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Refined class number formulas for G,,

par BARRY MAZUR et KarL RUBIN

RESUME. Nous formulons une généralisation d’une “formule du
nombre de classes raffinée” de Darmon. Notre conjecture concerne
des éléments de type Stickelberger formés a partir d’unités de
Stark généralisées. En utilisant la théorie des systemes de Ko-
lyvagin, nous démontrons une grande partie de cette conjecture
lorsque 'ordre d’annulation de la fonction L complexe correspon-
dante est 1.

ABSTRACT. We formulate a generalization of a “refined class
number formula” of Darmon. Our conjecture deals with
Stickelberger-type elements formed from generalized Stark units,
and has two parts: the “order of vanishing” and the “leading term”.
Using the theory of Kolyvagin systems we prove a large part of
this conjecture when the order of vanishing of the corresponding
complex L-function is 1.

1. Introduction

In [3], Darmon conjectured a “refined class number formula” for real qua-
dratic fields, inspired by work of Gross [5], of the first author and Tate [7],
and of Hayes [6]. The common setting for these conjectures included a finite
abelian extension L/K and a Stickelberger-type element 6 € Z|Gal(L/K)].
In analogy with the Birch and Swinnerton-Dyer conjecture, these conjec-
tures predicted the “order of vanishing” (a nonnegative integer r such that
0 lies in the r-th power of the augmentation ideal A of Z|Gal(L/K)]) and
the “leading term” (the image of 6 in A"/ A™*1) of 6.

In [9], we proved most (the “non-2-part”) of Darmon’s conjecture, using
the theory of Kolyvagin systems [8]. The key idea is that in nice situations,
the space of Kolyvagin systems is a free Z,-module of rank one, and hence
two Kolyvagin systems that agree “at n = 1”7 must be equal. Darmon’s
conjecture for n = 1 follows from the classical evaluation of L'(0, x) for a
real quadratic Dirichlet character y.
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In this paper we attempt to generalize both the statement and proof of
Darmon’s conjecture. To generalize the statement we rely on a suitable ver-
sion of Stark’s conjectures. Namely, given a finite abelian tower of number
fields L/K/k, our proposed Conjecture 5.2 relates the so-called “Rubin-
Stark” elements €7, g, attached to L/k (see §3) with an “algebraic regulator”
(see Definition 4.5) constructed from Rubin-Stark elements ex g, attached
to K/k and L. Similar generalizations of Darmon’s conjecture have recently
been proposed independently by Sano [16, Conjecture 4] and Popescu [12].

Our conjecture has two parts, the “order of vanishing” and the “leading
term”. We prove a large portion of the order of vanishing part of the conjec-
ture in Theorem 6.3. We prove a large part of the leading term statement in
Theorem 10.7 following the method of [9], but only under the rather strong
assumption that the order of vanishing (the “core rank”, in the language
of [10]) is one. As L varies, the elements €7, g, form an Euler system, and
the elements ex g, form what we call a Stark system. When the order of
vanishing is one we can relate these systems and prove the leading term
formula. In the final section we prove a weakened version of the leading
term statement for general r, under some additional hypotheses.

Notation. Suppose throughout this paper that O is an integral domain
with field of fractions F, and let R = O[] with a finite abelian group T
We are mainly interested in the case where O = Z or Z,, for some prime p.

If M is an R-module, we let M* := Hompg(M, R). If p € R, then M|p]
will denote the kernel of multiplication by p in M.

If » > 0, then A"M (or ANz M, if we need to emphasize the ring R)
will denote the r-th exterior power of M in the category of R-modules,
with the convention that A°M = R. See Appendix A for more on the
exterior algebra that we use. In particular, in Definition A.3 we define an
R-lattice A"°M C A"M ® F, containing the image of A”M, that will play
an important role.

2. Unit groups

Suppose that K/k is a finite abelian extension of number fields, and let
I' = Gal(K/k) and R = Z[I']. Fix a finite set S of places of k containing all
infinite places and all places ramified in K/k, and a second finite set T' of
places of k, disjoint from S. Define:
Sk = {places of K lying above places in S},
Tk = {places of K lying above places in T},
UK,S,T = {.le e K*: |ac]w =1 for all w ¢ SK,
and z =1 (mod w) for all w € Tk}.
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We assume further that K has no roots of unity congruent to 1 modulo all
places in Tk, so that Uk g7 is a free Z-module. When there is no fear of
confusion, we will suppress the S and T" and write Ug := Uk g1

Suppose now that L is a finite abelian extension of k containing K. Let
G = Gal(L/k) and H := Gal(L/K), so G/H =T. Let Ay C Z[H] be the
augmentation ideal, the ideal generated by {h —1: h € H}.

Proposition 2.1. For every s < r and every p € Q[I'], Proposition A.6
gives a canonical pairing

(AU [p] x A" *Homp (Uk, Z[T] ®z A/ A%)
— (NUK)[p] @2 Ags/.A’I;SH.
Proof. Apply Proposition A.6 with B := EBQOA%/A%FI and n = 1. O

3. A Stark conjecture over Z

In this section we recall the so-called Rubin-Stark conjecture over Z for
arbitrary order of vanishing from [14]. When the order of vanishing (the
integer r below) is one, this is essentially the “classical” Stark conjecture
over Z (see for example [18, §IV.2] and [14, Proposition 2.5]).

Keep the finite abelian extension K/k of number fields from §2, with
I' = Gal(K/k), and the sets S, T of places of K. We define the Stickelberger
function attached to K/k (and S and T') to be the meromorphic C[I']-valued
function

Or/i(8) = O psr(s) = [J(1 = Fr,'Np~*) =" J] (1 — Fr, 'Np'~*)
pésS peT
where Fry, € I' is the Frobenius of the (unramified) prime p. If x is a char-

acter in ' := Hom(I",C*), then applying x to the Stickelberger function
yields the (modified at S and T") Artin L-function

X(Ox/k(s)) = Lsr(K/k; X, 5).

Definition 3.1. If w is a place of K we write K,, for the completion of K
at w and | |, : Ky — RT U {0} for the absolute value normalized so that

+2 (the usual absolute value) if K,, = R,
|z|w = { 2T if K, =C,
N —ordw () if K, is nonarchimedean

where Nw is the cardinality of the residue field of the finite place w.

Definition 3.2. Suppose now that S’ C S is a subset such that every
v € S splits completely in K/k. Let r = |S’| > 0. Let S denote the set of
primes of K above S’ and let Wi ¢ denote the free abelian group on S,
so Wk g is a free Z[I']-module of rank r.
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Define a Z[I'J-homomorphism nllcég Uk = Wk s @R by
It
Nt (u) = Z w ® log |uly.
weSh

If L is an abelian extension of K with Galois group H := Gal(L/K), and
Ap C Z[H] is the augmentation ideal, let [ - , L,,/K,] : K}, — H denote

the local Artin symbol (this is independent of the choice of place of L above

w) and define a Z[']-homomorphism nLA;tK Uk — Wik.s @z An /A% by

mjx(u) = Y w ([u, Ly/Ky] = 1).
weS,
Definition 3.3. Let
ROO = R?(O,S,T,S’ . /\TUK ®1" /\T‘W[*{’S/ — R[F]
be the classical regulator map induced by nlfég N'Ug = NWg o @R and
the natural isomorphism AWy s @ A"Wg o — Z[I].

