
Fabrizio ANDREATTA et Carlo GASBARRI

Deformation of torsors under monogenic group schemes
Tome 28, no 1 (2016), p. 125-143.

<http://jtnb.cedram.org/item?id=JTNB_2016__28_1_125_0>

© Société Arithmétique de Bordeaux, 2016, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2016__28_1_125_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 28 (2016), 125–143

Deformation of torsors under monogenic group
schemes

par Fabrizio ANDREATTA et Carlo GASBARRI

Résumé. On montre qu’il est toujours possible de déformer des
torseurs sous un schéma en groupes fini et plat sur des courbes
lisses sous la condition que l’algèbre de Lie du groupe soit de
dimension au plus un et que le torseur ne provienne pas d’un
sous-groupe propre. On applique ce résultat à l’étude du champs
classifiant des recouvrements d’ordre p.

Abstract. We show that one can always deform torsors over
smooth curves under finite and commutative group schemes under
the assumption that their Lie algebras have dimension less or equal
to 1 and that the torsor does not arise from a proper subgroup.
We apply this result to the study of a stack classifying p–covers
of curves.

1. Introduction

Let R be a complete local ring with residue field k of positive charac-
teristic p. Let G be a finite, flat and of finite presentation, commutative
group scheme over R. Let Xk be a smooth curve over k i. e., a smooth k–
scheme of dimension 1, and let Yk → Xk be a Gk–torsor over Xk. One may
ask whether there exist a lifting X of Xk over R and a G–torsor Y → X
deforming Yk → Xk. If G is étale, the answer is well known to be posi-
tive. Indeed, for every lifting X of Xk the problem of deforming Yk → Xk

to a G–torsor over X admits a unique solution. As the following example
shows, if G is not étale and X is a fixed lifting of Xk, the problem of lift-
ing Gk–torsors might not have a solution. We suppose that R is a dvr of
characteristic p and G = αp. Then, given a family E → Spec(R) of elliptic
curves with ordinary generic fiber and supersingular special fiber Ek, any
non–trivial Gk–torsor over Ek can not be extended to a G–torsor over E .
In examples 3.2 and 3.3, we show that, given a dvr R of unequal charac-
teristic, there exist curves X over R and αp–torsors (resp. µpn–torsors for
any n ∈ N) over its special fiber which cannot be lifted to torsors over X
under any group scheme deforming αp (resp. µpn). In the other direction it
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is easy to construct examples for which the lifting problem has more than
one solution. In this paper we prove the following:

Theorem 1.1. Assume that LieGk is of dimension ≤ 1 and that Yk does
not arise as the push–forward of a torsor over Xk under a proper subgroup
scheme of Gk. Then, there exist a smooth formal curve X over R and a
G–torsor Y → X whose special fiber is the Gk–torsor Yk → Xk.

The proof relies on the fact that Gk–torsors over Xk are defined by
isogenies on the jacobian of Xk. This allows to translate the deformation
theory of torsors, using the cotangent complex (see §2), into a rather explicit
computation which is performed in §3. Here the fact that we are working
with curves turns out to be an essential ingredient.

Using Theorem 1.1 we obtain fine information on the structure of the
stack classifying p–covers of curves. When p is a unit, the structure of
such spaces is well understood. Their reduction modulo p is more elusive.
The main difficulty is to understand the possible specializations of a p–
cyclic cover of smooth projective curves Y → X defined over a complete
discrete valuation field with residue field of characteristic p. The semistable
reduction theorem for curves allows to suppose that either the reduction
of X or the reduction of Y is a semistable curve. If one wants that the
reduction of the cover is again a finite morphism with a group scheme
acting, in general one cannot obtain that both the reductions of X and Y
are semistable.

In [2] the authors approach the problem imposing the semistability of Y
and considering torsors Y → X under group schemes over X (not neces-
sarily defined over the base). They define a Deligne-Mumford stack over Z,
which after inverting p classifies p–cyclic covers of curves of given genus,
and has the property of being proper over Z. The main difficulty in this
approach is to understand the singularity of such stack.

In this paper we impose the semistability of X, following the approach
of [1, §5]. We introduce in §4 a stack CCg,p which associates to a scheme
S triples (X,G, Y ) where X is a smooth projective curve of genus g ≥ 2
over S (a 1–pointed smooth projective curve for g = 1), G is a finite locally
free group scheme over S of rank p and Y is a G–torsor over X. This is
the analogue of the stack introduced in [1] with two notable differences:
we allow only smooth curves and not semistable ones as in loc. cit. but we
do not confine ourselves to the case of linearly reductive, finite flat group
schemes G as in loc. cit. This is an important feature as, for example, we
allow torsors under the group scheme αp in characteristic p which appear
as specializations of p–covers. The advantage of limiting ourself to group
schemes of order p is that we have the theory of Oort–Tate at our disposal
which provides a simple description of the Artin stack Gp of finite and
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locally free group schemes of order p. The stack CCg,p has natural forgetful
morphisms prG : CCg,p → Gp, sending (X,G, Y ) to G, and prM : CCg,p →
Mg, to the stack of smooth curves of genus g if g ≥ 2 (of 1–pointed smooth
projective curves if g = 1), sending (X,G, Y ) to X. The morphism CCg,p →
Mg × Gp is representable and prM is proper; see §4. Examples show, see
§3, that prM is not smooth. As an application of Theorem 1.1 we further
obtain:

Corollary 1.2. The map prG is formally smooth.

