7]. Michael Fried, Dan Haran, and Helmut
Völklein proved in [2] that Gal(Qtr) is a free profinite product (in the sense
of Melnikov [8]) of groups of order 2. They also proved that the elementary
theory of Qtr is effectively decidable [3, Thm. 10.1].

Our goal is to enrich the already rich collection of properties of Qtr with
the following one:

Main Theorem. For every set S of prime numbers, the field Qtr,S =
Qtr ∩Q(S) lies on the bottom.

To this end we define K(S) for a field K and a set S of prime numbers as
the union of all finite Galois field extensions L of K whose degrees [L : K]
are divisible only by prime numbers that belong to S.

In particular, if S is the set of all prime numbers, then Q(S) = Q̃ and
Qtr,S = Qtr. In this case, the main theorem becomes the following result.

Corollary. The field Qtr lies on the bottom

The proof of the main theorem uses information about pythagorean
fields, an old theorem of George Whaples, and an older theorem of Ed-
mund Landau.
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Remark. As the referee pointed out, if N is a Galois extension of Q,
then the statement “N lies on the bottom” is equivalent to “Gal(N/Q)
is torsion-free”. If N is an arbitrary algebraic extension of Q that lies on
the bottom, then it is still true that Aut(N/Q) is torsion-free. But the con-
verse is not true. For example, Q( 3√2) does not lie on the bottom although
Aut(Q( 3√2)/Q) is trivial, so torsion-free.
Acknowledgement. The authors are indebted to the referee for comments
that led to an improvement of the presentation of this note.

1. Basic facts
We present a few facts and results that enter the proof of the main

theorem.
Lemma 1.1. If F/M is a cyclic extension of odd prime degree p, then F
has a cyclic extension of degree p.
Proof. By a result of Whaples from 1957 [4, Thm. 16.6.6], M has a Galois
extension N with Gal(N/M) ∼= Zp. The compositum FN is a Galois exten-
sion of F and Gal(FN/F ) ∼= Gal(N/F ∩N). The latter group is isomorphic
to an open subgroup of Zp, hence to Zp itself [4, Lemma 1.4.2]. It follows
that Gal(FN/F ) ∼= Zp. Hence, F has a finite cyclic extension of degree p
in FN . �

Next we need the following result about pythagorean fields which is
proved on page 176 of [12]. It is a corollary of a theorem of Diller and
Dress.
Proposition 1.2. If a finite extension of a field P0 is pythagorean, then
P0 itself is pythagorean.

Finally recall that an algebraic number a is totally real if ϕ(a) ∈ R for
every embedding ϕ: Q̃→ C. If in addition ϕ(a) > 0 for each such ϕ, then a
is totally positive. Note that if a is totally real and a 6= 0, then a2 is totally
positive.
Lemma 1.3. Qtr is a pythagorean field.
Proof. Given elements x, y ∈ Qtr, not both zero, the sum x2 + y2 is totally
positive. Hence, so is z =

√
x2 + y2. Therefore, z ∈ Qtr and x2 + y2 = z2,

as claimed �

Edmund Landau proved in 1919 the following result.
Proposition 1.4 ([6, p. 392, II]). Every totally positive algebraic number
a is a sum of finitely many squares of elements of Q(a).

We mention that two years after Landau published his result, Carl Lud-
wig Siegel improved it by proving that every totally positive algebraic num-
ber a is a sum of four squares in Q(a) [13].
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2. S–Extensions
In addition to the results described in Section 1, we introduce here the

notion of S–extensions and the maximal Galois S–extension of a field.
Let S be a set of prime numbers. An algebraic extensionM/L of fields is

said to be an S–extension, if the degree [M0 : L] of every finite subextension
M0/L of M/L is divisible only by prime numbers that belong to S. In
other words, the degree [M : L] considered as a supernatural number [4,
Remark 22.8.6] is divisible only by prime numbers that belong to S.

For the rest of this section we fix a field K and an algebraic closure K̃
of K. All of the fields that appear in the rest of this section lie between K
and K̃.

Lemma 2.1.
(a) If M/K is an S–extension and L/K is a subextension, then both

M/L and L/K are S–extensions.
(b) If L/K and M/L are S–extensions, then so is M/K.
(c) If M/K is an S–extension and M ′ is a K–conjugate of M , then

M ′/K is an S–extension.
(d) If L/K is an S–extension and L′/K is a Galois S–extension, then

LL′/K is an S–extension.
(e) The compositum of arbitrary family of Galois S–extensions of K is

a Galois S–extension of K.
(f) The compositum of arbitrary S–extensions need not be an S–exten-

sion.

Proof of (a) and (b). Statement (a) follows from the relation [M : L] ·
[L : K] = [M : K] which holds for finite as well as for infinite algebraic
extensions [4, Remark 8.2.6 (4a)]. The same relation proves (b).

Proof of (c). Use that [M : K] = [M ′ : K].

Proof of (d). By (a), L∩L′/K, L/L∩L′, and L′/L∩L′ are S–extensions.
Also, Gal(LL′/L) ∼= Gal(L′/L ∩ L), so [LL′ : L] = [L′ : L ∩ L′], hence
LL′/L is an S–extension. Now apply (b) twice to conclude that LL′/K is
an S–extension.

Proof of (e). We may assume without loss that the family is finite. Then,
we use induction in order to reduce (e) to the case where the family contains
two extensions. The latter case follows from (d).