Concretely, the map R is given as follows. If w € S, let w* € Wk s

be the map
w*( Z azz> = Z Ay Y-
2€8y, vel
If vy,...,v, is an ordering of the places in S’, and for each ¢ we choose a

place w; of K above v;, then wy A --- Aw, is a Z[I']-basis of A"Wk g, and
wi A -+ Awy is the dual basis of A"Wi ¢, Then

R®((ur A+ Aup) ®@ (wf A+ Awp)) = det(D log |u |,y ).

yel

A

Definition 3.4. Write 1 for the trivial character of I'. For every y € I’
there is an idempotent

ex =T7" > x(y)y~ ' e ClI,
vyel

and we define a nonnegative integer r(x) = r(x,S) by
(3.5)
eS:x(ly)=1 if 1
r(3) = ordsoL(5, %) = dime e CU = ¢ 110 € 5P XT = XA
|S] —1 ify=1
where I'y, is the decomposition group of v in I' (see for example [18, Propo-
sition 1.3.4]). If r > 0 is such that S contains r places that split completely

in K/k, and |S| > r+ 1, then r(x) > r for every x € I', and we let
PKr = j{: ey € QHF}

x€l,r()#r



Refined class number formulas for G, 189
The following is the “Stark conjecture over Z” that we will use.

Conjecture St(K/k,S,T,S") (= Conjecture B’ of [14]). Suppose that:

(i) S is a finite set of places of k containing all archimedean places
and all places ramifying in K/k,
(ii) T is a finite set of places of K, disjoint from S, such that Uk s 1
contains no roots of unity,
(iii) S’ C S contains only places that split completely in K.

Let r = |S'|. Then there is a unique element

ex = exsr,5 € (N Uk sr)lpr,] Or N Wi g
such that

R (exc) = lim 5™ e u(5).

By Conjecture St(K/k) we mean the conjecture that St(K/k,S,T,S’)
holds for all choices of S, T, and S’ satisfying the hypotheses above.

Recall that A"W} o is free of rank one over Z[I']. The uniqueness of
€K,S,T,5 1S automatic because the regulator map R is injective on
(AU s1)[pK.r] ®r N'Wi g (see for example [14, Lemma 2.7]).

Conjecture St(K/k,S,T,S’) is known to be true in the following cases:

e 7 = 0 (in which case ex = 0/,(0) € Z[I'], which was proved
independently by Deligne and Ribet, Cassou-Nogues, and Barsky),

e K/k is quadratic ([14, Theorem 3.5]),

e i = Q (proved by Burns in [1, Theorem Al),

e S — .5 contains a prime that splits completely in K/k ([14, Propo-
sition 3.1]).

Lemma 3.6. Suppose that S— S’ contains a place that splits completely in
K/k, and |S — S| > 2. Then ex = 0 satisfies Conjecture St(K/k,S,T,S").

Proof. In this case we have r(x,S) > r = |S’| for every x € I, so
R _
lim 5" 01, (s) = 0

and pg, = 1 in Definition 3.4. The lemma follows. O

4. The Artin regulator

Fix now a finite abelian extension L/k of number fields, and an inter-
mediate field K, k ¢ K C L. Let G := Gal(L/k), H := Gal(L/K) and
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T := Gal(K/k) = G/H.

Fix a finite set S of places of k£ containing all archimedean places and all
primes ramifying in L/k. Fix a second finite set of primes T of k, disjoint
from S, such that Uy, = U, s contains no roots of unity.

Suppose that we have a filtration S’ € S” C S, where every v € S” splits
completely in K/k, and every v € S’ splits completely in L/k. Let r = |5'|
and s = |S"| — |97].

For the rest of this section, we keep S, S’, S” and T fixed, and we suppress
them from the notation when possible.

For every subset ¥ C S”, let Wi 5; denote the free abelian group on the
set of primes of K above X, and similarly with L in place of K. Then W
is a free Z[I']-module of rank |X|, we have
(4.1)

Wi sn =Wis @ Wisn_gr, N Wi gn = NWi g @ AW gn_gr,

and the natural map S; — Sk, that takes a place of L to its restriction to
K, induces an isomorphism of free modules

(42) WL,S” Ra Z[F} = WK,S’-

Let nLA;tK € Homr(Uk, Wk sv_s' @z An/A%) be the map of Defini-
Art

tion 3.2, with the augmentation ideal Ay as in §2. Composition with ;' K
gives a Z[I'|-homomorphism

(43) WI*(,S"—S/ — HOH][‘(UK, Z[F] K7z AH/A%{)

Proposition 2.1 gives a canonical pairing

(A"TOUR) x A*Homrp (Ug, Z[T) @7 A/ A%) — (AU @z A%y /AT,
and using (4.3) we can pull this back to a pairing

(44) (/\T+S70UK) X /\SW;:K(’S//_S/ — (/\T’OUK) ®Z A%/A?l

Definition 4.5. Tensoring both sides of (4.4) with A"Wg ¢, and using (4.1),

we define an algebraic regulator map R%;tK = 'R?;tK .87,

R?;tK D (ATTOUR) @r /\T+SWI*(7S// — (A"Ug) @r N'Wg o ®z A%/A?l.
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Definition 4.6. Let ¢f,/x : Z[I'] = Z|G] denote the natural Z[G]-module
homomorphism that sends v € I' to }_ ¢, g, viewing 7y as an H-coset. Then
tr/k 18 not a ring homomorphism, but rather

(4.7) LL/K(OZ)LL/K(ﬁ) =[L: K|k (ap).

Note that ¢7,x is a Z[G]-module isomorphism Z[I'] = Z[G]".
As in §2, let

Uy = Homr(Uk, Z[I']), U :=Homg(Ur, Z|G)).

If ¢ € U}, then p(Ux) C Z[G)H, and we define o = LZ}K oplu, € Uk.
Let jr i : Uk < UL denote the natural inclusion, and

/\SjL/K : /\SUK — /\SUL
the induced map (if s = 0, we let /\OjL/K =1i1/K : Z[T] — Z[G]).
Lemma 4.8. A"jp /(A" Ug) C [L K|max{0r=1} \r0gy,

Proof. If r = 0 there is nothing to prove, so assume r > 1. Suppose
©1,--.,0r €UF. Let

Ci=p1 AN, € NUF,  @F =B A AN e AU

Using (4.7) and the evaluation (A.2) of ¢ and ¢ as determinants, we
have a commutative diagram

APOUL > AU ® Q —2> Q[G]
AiLK [L:K]" ey ke
K
AU AU ® Q —— Q[T

By definition ™ (A"'Ug) C Z[I'],s0 @(A"j1 k(N Uk)) C [L : K]"'Z[G].
Since these ¢ generate A"U7}, this proves the lemma. O