As a corollary we obtain that CCg,p is a regular Artin stack flat over
Z whose fiber over p is a simple normal crossing divisor. This provides a
strengthening of [1, Thm. 5.1] in our setting. As our deformation theory
heavily relies on the deformation theory of abelian varieties (via the theory
of Jacobians), we do not see a straightforward generalization of our methods
to the case of semistable curves. It would be an interesting problem to
extend our theory to that case and especially to compare our stack to the
one introduced in [2].

1.1. Acknowledgments. We would like to thank M. Raynaud who sug-
gested the problem to us and for his encouragement. He convinced us of
the validity of Theorem 1.1 which we initially proved only for the special
class of monogenic group schemes considered in [3]. We thank Matthieu Ro-
magny, Dajano Tossici and the referee for feed back and suggestions that
hopefully improved the exposition. The first author was partially supported
by the Italian grant Prin 2010/2011. The second author was supported by
the USIAS and FRIAS.

2. Deformation of torsors via isogenies of abelian schemes

Let j : S → S′ be a closed immersion of affine schemes defined by a square
zero ideal J . Consider a smooth morphism X ′ → S′ and let g : X → S be
the base change via j. Let G′ → S′ be a group scheme over S′, commutative,
flat and of finite presentation. Assume that the base change G := G′ ×S′ S
over S is the kernel of a faithfully flat morphism α : A → B of smooth
groups schemes over S so that we have the exact sequence

0 −→ G
ι−→ A

α−→ B −→ 0.
Suppose we are given a G–torsor Y → X (for the fpqc topology on X). We
study the obstruction theory to deform Y to a G′–torsor over X ′ using the
theory of the equivariant cotangent complex elaborated by Illusie. It turns
out that in the case that G is the kernel of a morphism as above various
simplifications take place.

We denote by Z := ι∗(Y ), the A–torsor over X defined by push-out of
Y via ι. We write W := α∗(Z) for the B–torsor over X given by push-out
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of Z via α. Using that W admits a canonical section, the following easy
lemma shows how to recover the original G–torsor from the morphism of
A–schemes Z → W . As this recipe is needed in §2.3 we prefer to state it
explicitly.

Lemma 2.1. The category of G–torsors over X is equivalent to the cat-
egory of A–torsors Z over X with a section γ : X → W of the B–torsor
W := α∗(Z).

Proof. We refer to [3, Prop. 4.4] for a proof. We only sketch the main steps.
⇐= Let (Z, γ) be an A–torsor with a section of W over X. Define the

associated G–torsor Y as the fibred product of Z → W and γ : X → W
over W .

=⇒ Let Y → X be aG–torsor and let Z = ι∗(Y ). It is an A–torsor and Y
is naturally a closed G–equivariant subscheme of Z. The torsorW = α∗(Z)
and the natural map Z →W identifies W with Z/G. Then, W is endowed
with the section γ : X ∼= Y/G→W = Z/G. �

In the theory of the cotangent complex the invariant differentials of a
torsor for the action of a group scheme appear. We describe the structure
of such module.

2.1. Invariant differentials. Let H be a flat group scheme of finite pre-
sentation over S. In our case it could be G or A or B.

Let h : Z → S be an S–scheme and let g : U → Z be a morphism of
S–schemes. Let f : T → U be a scheme over U endowed with an action of
H. Such action provides a commutative diagram

H ×S T
m−→ T

↓ pr2 ↓ f
T

f−→ U,

where pr2 is the projection on the second factor and m defines the action
of H on T . Define the OU–module of invariant differentials Ωinv

T/U/Z as the
OU–submodule of f∗

(
Ω1
T/Z

)
given on an open subscheme V ⊂ U by

Ωinv
T/U/Z(V ) :=

{
ω ∈ Ω1

T/Z

(
f−1(V )

)
|pr∗2(ω) = m∗(ω)

}
.

We write Ωinv
T/U for Ωinv

T/U/U . For example, if U = S and T = H is the trivial
H–torsor, Ωinv

H/S is the OS–module of invariant differentials on H. IfW ⊆ H
is an open subset containing the zero section and I ⊂ OW is the ideal sheaf
defining the zero section as a closed subscheme of W , then Ωinv

H/S
∼= I/I2.

Observe that an H–equivariant map T1 → T2 of U–schemes gives rise,
functorially, to a map of sheaves Ωinv

T2/U/Z
→ Ωinv

T1//U/Z
.
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Proposition 2.2. If f : T → U is an H–torsor, then

(a) the map of OT –modules f∗(Ωinv
T/U )→ Ω1

T/U , deduced by adjunction
from the inclusion Ωinv

T/U → f∗(Ω1
T/U ), is an isomorphism;

(b) there is a unique isomorphism of OU–modules

t : Ωinv
T/U

∼−→ g∗
(
Ωinv
h∗H/Z

)
satisfying the following property. Let q : Y → U be a flat morphism
and let σ : Y → TY := T ×U Y be a section. The section σ defines
a trivialization of TY as H–torsor so that Ωinv

TY /Y
is isomorphic

to the pull–back of Ωinv
H/S to Y . Then, such isomorphism coincides

with q∗(t);

(c) let α : H → G be a morphism of group schemes flat and of finite
presentation over S. Denote by W := α∗(T ) is the G–torsor given
by push-out of T via α. Write ρ : T →W for the associated map of
U–schemes. The induced morphism dρinv : Ωinv

W/U → Ωinv
T/U is identi-

fied, via the isomorphism in (b), with the base change via g∗ of the
morphism dαinv : Ωinv

G/S → Ωinv
H/S.