Proof of (f). Consider S = {3}, let ω be a root of unity of order 3, and let
3√2 be the unique real third root of 2. Then, [Q( 3√2) :Q] = 3, [Q(ω 3√2) :Q] =

3, but [Q(ω, 3√2) : Q] = 6. Thus, Q( 3√2) and Q(ω 3√2) are S–extensions of
Q but their compositum is not. �
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Next we define K(S) to be the union of all finite Galois S–extensions
of K.

Lemma 2.2.
(a) K(S) is a Galois S–extension of K.
(b) Every Galois S–extension of K is contained in K(S).
(c) IfM is an extension of K in K(S), thenM (S) = K(S). In particular,

K(S) has no proper Galois S–extensions.
(d) If 2 ∈ S, then K(S) is pythagorean.

Proof of (a). Consider elements x, x′ ∈ K(S). By definition, there exist fi-
nite Galois S–extensions L and L′ of K that contain x and x′, respectively.
By Lemma 2.1(d), LL′/K is a finite Galois S–extension, so LL′ ⊆ K(S).
It follows that x + x′ and xx′ ∈ K(S) and if x 6= 0 also x−1 ∈ K(S).
Consequently, K(S) is a field. Moreover, K(S) is a Galois S–extension of K.

Proof of (b). IfN/K is a Galois S–extension and x ∈ N , then x is contained
in a finite subextension N0 of N which is Galois over K. By Lemma 2.1(a),
N0/K is an S–extension. Hence, by definition, x ∈ K(S). Therefore, N ⊆
K(S).

Proof of (c). By Lemma 2.1(a), K(S)/M is a Galois S–extension. Hence, it
suffices to prove that if N is a Galois S–extension of M , then N ⊆ K(S).

Indeed, let M ′ be the compositum of all K–conjugates of M . Then,
M ′/K is a Galois extension. By (a), M ′ ⊆ K(S). Moreover, N ′ = M ′N is
a Galois extension of M ′. By Lemma 2.1(d), N ′ is an S–extension of M ,
hence also of M ′ (Lemma 2.1(a)).

Now let N̂ be the compositum of all K–conjugates of N ′. Since M ′/K is
Galois, each of the above conjugates is a Galois extension of M ′. Hence, by
Lemma 2.1(e), N̂/M ′ is an S–extension. Therefore, by Lemma 2.1(b), N̂/K
is a Galois S–extension, so by (b), N̂ ⊆ K(S). It follows that N ⊆ K(S), as
claimed.

Proof of (d). Assume K(S) has elements x, y such that
√
x2 + y2 /∈ K(S).

Then,K(S)(
√
x2 + y2) is a quadratic extension ofK(S), in contrast to (c). It

follows from this contradiction that z =
√
x2 + y2 ∈ K(S) and x2 +y2 = z2,

as desired. �

3. Main Theorem
We fix a set S of prime numbers and recall the main theorem:

Main Theorem. The field Qtr,S = Q(S) ∩Qtr lies on the bottom.

Proof. Assume that Qtr,S does not lie on the bottom. Then, Qtr,S is a finite
proper extension of a fieldM0. Since Qtr,S/Q is Galois, so is Qtr,S/M0. By a



218 Moshe Jarden, Carlos Videla

lemma of Cauchy, Gal(Qtr,S/M0) has an element σ of prime degree p. LetM
be the fixed field of σ in Qtr,S . Then, Qtr,S/M is a cyclic extension of degree
p. By Lemma 2.2(a), Qtr,S/Q is an S–extension, hence by Lemma 2.1(a),
p ∈ S. We distinguish between two cases.

Case A. p 6= 2
By Lemma 1.1, Qtr,S has a cyclic extensionN of degree p. By Lemma 2.2(c),
N ⊆ Q(S). If N 6⊆ Qtr, then NQtr/Qtr is a Galois extension with Galois
group isomorphic to Z/pZ. As mentioned in the introduction, Gal(Qtr) is
generated by involutions. Hence, so is Z/pZ, in contrast to the assumption
p 6= 2. Thus, N ⊆ Qtr. Hence, N = Qtr,S , which is a contradiction.

Case B. p = 2
In this case Qtr,S = M(

√
a) for some non-square element a of M . On the

other hand, by Lemma 2.2(d), Q(S) is a pythagorean field. Since Qtr is
pythagorean (Lemma 1.3), so is the intersection Qtr,S = Q(S) ∩ Qtr. By
Proposition 1.2, M is also pythagorean. Since

√
a ∈ Qtr, the element a

of M is totally positive. By Proposition 1.4, a is a sum of squares in M .
Hence, by the preceding paragraph, a is a square in M , in contrast to the
defining property of a. This ends the proof of Case B and the proof of the
main theorem. �

Corollary 3.1. The field Q(S) lies on the bottom if and only if 2 /∈ S.

Proof. Let R be a real closure of Q and consider a proper Galois extension
N of Q which is not contained in R. Then, N does not lie on the bottom.
Indeed, Gal(N/N ∩ R) ∼= Gal(Q̃/R) ∼= Z/2Z. In particular, if 2 ∈ S, then
Q(
√
−1) ⊂ Q(S), so Q(S) 6⊆ R. Therefore, Q(S) does not lie on the bottom.

On the other hand, if 2 /∈ S, then Q(S) is a quadratic extension of no
subfield (Lemma 2.2(a) and Lemma 2.1(a)). Hence, the argument of the
preceding paragraph proves that Q(S) is contained in every real closure of
Q. Therefore, Q(S) ⊆ Qtr, so Q(S) = Qtr,S . It follows from the main theorem
that Q(S) lies on the bottom. �
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