Lemma 4.9. The map [L : K]~ ™{0r=1} A7 JL/K ANOUg — AMOUL and
the inverse of the isomorphism (4.2) induce a map

it (NPUK) @r N"Wie g0 — (NPUL) @g N"WE 1.
Proof. Using (4.2) for the second equality, we have
(NPUR) @r N' Wik g0 = (N Uk) @6 N Wie o
= (N"Ug) @¢ (N'Wi g ®¢ Z[TT)
= ((\"Ug) ®¢ Z[T)) @ N'Wi o
= (A"Uk) ®a N'Wi g1

Now the lemma follows from Lemma 4.8. O
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5. The conjecture

Let L/K/k,G, H,T', S, T, S, S” be as in §4. The hypotheses of Conjec-
tures St(L/k,S,T,S") and St(K/k,S,T,S") are all satisfied, and if those
conjectures both hold they provide us with elements

€L = €L ST.8 € (/\T’OUL)[/)L,T} ®c N"Wi o CAN'UL®c N"WI o @7Q,
€K "= €EK.ST,S" € (/\T+S’OUK)[pK7r+S] ®r /\T“W[*(,S//
C N Uk @p AT Wi v @7,Q.
Definition 5.1. If M is a Z[H]-module, define the twisted trace
Twr /g : M — M ®7 Z[H]
by Twp, i (m) ==Y ey m" @ h™t € M @z Z[H].

Note that for every m, Twy, Kk (m) is invariant under the natural anti-
diagonal action of H. We will think of Twy,/k(e1) as a generalized Stick-
elberger element. The following conjecture is inspired by conjectures in [7,
5, 4, 3].

Conjecture 5.2. With (L/K/k,S,T,S",S") as in §4, suppose that Con-
jectures St(L/k,S,T,S") and St(K/k,S,T,S") both hold.
(i) “Order of vanishing”:

Twr x(er) € (NPUL) ®@a N"WE o @7, Ay

(ii) “Leading term”: with the maps jr/kx of Lemma 4.9 and R%;tK of
Definition 4.5, we have

Twrk(en) = (/e ® 1)(72?;3((617())
m (/\T70UL) Vel /\TWE’S/ X7z A?{/A?l

Remark 5.3. Suppose k = Q, K is a real quadratic field, n is an integer
prime to the conductor of K/Q, and let L = K(u,,)" (the real subfield of
the extension of K generated by the n-th roots of unity). Let S’ := {co}
and S” := {0} U{l: ¢ | n} (so r =1). In this case St(L/k,S,T,S’) and
St(K/k,S,T,S") are known to hold, and Conjecture 5.2 is essentially the
same as Darmon’s conjecture in [3, §4]. This case was studied in detail
in [9].
See §10 for more about the case r = 1.

Proposition 5.4. If r = 0 then Conjecture 5.2 is equivalent to the con-

jecture of Gross in [5, Conjecture 7.6] and [4] (for the statement see also
Conjecture Az(L/K/k,S,T,s) of [13]).

Before proving Proposition 5.4, we have the following two lemmas. Let
Ji = Z[G]Ag be the kernel of the natural projection Z[G| — Z[I'].
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Lemma 5.5. There are natural isomorphisms
(1) H = Ap/A%, given by h— (h—1),
(ii) Z[0) @z Ay /AT = J5 )Tt for every v > 0, given by v @ a +
a7, where ¥ is any lift of v to Z|G].

Proof. This is a standard exercise. O
Lemma 5.6. Define ¢ : Z[G] — Z[G) @z Z[H] by ¥(p) = X peny hp @ h7L.
Then:

(i) ¢ is an injective Z|G|-module homomorphism (with G acting on
the left on Z|G] ®z Z[H]),

(ii) ¥ (hp) = Y(p)h for every h € H,
(iii) ¥ (JY) C Z|G] @z Al for every t > 0,

(iv) for every t > 0 there is a commutative diagram

Tl T

T\

ZIT] @z AL, JAF D 716 @y AL AL

where the vertical map is the isomorphism of Lemma 5.5(ii).

Proof. The first two assertions are clear, and (iii) follows from (ii).
To check the commutativity of the diagram in (iv), take v € T' and
o € Al Using (ii), the image of v ® a in Z[G] @z Al /AL by the upper
path is
Y(a thw@hl th®ah1
heH heH

where 7 is any lift of v to G. The image of v ® a by the lower path is
ShenYh ® a. Since a(h™! — 1) € A’El for every h, these are equal in
Z|G) ®7 Al /AL, This shows that the diagram in (iv) commutes, and
the injectivity of the map induced by ¥ now follows from the injectivity of
LL/K' O
Proof of Proposition 5.4. Let ¢ be as in Lemma 5.6. If r = 0, then ¢, =
0r/1(0), so Twr i(er) = ¥(01/,(0)). Thus by Lemma 5.6(iii,iv), Conjec-
ture 5.2 is equivalent in this case to the assertions

(i) 01/x(0) € Jg,

(ii) Or/x(0) = RV (ex) (mod J3),

where we view R%;tK(eK) € J3 via the isomorphism of Lemma 5.5(ii).
This is Gross’ conjecture [13, Conjecture Az(L/K/k, S, T,s)]. O

Proposition 5.7. If s =0 (i.e., if " = 5’), then Conjecture 5.2 is true.
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Proof. Conjecture 5.2(i) is vacuous when r = 0, since by definition

Twr x(er) € (N°UL) ®@p N"Wi ®z ZIH] = (N°UL) @r N'W§ @7 Ay
Let Ng =Y ,cph. In (A™0UL) ®@r A"WE ® Z[H] /Ay we have

(5.8) Twpg(er) = ef@h=> e @1l=Npge)®1.
heH heH

If 7 = 0, then since the image of the Stickelberger element 6y, /;,(0) under
the restriction map Z[G] — Z[I'] is 0 (0), we have

Nuer = Npbpp(0) = p/r0x/1(0) = jr K (€k).

By (5.8), this proves Conjecture 5.2(ii) when r = 0.
Suppose now that r > 0. Fix generators

wr=wi A Awp of N"Wp g, wp =wi A~ Aw, of "W] o

Let wg and wp be the corresponding generators of A"Wpg g and A"Wj o
obtained by restricting the w; to K (note that since s = 0, we have S = §").
Choose uy, € A™U;, and ug € N"PUgk such that €5 = u;, ® wi and €x =
ug ® wi. Then [14, Proposition 6.1] shows that (Ng)"ur = (A"j)(uk),
and so we also have

(5.9) Npep =[L: K" "(Ny)"er = ([L: K]'"(Ng) ug) @ w,
= ([L: K]""(A"j)(uk)) @ Wi, = jr i (ek)-

Since s = 0, the map (4.4) is just the map A™Ux — (AN°Uk) ®7Z[H]/ Al
that sends u tou® 1, so R?;}( is the map

(A™PUK) ®r N'Wg g — (A™PUg) @r N'Wi g @ ZIH|/ A
that sends u® w to u ® w ® 1. Hence by (5.8) and (5.9) we have
Twrk(en) =jr/r(ex) @ 1= (r/x ® 1)(73/2?[((51())
in (\"°Ux) @r N"Wi; o @z Z[H]/ Ay, which is Conjecture 5.2(ii). O
Proposition 5.10. If L = K, then Conjecture 5.2 is true.