Proof. (a) and (c) It suffices to verify the claims passing to an fpqc covering
of U . In particular, we may assume that T → U is the trivial H–torsor.
The statements are obvious in this case.

(b) Assume first that T → U is the trivial torsor and let σ : U → T

be a section. The choice of σ defines an isomorphism ρ : H ×S U
∼−→ T

given by (a, x) 7→ a · σ(x). Using ρ and (a), we deduce an isomorphism
tρ : Ωinv

T/U
∼= g∗(Ωinv

H/S). Choose a different section σ′ and let ρ′ : H ×S U
∼−→

T be the induced isomorphism. Then, σ′ = α · σ for some α : U → H and
ρ−1◦ρ′ : H×SU

∼−→ H×SU is
(
α(x)+a, x

)
. Such map induces the identity

on Ωinv
H×SU/U

. Hence, tρ′ ◦ t−1
ρ is the identity i. e., tρ′ = tρ. Hence, tρ does

not depend on the choice of the section σ.
In the general case, let R → U be an fpqc cover of U such that there

exists a section σ : R → T ×U R. We then get an isomorphism t of the
pull–back of Ωinv

T/U and g∗(Ωinv
H/S) to T . The pull–back t1 (resp. t2) of t via

the first (resp. second) projection R ×U R → R is the isomorphism of the
pull back of Ωinv

T/U and g∗(Ωinv
H/S) to R×U R defined by the pull–back of the

section σ. In particular, by the previous discussion t1 = t2 so that t satisfies
a descent datum relative to R→ U . In particular, t descends and it defines
the sought isomorphism. �
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2.2. The cotangent complex. We start by reviewing the theory of de-
formations of torsors using Illusie’s theory of the equivariant cotangent
complex. See [6, §VII.2.4] and also [11, §1].

First of all we recall that, since we fixed a deformation X ′ of X over S′,
the set of isomorphism classes of deformations X ′′ of X over S′ are classified
by Ext1

(
Ω1
X/S ,JOX

)
. If X ′′ is such a deformation, we denote by ΨX′(X ′′)

the class in Ext1
(
Ω1
X/S ,JOX

)
associated to it.

Under the assumption that G → S is commutative, flat and of finite
presentation and f : Y → X is a G–torsor, one constructs:

(1) a perfect complex `′Y/X of OX–modules of perfect amplitude [−1, 0],
called the co-Lie complex associated to the G–torsor Y → X, see [6, §VII,
§§2.4.2];

(2) an extension class at(Y/X/S) ∈ Ext1
(
`′Y/X ,Ω

1
X/S

)
of OX–modules,

called the Atiyah class of the G–torsor Y → X, see [6, §VII, (2.4.2.11)]
with the following properties.

Let S ⊂ S′ be a closed immersion of affine schemes defined by a square
zero ideal J which we then view as a OS–module. Let

δ′ : Ext1
(
Ω1
X/S ,JOX

)
−→ Ext2(`′Y/X ,JOX)

be the map defined by the long exact sequence of Ext–groups associated
to the Atiyah class. Fix a group scheme G′ → S′ commutative, flat and of
finite presentation over S′ deforming G→ S.

Proposition 2.3. ([6, §VII, Theorem 2.4.4]) Let X ′ → S′ be a flat defor-
mation of X → S.

i. There exists an element Θ
(
Y,X ′, G′

)
∈ Ext2(`′Y/X ,JOX) which

vanishes if and only if the G–torsor Y → X can be lifted to a G′–
torsor Y ′ → X ′;

ii. if Θ
(
Y,X ′, G′

)
= 0, the set of isomorphism classes of G′–torsors

deforming the G–torsor Y → X over X ′ is a principal homogeneous
space under Ext1(`′Y/X ,JOX);

iii. if X ′′ is the deformation of X to S′ defined by ΨX′(X ′′) ∈
Ext1

(
Ω1
X/S ,JOX

)
, then Θ

(
Y,X ′′,G′

)
= Θ

(
Y,X ′,G′

)
+δ′

(
ΨX′(X ′′)

)
.

Strictly speaking in [6] one fixes the group scheme G′ → S′ as above, a
G′–torsor Y → X and a closed immersionX ⊂ X ′, viewed as a morphism of
S′–schemes and defined by a square 0 ideal. One then studies the problem
of deforming Y → X to a G′–torsor Y ′ → X ′. In our case the closed
immersion X ⊂ X ′ arises from the closed immersion S ⊂ S′ defined by the
ideal J .
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2.3. An explicit description. Recall that G is the kernel of a faithfully
flat map of smooth group schemes:

0 −→ G
ι−→ A

α−→ B −→ 0.

Under this assumption the co-Lie complex and the Atiyah class constructed
by Illusie become very explicit.

Set Z to be the A–torsor ι∗(Y ) overX andW to be the B–torsor α∗(Z) =
Z/G over X. The induced map ρ : Z →W provides a morphism of invariant
differentials Ωinv

W/X → Ωinv
Z/X . Define `Y/X to be the complex of OX–modules

concentrated in degrees −1 and 0 given by

`Y/X :=
[
0→ Ωinv

W/X → Ωinv
Z/X → 0

]
.

Denote by dαinv : Ωinv
B/S → Ωinv

A/S the induced map on invariant differentials
associated to α : A→ B. Due to Proposition 2.2 we can identify `Y/X with
the complex g∗

(
dαinv)
`Y/X ∼=

[
0→ g∗

(
Ωinv
B/S

)
→ g∗

(
Ωinv
A/S

)
→ 0

]
.

Let s : Z → X be the structural morphism. Consider as in §2.1 the OX–
module Ωinv

Z/X/S . The natural map Ω1
Z/S → Ω1

Z/X induces a map Ωinv
Z/X/S →

Ωinv
Z/X . The map Ω1

X/S → s∗
(
Ω1
Z/S

)
factors via Ωinv

Z/X/S so that we have a
sequence

(2.1) 0 −→ Ω1
X/S −→ Ωinv

Z/X/S −→ Ωinv
Z/X −→ 0.

Lemma 2.4. The sequence (2.1) is exact.

Proof. Assume first that Z is the trivial A–torsor so that Z ∼= X×SA. The
pull-back via the 0–section of A defines a left splitting of the sequence (2.1).
If q : Z = X ×S A → A denotes the second projection, the pull back via q
induces a map q∗

(
Ωinv
A/S

)
→ Ωinv

Z/X/S . As q
∗(Ωinv

A/S

)
is identified with Ωinv

Z/X

by Proposition 2.2, this defines a right splitting of the sequence (2.1).
As A and X are smooth over S and we have Z ∼= X ×S A, the sequence

of differentials 0 → s∗
(
Ω1
X/S

)
→ Ω1

Z/S → Ω1
Z/X → 0 is exact. Thus the

kernel of Ωinv
Z/X/S → Ωinv

Z/X is the OX–module of A–invariant differentials
s∗
(
s∗
(
Ω1
X/S

))inv. Exactness in the middle in (2.1) follows if we show that
the natural map Ω1

X/S → s∗
(
s∗
(
Ω1
X/S

))inv is an isomorphism. As Ω1
X/S is

finite and locally free as OX–module, it is enough to prove this for OX
instead of Ω1

X/S . As X → S is flat, it suffices to prove that, denoting by
π : A → S the natural morphism, OS → π∗(OA)inv is an isomorphism and
this is clear. Thus (2.1) is exact in this case.
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As Z is locally trivial for the fpqc topology on X we deduce that this
sequence is locally exact and, hence, exact. �

As W is the trivial torsor with a canonical section σ by Lemma 2.1, we
deduce that the exact sequence (2.1) for Ωinv

W/X/S splits as a direct sum

Ωinv
W/X/S = Ω1

X/S ⊕ Ωinv
W/X .

The induced map ρ : Z →W provides a morphism of invariant differentials
Ωinv
W/X/S → Ωinv

Z/X/S . Composing with the inclusion Ωinv
W/X ⊂ Ωinv

W/X/S we get
a complex of OX–modules concentrated in degrees −1 and 0, denoted `Y/S ,

`Y/S :=
[
0→ Ωinv

W/X → Ωinv
Z/X/S → 0

]
.

Due to Lemma 2.4 the natural morphism of complexes `Y/S → `Y/X has
kernel equal to Ω1

X/S , viewed as a complex concentrated in degree 0 and as
a subsheaf of Ωinv

Z/X/S , so that we get an extension of complexes

(2.2) 0 −→ Ω1
X/S −→ `Y/S −→ `Y/X −→ 0

2.4. Functoriality. Let h : G→ H be a faithfully flat morphism of groups
schemes over S and denote by K the kernel of h. Then α : A → B factors
via the quotient map π : A→ A′ := A/K and H is the kernel of the induced
morphism α′ : A′ → B. Denote by ι′ : H → A′ the induced inclusion. Let
Q := h∗(Y ) be the push-forward of Y . Denote as in §2.3 by Z ′ the A′–torsor
ι′∗(Y ) over X and by W ′ to the B–torsor α′∗(Z) over X. Then Z ′ = π∗(Z)
and W ′ = W and we have a commutative diagram

(2.3)
Z → W
↓ ‖
Z ′ → W ′.

The construction in §2.3 provides a map of complexes of OX–modules
`Q/X → `Y/X . Then

Lemma 2.5. The extension `Q/S, see (2.2), is obtained from the extension
`Y/X by pull–back via `Q/X → `Y/X .

Proof. It follows from the construction that the diagram (2.3) provides a
map `Q/S → `Y/S which induces the given map `Q/X → `Y/X and is the
identity on Ω1

X/S . The lemma follows. �

Proposition 2.6. We have an isomorphism of complexes of OX–modules
`′Y/X

∼= `Y/X such that the Atiyah class at(Y/X/S) is given by the exten-
sion (2.2). In particular, `′Y/X and at(Y/X/S) commute with arbitrary base
change T → S.
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Proof. We first study `Y/X . The closed immersion ι : G → A defines a
closed immersion ι : Y ⊂ Z := ι∗(Y ) and the latter is a smooth scheme
over X. The closed immersion is defined by an ideal I which, thanks to
Lemma 2.1, is the inverse image via ρ : Z → W := α∗(Z) of the ideal J
defining the zero section of the trivial torsor W . Consider the complex of
OY [G]–modules given by

LGY/X :=
[
0 −→ I/I2 −→ ι∗

(
Ω1
Z/X

)
−→ 0

]
,

introduced in [6, §VII.2.4.2]. We observe that I/I2 ∼= ρ∗(J/J2) ∼= f∗
(
Ωinv
W/X

)
.