Proof. If S” = S’, then this follows from Proposition 5.7. If " # S’ then
for every character x of I, we have r(x,S) > |S”| > |S'| =r,s0 pp, =1
in Definition 3.4 and by definition €, = €, g7 s = 0. Further, we have
A = 0 in this case, so R?(r/tK = 0 and Conjecture 5.2 holds. 0
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6. Order of vanishing

Fix a number field &, and a set S’ of archimedean places of k. Let r := |.5’|.
Let T be a finite set of primes of k, containing at least one prime not dividing
2, and containing primes of at least two different residue characteristics if
S’ contains no real places. (This ensures that an extension of k in which all
places in S’ split completely has no roots of unity congruent to one modulo
all primes in 7'.)

For example (perhaps the most interesting example), k could be a totally
real field and S’ the set of all archimedean places, in which case r = [k : Q.

Fix a finite abelian extension K of k such that all places in S’ split
completely in K/k, and all places in T are unramified in K/k. Fix a finite
set S of places of K disjoint from 7', containing all archimedean places, all
primes ramifying in K/k, and at least one place not in S’. Let P be the set
of all primes of k not in S UT that split completely in K/k, and let N be
the set of all squarefree products of primes in P.

For every q € P suppose that K(q) is a finite abelian extension of k
containing K, such that K(q)/K is totally tamely ramified above q and
unramified everywhere else, and all places above S’ split completely in
K(q)/K. (For example, if K contains the Hilbert class field of k£ then we
could take K(q) to be the compositum of K with the ray class field of k
modulo q.) If n € A/ define K (n) to be the compositum of the fields K(q)
for q dividing n. Ramification considerations show that all the K(q) are
linearly disjoint over K, so if we define H(n) := Gal(K(n)/K) then

H(n) =[] H(a)
aln
and if m | n we can view H(m) both as a quotient and a subgroup of H(n).
Let
Tm : H(n) - H(m) — H(n),
denote the projection map.

Let S(n) := SU{q: q|n}and S’(n) := S"U{q : q | n}. Assume for the rest
of this section that the generalized Stark conjecture St(K (n)/k,S(n),T,S’)
holds for every n € N, with an element

€n 1 — EK(n),S(n),T,S’ € /\T’OUK(H)75(H) & /\TW[*((n),S/.

Lemma 6.1. Ifd | n then
> ye= (Hq|(n/b)(1 - qu_l)) JKm)/ K@) (6).

YEH (n/0)

Proof. This follows from [14, Proposition 6.1] and the definition of jx ) /x (v)
from Lemma 4.9. O

Let v(n) denote the number of prime factors of n.
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Lemma 6.2. We have
Z Vén ® Hq|n(7rq(7) - 1)
YEH (n)

=Y Y Yikmy/re(€) @7 qjmpe) (To(Frg) — 1)
oln veH(0)
m /\T’OUK(n)ys(n) /\TW*( n),s’ ® ZiH( )i
Proof. Expanding gives
Z Yén & Hq|n(ﬂ'q Z Z 1/(11/0)76 ®7TD(7)
YEH (n) YEH(n) 0[n

For every o dividing n, using Lemma 6.1 we have

Yo o va®@m() = Y. (Y heH(m/o) hen) @y
yEH (n) yEH (0)
= Y My @ =Fry)ikm/xe)(a) @y
vEH (0)
= Y Yikm/ke)(€) @7 w1 — 7o (Frg)).
YEH ()
Combining these identities proves the lemma. O

Theorem 6.3. Suppose that the Stark conjecture St(K(n)/k,S(n),T,S")
holds for every n € N'. Then for every n € N', we have

T i o1 (e0) € AUk, 50 © A Wicy 50 © Aggi
In other words, Conjecture 5.2(i) holds for (K(n)/K/k,S(n),T,S’,S"(n)).

Proof. The proof is by induction on v(n), and is essentially the same as
the proof of [3, Lemma 8.1]. In the equality of Lemma 6.2, every term
except possibly Tw g (n) /i (€n) (the summand on the right with @ = n) lies

in A™OU K(n),5(n) QA" WK(n) S,®.A by our induction hypothesis. Therefore
TWk (n)/K (€n) does as well. O

7. The case K =k

In this section we consider the case K = k. Let S’ S, T, N, k(q), k(n),
H(n), S(n), S’'(n) be as in §6, and recall that r := |S’|. We will show under
mild hypotheses that Conjecture 5.2 holds in this case (with both sides
of Conjecture 5.2(ii) equal to zero). This is needed for the proof of The-
orem 10.7 below, because our general techniques only work for nontrivial
characters of K/k.

Lemma 7.1. Suppose that S’ does not contain all archimedean places of
k. Then €y, sm),r,s0 = 0 for every n # 1.
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Proof. Let w be an archimedean place not in S’. By definition k(n)/k is
unramified outside of n, so w splits completely in k(n)/k. Hence if n # 1
then €y s(n),7,57 = 0 by Lemma 3.6. g

Theorem 7.2. Suppose n € N and Conjecture St(k(n)/k) holds. If S’
does not contain all archimedean places of k, or if |S — S'| > 2, then

Conjecture 5.2 holds for (k(n)/k/k,S(n),T,S", S'(n)).

Proof. Conjecture 5.2(i) holds by Theorem 6.3, and Conjecture 5.2(ii) holds
when n = 1 by Proposition 5.10. To prove the theorem we will show that
for every n # 1,

(7:3)  TWim)/k(€k(m),sm),1,57) € A Uk(n),So(m) @ A Winy.50 @ A;}X;ﬂ,
r r prp—— v 1
(T4) R (ks nsm) € A Ukimy.som) & A Wiiay.s @ Afon

Suppose first that | — 5’| > 2. Then € g(n)1,57(n) = 0 by Lemma 3.6,
so (7.4) holds. If k has an archimedean place not in S, then € (w), g(n),7,5'(n) =
0 for n # 1 by Lemma 7.1, so (7.3) holds. If not, then S contains two
nonarchimedean primes; call one of them v and let Sy := S — {v}. Since v
does not divide n and Sy is still strictly larger than S’, all the hypotheses
of Conjecture St(k(n)/k, So(n),T,S") are satisfied, so by Theorem 6.3 we
have

(75) TWk(n)/k(ek(n),So(n),T,S’) € /\T’OUk(n),SO(n) X /\TWg(n)ﬁ/ X .A;I(?i)

It follows directly from the defining properties (see for example [14, Propo-
sition 3.6]) that eym) sm) 1,7 = (1 — Frv_l)ek(n)’so(n)ms/, so using (7.5)

TWin) /% (€(n), 5 7.57) = TWkw) /i (€n(n), 50 (), 7,57) (1 — Fry )

70 * l/(l’l)—‘rl
€ N Uk(w, S0 (0) @ N Winy,or ® Apy -
This is (7.3).