It follows from Proposition 2.2 that Ω1
Z/X

∼= s∗
(
Ωinv
Z/X

)
where s : Z → X

is the structural morphism. Hence, ι∗
(
Ω1
Z/X

) ∼= f∗
(
Ωinv
Z/X

)
. We can then

rewrite the complex
LGY/X

∼=
[
0 −→ f∗

(
Ωinv
W/X

)
−→ f∗

(
Ωinv
Z/X

)
−→ 0

]
.

In [6, §VII, (2.4.2.8)’] the co-Lie complex, denoted here `′Y/X , is defined
as Rε∗fG∗ LGY/X where ε is the morphism from the fpqc topos of X to the
Zariski topos of X and fG∗ is the morphism from the topos of G–sheaves
over Y to the fpqc topos over X associating to a sheaf L the G–invariants of
f∗(L). The adjoint fG,∗ associates to a sheaf L on X the sheaf f∗(L) with
the induced G–action. As ε∗

(
LGY/X

)
= fG,∗ε∗

(
`Y/X

)
we get by adjunction a

morphism of complexes `Y/X → `′Y/X . To prove that it is an isomorphism we
may base change with a faithfully flat map V → X and as both complexes
commute with flat base change, we may assume that Y → X admits a
section s. It then follows from [6, §VII, (2.4.2.8)”] that `′Y/X ∼= Ls∗LGY/X
which coincides with `Y/X as wanted.

Secondly, we prove that the exact sequence 0 → Ω1
X/S → `Y/S →

`Y/X −→ 0 coincides with the Atiyah class at(Y/X/S) introduced by Illusie
in [6, §VII, (2.4.2.6)]. The proof proceeds as before. As X → S is smooth
and Z → S is smooth, we have a complex LGY/S given by

LGY/S :=
[
0 −→ f∗

(
Ωinv
W/X

)
−→ f∗

(
Ωinv
Z/X/S

)
−→ 0

]
;

see [6, §VII, §2.2.5]. Following [6, §VII, (2.4.2.7)’] one defines `′Y/S as
Rε∗f

G
∗ L

G
Y/S with a natural map to `′Y/X . As above, one has a natural mor-

phism `Y/S → `′Y/S , by adjunction, which is compatible with the map to
`Y/X via the identification `Y/X ∼= `′Y/X . To prove that it is an isomorphism
one takes a base change via a faithfully flat morphism W → X and reduces
to the case that the torsor Y → X admits a section s. Thanks to [6, §VII,
(2.4.2.7)”] we have `′Y/S ∼= Ls∗LGY/S and this is `Y/S as wanted.

We prove the last claim. Let T → S be an arbitrary morphism. Using the
theory of the equivariant cotangent complex we have complexes `′YT /XT

and
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the Atiyah extension class at(YT /XT /T ), where the subscript T denotes the
base change to T . By the first claim of the Proposition they admit explicit
description in terms of the resolution 0 → GT → AT → BT → 0, e.g.,
`′YT /XT

∼= `YT /XT
and at(YT /XT /T ) admits a description similar to (2.2).

By definition of the complex `Y/X and the fact that the invariant differ-
entials Ωinv

W/X and Ωinv
Z/X commute with arbitrary base change, one deduces

that `YT /XT
is obtained from `Y/X by base change. Similarly, using (2.1)

one concludes that also Ωinv
Z/X/S commutes with base change. It then fol-

lows from the construction of the extension (2.2) that the extension class
at(YT /XT /T ) is obtained from at(Y/X/S) by base change via T → S. �

Using the exact sequence of complexes

0→ g∗
(
Ωinv
A/S

)
→ `Y/X → g∗

(
Ωinv
B/S

)
[1]→ 0

and the fact that Ωinv
A/S and Ωinv

B/S are locally free OS–modules, we get that

Exti
(
`Y/X ,OX

) ∼= Hi(X, `∨Y/X ⊗OS
OX

)
.

Write LieA := Γ
(
S,Ωinv,∨

A/S

)
and LieB := Γ

(
S,Ωinv,∨

B/S

)
. We then get an exact

sequence

0 −→ LieB
LieA ⊗Hi−1(X,OX) −→ Exti

(
`Y/X ,OX

)
−→ LieA⊗Hi(X,OX) −→ LieB ⊗Hi(X,OX),

where the tensor product is taken over Γ(S,OS).
In particular, let us assume that R is a complete local ring with max-

imal ideal m and with residue field k, that S = Spec(R/mn) and S′ =
Spec(R/mn+1) so that J = mn/mn+1 is a k–vector space. Assume that
the special fiber Gk of G is the kernel of a faithfully flat map of smooth
group schemes αk : Ak → Bk (not necessarily obtained from a map of
group schemes over S). Denote TXk/k := Hom(Ω1

Xk/k
,OXk

). The exten-
sion at(Xk/Yk/k)

0 −→ Ω1
Xk/k

−→ `Yk/k −→ `Yk/Xk
−→ 0

and the complex `Yk/Xk
= [0 → g∗

(
Ωinv
Bk/k

)
→ g∗

(
Ωinv
Ak/k

)
→ 0] provide a

map
γ : H−1(`Yk/Xk

) = g∗
(
Ker(Ωinv

Bk/k
→ Ωinv

Ak/k
)
)
−→ Ω1

Xk/k
.

The following corollary summarizes what we proved so far. We recall
the notations for reader convenience. We denote by j the closed immersion
j : S ↪→ S′. We have a smooth morphism X ′ → S′ of relative dimension
one and we denote by g : X → S its base change via j. Let G′ → S′ be
a commutative, flat and of finite presentation group scheme over S′. We
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suppose also that the base change G := G′×S′ S is the kernel of a faithfully
flat morphism α : A→ B of smooth groups schemes over S.

Corollary 2.7. Under the hypotheses above we have:

i. There exists an element Θ
(
Y,X ′, G′

)
∈ LieBk

LieAk
⊗H1(Xk,OXk

)
⊗k J

which vanishes if and only if the G–torsor Y → X can be lifted to
a G′–torsor Y ′ → X ′;

ii. if Θ
(
Y,X ′, G′

)
= 0, the set of isomorphism classes of G–torsors

deforming Y → X is a principal homogeneous space under
Ext1(`Yk/Xk

,OXk

)
⊗k J and Ext1(`Yk/Xk

,OXk

)
is an extension of

Ker(LieBk → LieAk)⊗H1(Xk,OXk

)
by LieBk

LieAk
⊗H0(Xk,OXk

)
;

iii. if X ′′ is the deformation of X to S′ defined by ΨX′(X ′′) ∈
H1(Xk,TXk/k

)
⊗k J , then

Θ
(
Y,X ′′, G′

)
= Θ

(
Y,X ′, G′

)
+ (δ ⊗ 1)

(
ΨX′(X ′′)

)
with

δ = δYk/Xk
: H1(Xk,TXk/k

)
−→ LieBk

LieAk
⊗H1(Xk,OXk

)
given by taking H1(Xk,_) of the dual of γ.

Proof. Note that Exti
(
`Y/X ,JOX

) ∼= Exti
(
(`Y/X)|Xk

,OXk

)
⊗k J and sim-

ilarly for Ω1
X/S in place of `Y/X . As we are assuming that G is the kernel of

a morphism of smooth S–group schemes, Proposition 2.6 implies that the
complex (`Y/X)|Xk

coincides with `Yk/Xk
and the Atiyah extension class

at(Y/X/S) ⊗R k coincides with at(Yk/Xk/k). Both the complex `Yk/Xk

and the Atiyah class at(Yk/Xk/k) can be computed using the resolution
0 → Gk → Ak → Bk → 0 over k thanks to Proposition 2.6. In particular,
Exti

(
`Y/X ,JOX

) ∼= Exti
(
`Yk/Xk

,OXk

)
⊗k J and, via these identifications,

the map δ′ : Ext1
(
Ω1
X/S ,JOX

)
−→ Ext2(`′Y/X ,JOX) of Proposition 2.3 is

obtained by tensoring the map δ of Claim (iii) with ⊗kJ .
The claim follows using these identifications, Propositions 2.3 and 2.6

and the discussion following Proposition 2.6. �

The exact sequence 0 → Gk → Ak → Bk → 0 induces a morphism
Bk(Xk) → H1(Xk, Gk). Given a morphism σ : Xk → Bk the associated
Gk–torsor is defined as the fiber product of σ and α : Ak → Bk.

Lemma 2.8. Assume that the Gk–torsor Yk → Xk is obtained from a
morphism σ : Xk → Bk. Then, the map γ : g∗

(
Ker(Ωinv

Bk/k
→ Ωinv

Ak/k
)
)
−→

Ω1
Xk/k

is induced by the map dσ : σ∗(Ω1
Bk/k

)→ Ω1
Xk/k

.
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Proof. The Ak–torsor Zk defined by ι∗(Yk) is Ak by construction so that
Ωinv
Zk/Xk/k

= Ω1
Xk/k

⊕ Ωinv
Ak/k

. As Wk = α∗(Zk) = Bk then Ωinv
Wk/Xk/k

=
Ω1
Xk/k

⊕ Ωinv
Bk/k

. The map ρ : Ak → Bk is the morphism α so that the
map dρinv : Ωinv

Wk/Xk/k
→ Ωinv

Zk/Xk/k
is the identity on Ω1

Xk/k
and is induced

by dα on the second factor. The map γ is the composite of the morphism
Ωinv
Bk/k

→ Ωinv
Wk/Xk/k

, provided by the section σ and sending ω 7→
(
dσ(ω), ω

)
,

composed with with dρinv and the projection onto Ω1
Xk/k

. This coincides
with dσ as claimed. �

2.5. Some Examples. We compute the map γ in the following examples.
Relation with Jacobians: Let Gk be a finite and flat commutative

group scheme. Let q : G∨k → Pic0(Xk/k) be a closed immersion. Due to [8,
Prop. III.4.16] we have an isomorphism H1(Xk,Gk) ∼= Hom

(
G∨k ,Pic0(Xk/k)

)
.