Now suppose that S’ does not contain all archimedean places of k. By
Lemma 7.1 we have €(n) s@m)r,50 = 0 for every n # 1, so (7.3) holds. If
S contains a nonarchimedean place then |[S — S| > 2, and we are in the
case treated above. So we may assume that S is the set of all archimedean
places. Let S’ = {v1,...,v,} and n = [[;_; q;. For 1 < i < s define n; :
Uk,s(n) = AH(n)/A%[(n) to be the map given by the local Artin symbol

ni(u) == [u, k(n)q, /kq,] — 1
where k(n)g, is the completion of k(n) at a prime above g;. Fix an expression

€k,S(n), 7,5 (n) = (UL A -+ AUpys) @ (VT Ao Aog Aqy A==+ Ady)
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with u; € Uk,S(n) (we have /\T+S’0Uk,5(n) = /\T+5Uk,5(n) since Z[I'] = Z).
Then concretely (ignoring the sign, which will not be important)

(7.6) Ridtwy (€, 5(m). 1,5/ (m)) = FA- - AnG) (Wr A+ At s) R (VA - ADS).

In AH(n) / A%I(n), using the reciprocity law of global class field theory, we
have for every u € Uk,S(n)

S ) = <H[u,k(n)q//~cq]> 1= Tl k)] — 1
=1

qln win

If w is nonarchimedean and does not divide n, then u is a unit at w and w
is unramified in k(n)/k, so [u, k(n)y/ky] = 1. If w is archimedean, then w
splits completely in k(n)/k, so again [u, k(n)y/kyw] = 1. Therefore Y7 4 n;
Uk,s(n) = AH(n)/A%{(n) is the zero map, and we conclude using (7.6) that

Rit k(s r,m) = £ A Ang)(ur A Attys) ® (0F Av-- Av))
= :|:(T]1/\-~-/\775_1/\(Zi77i))(u1 A ANpgs) @ (0 A= Avf) = 0.
Thus (7.4) holds in this case as well, and the theorem follows. O

8. Connection with Euler systems

Let K/k, S', S, T, P, N, K(q), K(n), S(n), S’(n) be as in §6, and let
I' = Gal(K/k). Recall that r := |S’].

We assume further (by shrinking K(q) if necessary) that [K(q) : K] is
prime to [K : k] for every q € P. It follows that for every q there is a
unique extension k(q)/k, totally ramified at q and unramified elsewhere,
such that K(q) = Kk(q). Then if k(n) denotes the compositum of the k(q)
for q dividing n, we have K(n) = Kk(n) for every n € N, and

(8.1) Gal(K(n)/k) =T x H(n).

Since all archimedean places split completely in k(q)/k for every g, every
v € S splits completely in K (n)/k for every n. Hence all hypotheses of
Conjecture St(K(n)/k,S(n),T,S’) are satisfied.

Fix an ordering vy,...,v, of the places in S’, and for each i choose a
place w; of the algebraic closure k above v;. Then for every n, the element
W:: = (w1|K(n))* ARRRNA (wT|K(n))*
is a generator of the free, rank-one Z[Gal(K (n)/k)]-module NWim),s

When n =1 we will write w7, instead of w7.
Definition 8.2. As in §6, for every n € N/ we define

én = €x(m),5(m) 1,5 € (N Uk (m),s00) @ N Wi s
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to be the element predicted by Conjecture St(K(n)/k, S(n),T,S"), and we
define
n € /\T’OUK(n),S(n) - /\TUK(n),S(u) ®Q

to be the unique element satisfying
& @ Wy = €.

Proposition 8.3. If m,n € N, and m | n, then

Nic/rmén = T (1 =Frg)ém.
gl (n/m)

Proof. This is [14, Proposition 6.1]. O

By (8.1), for every n € N we can view any Gal(K (n)/k)-module as a
I'-module.

Fix a rational prime p, not lying below any prime in 7', and not dividing
[K : k]. Fix also a character x : I' — @; Let O := Z,[x], the extension of
Z,, generated by the values of x. Since p { [K : k|, the order of x is prime
to p so O is unramified over Z,. If M is a Z[I']-module, we let MX be the
submodule of M ®z O on which I acts via x. If m € M, then

1 _
R 2™ O e
~yel'

(8.4) mX =

is the projection of m into MX.
Let M,y := Z,(1) ® x~! denote a free O-module of rank one on which
G}, acts via x ™! times the cyclotomic character.

Proposition 8.5. For every n € N, Kummer theory gives Galois-equivar-
iant isomorphisms

(K(n)*)* = H' (k(n), My),
and if q is a prime of k
((K Ok kq)x)x = Hl(kanx)~

Proof. This is a standard calculation; see for example [8, §6.1] or [15,
§1.6.C]. O

Theorem 8.6. Suppose that r = 1, and Conjecture St(K (n)/k, S(n),T,S")
holds for everyn € N. Let ¢, € H'(k(n), My) denote the image of &\ under
the Kummer map of Proposition 8.5. Then the collection

{eca :neN}

is an Euler system for the Gy-representation My, in the sense of [8, Defi-
nition 3.2.2] or [15, §9.1].
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Proof. Tt follows from Proposition 8.3 and (8.4) that if m,n € A/ and m | n,
then

Nyw/rmés = [] (1—Frghex.
ql(n/m)
Translated to the elements ¢, and ¢y, this is the defining property of an
Euler system for M,. (Note that by the definition of N in §6, we have

x(q)=1ifq|n.) O

Remark 8.7. For general r > 1, the collection {¢, : n € N'} is not nec-
essarily an Euler system in the sense of [11, Definition 1.2.2], because the
elements ¢, lie in A9 H1(k(n), M,) rather than A" H!(k(n), M, ). This sug-
gests that one might want to relax the definition of Euler system to allow
elements to lie in the larger lattice.

9. Connection with Stark systems

Let K(n)/K/k, T, S, r, S, T, P, N, S(n), §'(n), x and My, be as in
§6 and §8. For n € A let v(n) denote the number of primes dividing n. We
continue to suppose that [K(q) : K] is prime to [K : k] for every q € P,
and we now suppose in addition that

(9.1) pt[K: k] J] NA—1)
ATk

Let A denote the ring of integers of K, and for every n € N let Asm)
denote the S(n)-integers of K

Agmy == 1{z € K :ord)(z) > 0 for every A ¢ S(n)k}.
Then Uk, sm) = {u € Ag,y :u=1 (mod }) for every A € T }.
Lemma 9.2. For every n € N we have p{ [Ag(n) Uk s(w)]

Proof. Reduction gives an injection Ag(n)/UK,S(n) — @aery (A/N)%, so the
lemma follows from our assumption (9.1). O

Lemma 9.3. For alln € N we have (AT+V(H)’OUK,S(n))X = ATJFV(H)UI)% S(n)*

Proof. By our choice of T', the group Uk s(y) is torsion-free. Since p does
not divide [K : k], we have [K : k] € O, so Uk gwm) ® O is a projective
O[I'l-module. It now follows from Lemma A.4 that

/\r+y(n)’0UK,S(n) QR0 = /\T+V(H)UK,S(H) ® 0.
Taking y-components proves the lemma. O

Define
N, ={n € N :nis prime to p}.



Refined class number formulas for G, 201

For n € N, recall that H(n) := Gal(K(n)/K), and Ay C O[H(n)] is the
augmentation ideal. Define an ideal I, C O by
L= ([k(q) : KO)
qln
(with the convention I; = 0). Let Wi n denote the free abelian group on

the set of primes of K dividing n, so Wi g1(n) = Wk s» ® Wk n and

(9.4) N W Gy =N OWie @ N Wi g,

(n
Definition 9.5. For every n € N, define
Y, = /\TJFV(H)UI)g,S(n) ® /\V(n)(W;(,S’(n))X ® (O/1,).
If m | n, we define a map
Upm: Yy — Yo ® (0/1L)
as follows. Fix a prime factorization n/m = qp---q; and for each i fix a

prime £; of K above q;. Define ; € Uks(n) by
Yi(u) == Z ordg, (u?)y .

vel

By Definition A.1 we get a map
YL A Ay AT S — AT S()

and by [14, Lemma 5.1] or [10, Proposition A.1] the image of this map is
contained in ATHY(M X Further, viewing 7 A - - - A £; as a generator

K,S(m)*
of A'W, /m the map
(9.6) (V1A Ath) @ Q1A ALQy)
: AT+”(“>U;;S(“) & A (W)X — AT S(m)

is independent of the choice of the £; and the order of the ¢;. Now we
define ¥, , to be the composition

Yo = NHOUX 0@ N (Wi g10)X @ (O/1)
o~ AT U%,S(n) ® /\V(m)(Wl*(,S’(m))X ® /\V(n/m)(W:/m)X ® (0/1)
s AT @ A (W )X @ (O/1y) = Yo ® (O/ 1),

where the last map is induced by (9.6). Note that W,  is the map ® of [14,
§5].

Using Lemma 9.3 we can view e € Y;, where ¢, is the element of Def-
inition 8.2 predicted by Conjecture St(K (n)/k,S(n),T,S"). The following
lemma allows us to apply the results of [10] to the family of Y.
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Lemma 9.7. The modules Y, and the maps Wy, v defined above are the same
as the Yy and ¥y of [10, Definition 7.1] for the Galois representation M,,.

Proof. The proof is an exercise, using the natural Kummer theory isomor-
phisms (K*)X & H'(k, My) and ((K ® ky,)*)X & H'(k,, M) for places v
of k (Proposition 8.5), along with Lemma 9.2. O
Definition 9.8. As in [10, Definition 7.1] we say that a collection
{on €Yo :neN,}

is a Stark system of rank r if

Upm(on) =om®@1 €Yy ®(O/I,) whenever m|n e N,.
Let SS, (M) denote the O-module of Stark systems of rank r.

Suppose for the rest of this section that Conjecture St(K/k,S(n), T, S'(n))
holds for every n € N. Recall that w?, is the generator of N'Wi o fixed at
the beginning of §8, and 1 denotes the trivial character of T

Definition 9.9. For n € N let 6, € (AN MU g)) @ AW (W ) be the
unique element such that

On ® Wie 1= €c,5(m),5'(m) € (NP Uk 5) @ AW 610y

is the element predicted by Conjecture St(K/k,S(n),T,S’(n)), using the
identifications of Lemma 9.3 and (9.4). Then

Xole AT+”(“>U;;S(“) & N (Wi 51X @ (O/1) = Y,
and we denote by 8X the collection {dy ® 1 € Yy :n € N, }.
Proposition 9.10. We have 6X € SS, (M), i.e., 6% is a Stark system of

rank .
Proof. If n € N and m | n, then Uy, (0% ® 1) = dx ® 1 by [14, Proposition
5.9). 0

Let r(x,.S) be as in Definition 3.4.

Lemma 9.11.
(i) If r(x,S) > r, then 6y =0 for everyn € N.
(ii) If r(x,S) = r, then &Y is a nonzero element of the free, rank-one
O-module /\’”*”(“)U;g’s(n) ® AV (Wi )X.

Proof. The Z[I'l-module Wi  is free of rank v(n). By the basic properties
of Conjecture St(K/k,S(n),T,S’(n)) we have

N#0 <<= r(x,S(n) =r+vn) < r(x,5) =r,
and if these equivalent conditions hold then U;gy S(n) 18 free of rank 7+ v(n)
over O. The lemma follows. O
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10. The case r =1

Keep the setting and notation of the previous two sections. In this section
we will prove (Theorem 10.7) a part of Conjecture 5.2(ii) when r = 1. The
idea of the proof is as follows.

The Stark system X of §9 gives rise (via an explicit construction) to a
Kolyvagin system for M,. When 7 = 1, the Euler system of Stark elements
of Theorem 8.6 also gives rise (via an explicit construction) to a Kolyvagin
system for M. The O-module of Kolyvagin systems for M, is free of rank
one, and the two Kolyvagin systems agree when n = 1 by construction.
Hence the two Kolyvagin systems agree for every n, and unwinding the two
explicit constructions shows that the agreement for n is equivalent to the
“(p, x)-part” of Conjecture 5.2(ii) for (K(n)/K/k,S(n),T,S").

As in §6, if m | n we can view H(m) as both a subgroup and a quotient
of H(n), and 7y : H(n) - H(m) < H(n) is the projection map.

Definition 10.1. If n € A and 2 = [[._ 10 divides n, let M, = (m;j) be
the ¢ x t matrix with entries in A, /A

- {0 i)
g, (Frq, — 1) if i # 4,

and define
Dyo := det(Mnp) € Al /AL

(this is independent of the ordering of the prime factors of 9). By convention
we let Dy = 1. For n € NV, let B, denote the cyclic group

B, = {Hq\n(’Yq 1)1y € H(q)} C A;}?r)l)/A;}?‘Z;rl

By [9, Proposition 4.2], B, is a direct summand of AVH(X)/ A;}?g;r !

Let KS, (M) denote the O-module of Kolyvagin systems of rank r for
M, (with the natural Selmer structure of [10, §5.2]) as defined in [10, §10]
(see also [10, §5.2] and [8, §3.1 and §6.1]). A Kolyvagin system of rank r
for M, is a collection

{Kkn € /\TU;g,S(I’I) @ By:ne Ny}

satisfying properties that we do not need to review here. We are identifying
®qnH (q) With By via @qyq > [Ig(vg — 1)

Definition 10.2. For n € N let 6 € /\TH’(“)UX
in Definition 9.9, and define

iy Id 14 14 1
Bt =D Ry (05) - Dunjp € NUE gy ® «41}2%/ Aé?ﬁ; :
on

sy © N v(n )(W;‘(m)x be as
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Proposition 10.3. For n € N we have B3¢ € /\TUX( w),5(n) © Bn, and the
collection

= (B n e Ny}
is a Kolyvagin system of rank r for M.

Proof. In the special case where &k = Q, S’ = {0}, and x is an even
quadratic character, this is [9, Theorem 8.7 and Proposition 6.5]. The proof
in general is similar. The general case is also proved by Sano in [17, §4] (what
we call a Stark system is called a unit system in [17]). O

For the rest of this section we assume that » = 1, i.e., S’ consists of
a single archimedean place. Since r = 1, the Stark unit Euler system of
Theorem 8.6 gives rise, via the map of [8, Theorem 3.2.4], to a Kolyvagin
system of rank one

St = (kS i ne N} € KS1(M,).

(The results of [8] are stated only for k = Q, but the proofs in the general
case are the same; see [10].)