Thus, associated to q we have a Gk–torsor Yk → Xk. Write Bk for the Al-
banese variety of Xk i.e., for the dual abelian variety Pic0(Xk/k)∨. Let
A∨k be the abelian variety Pic0(Xk/k)/G∨k . The dual of the quotient map
B∨k → A∨k defines an isogeny α : Ak → Bk with kernel ι : Gk → Ak. Assume
there exists a k–valued point of Xk and let σ : Xk → Bk be the associ-
ated Albanese map. Then, the Gk–torsor Yk arises as the fibre product of
σ : Xk → Bk and of α : Ak → Bk. Thanks to Lemma 2.8, in this case the
map

γ : g∗
(
Ker

(
Ωinv
Bk/k

→ Ωinv
Ak/k

))
−→ Ω1

Xk/k

is described in terms of the map on differentials defined by σ.
µp–torsors: Take Ak = Gm,k = Speck[z, z−1], Bk = Gm,k and α the

multiplication by p map. Let Yk → Xk be a µp–torsor induced by a map
σ : Xk → Gm,k i.e., by an invertible element a ∈ Γ(Xk,OXk

) so that OYk
=

OXk
[T ]/(T p − a). The map γ is given in this case by the map

dσ : kdz
z

= σ∗(Ωinv
Gm,k/k

) −→ Ω1
Xk/k

, dz/z 7→ da/a.

Thus γ(dz/z) is the differential form defined in [8].
αp–torsors: Assume that k is of positive characteristic p. Take Ak =

Ga,k = Speck[z], Bk = Ga,k and α the Frobenius map. Let Yk → Xk be
an αp–torsor induced by a map σ : Xk → Ga,k i.e., by an element a ∈
Γ(Xk,OXk

) so that OYk
= OXk

[T ]/(T p − a). The map γ is given in this
case by the map

dσ : kdz = σ∗(Ωinv
Ga,k/k

) −→ Ω1
Xk/k

, dz 7→ da.

Thus γ(dz) is the differential form defined in [8].
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3. Proof of the main Theorem

3.1. Proof of the main theorem. The notation is as in the statement
of Theorem 1.1.

We will denote by m the maximal ideal of R. If n is a natural number,
we will denote by Rn the ring R/mn and, if X → S is a scheme over R,
we will denote by Xn the base change of X to Spec(Rn); in particular
Sn = Spec(Rn).

If Gk is étale, the proof is obvious since Yk → Xk is étale and, given
a deformation X of Xk to R, it can be deformed uniquely to a G–torsor
Y → X. Thus, we may assume that LieGk has dimension 1. By a classical
theorem of M. Raynaud [4, §3.1.1], we can find two abelian schemes A and
B over R and an exact sequence of R group schemes

0 −→ G
ι−→ A

α−→ B −→ 0.
By induction on n we construct a flat scheme Xn → Sn and a G–torsor

Yn → Xn such that (1) X1 = Xk, Y1 = Yk as G–torsor, and (2) Xn
∼=

Xn+1 ×Sn+1 Sn and Yn ∼= Yn+1 ×Sn+1 Sn as G–torsor over Xn. For n = 1
there is nothing to prove. Assume we have constructed Yn → Xn. Since Xn

is a smooth curve, it can be deformed to a smooth curve Xn+1 → Sn+1.
Due to Corollary 2.7, to prove that there exist a lifting X ′n+1 → Sn+1 of
Xn and a G–torsor Yn+1 → X ′n+1 deforming Yn → Xn, it suffices to show
that the map
(3.1) δYk/Xk

: H1(Xk,TXk/k

)
−→

(
LieBk/LieAk

)
⊗k H1(Xk,OXk

)
is surjective. Passing to an algebraic closure of k we may assume that k
is algebraically closed and that Xk is irreducible. In particular, Xk admits
a k–valued point. Since k is algebraically closed, Gk is the product Gk ∼=
G0
k ×Get

k of its connected component at the identity G0
k and its étale part

Get
k . For i ∈ N denote by F i : G0

k → G
0,(pi)
k the i-th iterate of the Frobenius

morphism and set G0
k[F i] its kernel. Since G0

k is a finite and connected
group scheme it is annihilated by some power of F . Let N ∈ N be such
thatG0

k[FN ] = G0
k andG0

k[FN−1] is strictly contained inG0
k. Since LieG0

k =
LieGk is a k–vector space of dimension 1 by assumption, G0

k is not trivial,
proving that such N exists.