Proposition 10.4. Suppose n € N,. Under restriction K* — K(n)* and

inclusion By C AVH(FQ)/AVH(X;FI, with &, as in Definition 8.2 we have

k= > TWi(0)/i(&X) * Danjo € Uk w5 © VH(?n /A

dn

Proof. Note that Tw g ()5 (&) lies in U K(n),5(n ®AH(n /A H by Theo-

rem 6.3 and Lemma 9.3, and D, , » lies in AH(?‘{)D)/AH?‘{)D )+l by definition.
In the special case where k = Q and Yy is a real quadratic character, this
is [9, Theorem 7.2 and Proposition 6.5]. The proof in general is the same.

The general case also follows from calculations of Sano [17, §3]. O
Theorem 10.5. If x # 1 then for every n € N we have nﬁt = Et.

Proof. Let r(x, S) be as in Definition 3.4, and suppose first that r(y, S) = 1.
We have x5, 85 € KS;(M,). Since x # 1 and K contains no nontrivial
p-th roots of unity by Lemma 9.2, all the hypotheses of [8, §3.5] hold,
so KSl(M ) is a free O- module of rank one by [8, Theorem 5.2.10]. We
have g5t = §f = £ = w3t by definition, and by Lemma 9.11(ii) this is a

NONzero element of the free, rank-one O-module U I’g g- Hence B = kSt

ie., Kyt = B3 for every n € N,

Now suppose r(x,S) > 1. By Lemma 9.11(i), we have 6y = 0 for every
n, so B3t = 0 for every n. Since k' = 0, the finiteness of the ideal class
group together with [10, T heorem 13.4(iv) and Proposition 5.7] (see also [8,

Theorem 5.2.12]) shows that k5 = 0, i.e., k5' = 0 for every n € A,



Refined class number formulas for G, 205

It remains to show that x3° = 5 € UX sy @ Bn when n € N — N,
But the exponent of the cyclic group By is the greatest common divisor
of the |H(q)| for q dividing n. If q | p then (since K(q) is tamely ramified
by definition) H(q) has order prime to p. Hence B, has order prime to p
if n € N —Np, 50 By ® O =0 and s = 5* = 0. This completes the
proof. O

Theorem 10.6. Suppose that |S'| = 1, that Conjectures St(K/k) and
St(K(n)/k) hold for every n, and that at least one of the following holds:
(a) x # 1,
(b) x=1and |S -S| >2,
(¢) x =1 and k has more than one archimedean place,
Then for everyn € N,

Ar
TW i )/ (€ (ny 5y 7.57) = RE )/ (€5 507,59 ()

in Uk (n),5(n) ©Gal(K (n)/k) WI’“{(n%S/@A;}X)/AVH(?i;Fl. In other words, the (p, x)

part of Conjecture 5.2(ii) holds for (K(n)/K/k,S(n),T,S’).

Proof. If x # 1, then this follows directly from Theorem 10.5 by induction
on n, using Proposition 10.4 and Definition 10.2 for the induction. If x = 1,
then this is Theorem 7.2. O

Let ¥ = X(K/k,T) be the set of primes dividing [K : k] []yer, (NA—1).

Theorem 10.7. Suppose that |S'| = 1, that Conjectures St(K/k) and
St(K(n)/k) hold for every n, and that either k has more than one infinite
place or |S| > 3. Then Conjecture 5.2(ii) holds for (K (n)/K/k,S(n),T,S’)
away from X, i.e., for every p ¢ 3 the leading term formula holds if we
tensor with Z,.

Proof. We can apply Theorem 10.6 for every prime p ¢ ¥, and every char-
acter x of I'. Summing the conclusion of Theorem 10.6 over all y gives the
equality of Conjecture 5.2(ii) tensored with O. O

11. Evidence in the case of general r

Keep the notation of the previous sections. When r > 1, the proof of
§10 breaks down. Namely, the elements &, of Definition 8.2 naturally form
an Euler system of rank r, but when r > 1 we do not know how to use
this Euler system to produce a Kolyvagin system of rank r. However, using
ideas of [14, §6] and [2] we define a family of “projectors” ®, each of which
maps the collection {£¥} to an Euler system £<Sl,t of rank one, and maps the
rank-r Kolyvagin system 8% to a rank-one Kolyvagin system ﬁcspt. We can
associate to E%t a Kolyvagin system ncsbt of rank one, and the arguments of
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§10 will show that ,B%t = KVCSI,t. Unwinding the definitions, this shows that
the ®-projection of the leading term formula of Conjecture 5.2 holds.
For this section we make the extra assumptions that

e S contains no primes above p,

e k is totally real of degree r and S’ is the set of its archimedean
places,

e Leopoldt’s conjecture holds for K.

In particular K is totally real and K /k is unramified above p.

Definition 11.1. For every n € N, let Vi (n) denote the p-adic completion
of the local units of K(n) ® Qp, and

sz(n) = HomGal(K(n)/k) (VK(n)’ Zp[Gal(K(n)/k:)D
If ¢ € V[’g(n), then ¢~5 will denote the composition
¢ U5t — Vicw) — Zp[Gal(K (n)/k)].

Define V3 := lim V;;(n), where the inverse limit is taken with respect to

the maps Vl’g(nq) — V[’g( ) induced by

n
Vic) C Vicngys  Zp[Gal(K (nq) /k)] S DKM — 7, [Gal(K (n) /k)].
IFQ:=¢1A... A1 € NTIVE, with ¢; € VE, let

birc(n) * Vi) — Lp[Gal(K (n)/k)]
denote the projection of ¢; to VI";(n), let

Dy = b1 N APt k)t AUk m),sm) — Uk(n),5(n)
be the map of Definition A.1 (combined with Lemmas A.4 and A.5), and
let
Lo :=0N; ker(qﬁi?K) C Vk.
Using the identification V¥ C @, H" (ky, M) of Proposition 8.5, we define
a Selmer structure (see [10, Definition 2.1] or [8, Definition 2.1.1]) Fg on

M, by modifying the natural Selmer structure Fy, of [10, §5.2] at primes
above p, namely we set

@plpHJl-'@(kP’Mx) = Eé) - V% C @P|PH1(kP7MX)‘

Let &, € /\’”’OUK(n%S(n) be as in Definition 8.2, and recall the Kolyvagin
system B = {5t . n € N} € KS,(M,) of Definition 10.2 and Proposi-
tion 10.3.

Proposition 11.2. Suppose ® := ¢1 A ... A1 € N"IVE.
(i) The collection {@K(n)(fff) € U;g(n),s(n) :n € Ny} ois an Euler sys-
tem of rank one for the representation M,,.
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(ii) Let k3 = {/-c(sbt’n :n e Ny} € KSi(My) be the Kolyvagin system of
rank one attached to the Euler system of (i) by [8, Theorem 3.2.4].
Then k3¢ € KSi1(M,,Fs), where Fg is the Selmer structure of
Definition 11.1.

(iif) The collection BY = {®x(B5Y) : n € N} is a Kolyvagin system
of rank one for (My, Fo).

Proof. The first assertion is proved in [14, Proposition 6.6]. Both (i) and (ii)
are proved in [2, Proposition 2.2 and Theorem 2.19]. Assertion (iii) follows
from Proposition 10.3 by direct calculation. O

Proposition 11.3. Suppose that ® := ¢1 A A¢r_1 € NTIVE and
that n € Np,. Under the restriction map K* — K(n) and the inclusion

B, C AIIILI(X)/AH(n) , we have

K = D T k) (@) (€)) * Do € Uk sy @ Ao/ Aoy
on

Proof. The proof is similar to Proposition 10.4, or see [17, §3]. O

Theorem 11.4. Suppose D= ¢ /\ N1 € ANTTIVE L If x # 1 then for
every n € N we have/-@ L= DR (B3Y).

Proof. The proof is similar to that of Theorem 10.5.

Let 7(x,S) be as in Definition 3.4. Suppose first that r(y,S) = r and
D1K, - Pr—1,Kk are Zy-linearly independent. By Proposition 11.2 we have
that k3!, B3 € KS;(M,,Fs). The core rank of (M,,Fg) is one by [2,
Proposition 1.8]. All the hypotheses of [8, §3.5] hold, so KS;(M,, Fg) is
a free O-module of rank one by [8, Theorem 5.2.10]. We have & (55t) =
D (6Y) = P (&) = “(D 1 by definition, and it follows from Lemma 9.11(ii),
our assumption on the 1ndependence of the <z5z K, and Leopoldt S conJecture
that this has infinite order in £}. Hence BY = kS e /iq)n = Oy (85
for every n € N,

Now suppose that either (x,S) > r or the ¢; x are linearly dependent.
In the former case Lemma 9.11(i) shows that (5,’1< = 0 for every n, and in
the latter case ®x = 0, so in either case ®x(83¢) = 0 for every n. Since

71 = 0, the finiteness of the ideal class group together with [10, Theorem
13.4(iv) and Proposition 5.7] (see also [8, Theorem 5.2.12]) and Leopoldt’s
conjecture (see [2, Remark 1.7]) shows that k3" = 0, i.e., kg, = 0 for every
neN,.

It remains to show that x5 Ste Ux S(n) @ Bn when n € N —N,. This
follows exactly as in the proof of T heorem 10.5, since By, has order prime
to p if n € N — N,. This completes the proof. O
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Theorem 11.5. Suppose Conjecture St(K (n)/k) holds for every n, and
either x # 1 or |S—S'| > 2. Then for every ® :== g1 A... Ap_1 € N1V
and everyn € N,

T T Ar
© g (o) (TW R () /¢ (€l ) sy 57)) = i) (RE )/ (€K smy 17 ())

in Uk (n),5(n) @Gal(K(n)/k) W}’}(n)ﬁ, ® A?}FQ)/AVH(?II;% In other words, the

@K(n)—projection of the x part of Conjecture 5.2(ii) holds for the data
(K (n)/ K[k, S(n), T, S").

Proof. If x # 1, then this follows directly from Theorem 11.4 by induction
on n, using Proposition 11.3 and Definition 10.2 for the induction. If x = 1,
then this is Theorem 7.2. O

Let ¥ = ¥(K/k,S,T) be the set of rational primes dividing
(K :k [ NxJ] ™NA-1).

res-5' ATk

Theorem 11.6. Suppose that k is totally real, S" is the set of all archime-
dean places of k, Conjectures St(K/k) and St(K(n)/k) hold for every n,
Leopoldt’s conjecture holds for K, and |S — S'| > 2. Then for every p ¢ 3,
every ® € A"TIVE | and every n € N, we have

(i)K(n) (TwW ik (n)/K (€K (n),S(n),T,5")) = ‘i’K(n) (R?{r(tn)/K(eK,S(n),T,S’(n)))’

In other words, for every ® € N""VX the leading term formula of Conjec-
ture 5.2(ii) holds for (K (n)/K/k,S(n),T,S") after applying @k ).

Proof. We can apply Theorem 11.5 for every prime p ¢ ¥, and every char-
acter x of I. Summing the conclusion of Theorem 11.5 over all x gives the
® g (n)-projection of Conjecture 5.2(ii) tensored with O. O

Appendix A. Exterior algebras and determinants

Let O be an integral domain with field of fractions F, and let R = O[T']
with a finite abelian group I

If M is an R-module, we let M* := Hompg(M, R), and M will denote
the image of M in M ®p F. If p € R, then M|[p| denotes the kernel of
multiplication by p in M.

Fix for this appendix an R-module M of finite type.

Definition A.1. If » > 0, then A"M (or AR M, if we need to emphasize

the ring R) will denote the r-th exterior power of M in the category of

R-modules, with the convention that A°M = R. If ¢y € M* and r > 1, we

view 1 € Hom(A" M, A"~1M) by

w(ml VANERRIVA m,«) = Z(—l)i+1w(mi)(m1 N Ay Amygpr Ao A m,«).
i=1
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If ¢ € A*M* with s < r, we view ©» € Hom(A"M, \""*M) by

(V1 Ao Atps)(m) := g 0ths—y 0+ 0 th1(m).

In particular
(A.2) (pr A= Adp)(ma A--- Amy) = det(¢i(my)).
Definition A.3. For every r > 0, define
A"OM := {m € ATM : p(m) € R for every ¥ € A\"M*}.

In other words, A™OM is the dual lattice to A"M* in A"M ® F.

Lemma A.4. We have N"M C A"OM, with equality if [T| € O or if
r=1.

Proof. The inclusion follows directly from the definition, and for the rest
see [14, Proposition 1.2]. (If |I'| € O* the equality holds because M is a
projective R-module.) O

Lemma A.5. Ifm € A"OM and ¢ € ASM* with s <, then
P(m) e NT5O0M.

Proof. If ¢’ € A"~ M* then we have ¥'(»(m)) = () AY’)(m) € R because
m € A"OM, so ¢ Am € AN"5OM by definition. O

Proposition A.6. Suppose M is an R-module that is projective as an
O-module, and B is an O-module. For every s < r and p € FI[I], the
construction of Definition A.1 induces a canonical pairing

(A"OM)[p] x A""*Homp(M, R ®p B) — (A*°M)[p] @0 B9,
In particular, when s = 0 this pairing takes values in R[p] @z B®".
Proof. There are natural isomorphisms
Hompg(M, R) = Homp(M,O), Hompg(M,R®0c B) = Homp (M, B).
Since M is a projective O-module, the natural map
M*®0p B — Hompg(M, R ®0 B)
is an isomorphism. This isomorphism gives the first map of
(A™OM)[p] x A" *Homp(M,R ®0 B) = (A\"OM)[p] x A""5(M* @0 By,)

s (AOM)[] X (AT M*) @ BET)
s (ASOM) ] ®0 B&(r—s)

and the last map comes from Definition A.1, using Lemma A.5.
If s =0, then A%°M = R by definition. O
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Remark A.7. If my,...,m, € M, ¢;,...,¢, € Homg(M, R ®» B), and
s = 0, then the pairing of Proposition A.6 is given by

(m1 ARRRIAN o7 I SRV RREWAY qu) — det((bl(mj))

The content of Proposition A.6 is that this pairing is defined on all of
ATOM | not just on ATM.
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