Let Tk → Gk be the subgroup G0
k[FN−1]×Get

k . As LieG0
k = LieGk is a k–

vector space of dimension 1, then G0
k
∼= Speck[T ]/

(
T p

N ) as a scheme so that
the quotient Hk := Gk/Tk is isomorphic to Speck[S]/(Sp). In particular,
Hk is local, of rank p. Set A′k := Ak/Tk and B′k := A′k/Hk = Bk. We have
a commutative diagram with exact rows

0→ Gk → Ak → Bk → 0
↓ ↓ ‖

0→ Hk → A′k → B′k → 0
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The kernel of the map LieAk → LieBk is LieGk which is of dimension
1 as k–vector space. As LieAk and LieBk have the same dimension, the
quotient LieBk/LieAk has dimension 1. Similarly as LieHk is of dimension
1, also LieB′k/LieA′k is a k–vector space of dimension 1. Since the map
LieBk → LieB′k is an isomorphism, the induced map LieBk/LieAk →
LieB′k/LieA′k is surjective. As both are 1–dimensional k–vector spaces, it
is an isomorphism. By assumption the pushforward Qk of Yk via Gk → Hk

is non–trivial. It follows from Lemma 2.5 and Proposition 2.6 that the
Atiyah extension class at(Qk/Xk/k) is obtained from at(Yk/Xk/k) so that
δYk/Xk

= δQk/Xk
via the isomorphism LieBk/LieAk ∼= LieB′k/LieA′k.

Thus, we may replaceGk withHk and we are reduced to prove that δYk/Xk

is surjective in the case that Gk is local, of rank p. Since k is algebraically
closed, we have two cases Gk ∼= µp or Gk ∼= αp.

It follows from Corollary 2.7 that for the computation of δ = δYk/Xk
it

does not matter which resolution of Gk one takes.
Case 1: Gk = µp.
Then we take Ak = Gm,k → Gm,k = Bk given by raising to the p-th

power. There exists a covering by open affine subschemes Ui := Spec(Ci)
of Xk such Yk|Ui = Spec

(
Ci[Ti]/(T pi − ai)

)
for a suitable ai ∈ C∗i . Further-

more, Ti = gijTj for a suitable cocycle gij ∈ Γ
(
Ui ∩ Uj ,O∗Xk

)
. Due to §2.5

the map γ : Ωinv
Bk/k

⊗ OXk
→ Ω1

Xk/k
(the connection of γ and δ is given in

Corollary 2.7) is defined over Ui by the differential ωi := dai
ai

. If we de-
note by ji : Ui ↪→ Xk the inclusion, the differential ωi is trivial if and only
if j∗i (ai) is a p–th power for some (equivalently any) i i. e., if and only if Yk
is the trivial µp–torsor which is not the case by assumption.

Case 2: Gk = αp.
In this case Ak → Bk is given by Frobenius Ga,k → Ga,k. There exists a

covering by open affines Ui := Spec(Ci) ofXk such Yk|Ui = Spec
(
Ci[Ti]/(T pi −

ai)
)
for a suitable ai ∈ Ci. The gluing is given by Ti = Tj+gij for a suitable

cocycle gij ∈ Γ
(
Ui ∩ Uj ,OXk

)
. Due to §2.5 the map γ : Ωinv

Bk/Sk
⊗ OXk

→
Ω1
Xk/k

is defined over Ui by ωi := dai. This is trivial if and only if j∗i (ai)
is a p–th power for some (equivalently any) i i. e., if and only if Yk is the
trivial αp–torsor which is not the case by assumption.

In both cases we proved that the map γ is injective so, by Serre duality,
the map (3.1) is surjective as claimed. This concludes the proof of the
Theorem.
Corollary 3.1. Assume that R is a dvr of characteristic 0, that the group
scheme G is connected and that LieGk is of dimension ≤ 1. Then, there
exist a finite extension of dvr R ⊆ R′, a smooth formal curve X ′ over R′
and a G–torsor Y → X ′ whose fiber over the residue field of R′ coincides
with the base change of Yk → Xk.
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Proof. If Xk is affine, then H1(Xk,OXk

)
= 0 so that Θ(Yn, Xn+1, G) = 0

and the conclusion follows from Corollary 2.7. Assume that Xk is projec-
tive. Possibly passing to an unramified extension R ⊂ R′ we may further as-
sume that Xk is geometrically irreducible and admits a k–valued point. Let
gk : G∨k → Pic0(Xk/k) be the homomorphism associated to the Gk–torsor
Yk → Xk as in §2.5. Let H∨k ⊂ Pic0(Xk/k) be the image of gk. Dualizing the
quotient map G∨k → H∨k we get a closed immersion hk : Hk → Gk and Yk
arises by push–forward via hk of an Hk–torsor Zk → Xk. By Lemma 3.2 the
subgroup scheme Hk ⊂ Gk can be lifted to a subgroup scheme H ⊂ G×RR′
possibly after an extension of dvr’s R ⊂ R′. Let k′ be the residue field of
R′. By Theorem 1.1 the Hk′–torsor Zk′ → Xk′ , obtained by base change of
Zk → Xk via k → k′, can be lifted to an H–torsor Z → X ′. Let Y ⊂ X be
the G–torsor defined by push–forward of Z → X via the closed immersion
H ⊂ G×R R′. By construction it lifts the base change of Yk → Xk to k′ as
wanted. �

Lemma 3.2. Assume that R is a dvr of characteristic 0, that G is con-
nected and that LieGk is of dimension 1. Let Hk ⊂ Gk be a subgroup
scheme. Then, there exists a finite extension of dvr R ⊂ R′ and a subgroup
scheme H ⊂ G ×R R′ lifting the base change of Hk ⊂ Gk to the residue
field of R′.
Proof. Denote by K the fractions field of R. Possibly passing to a finite
extension of R we may assume that GK is a constant group scheme. Let
Gi,K ⊂ G2,K ⊂ . . . ⊂ GN,K = GK be a tower of subgroups with cyclic
quotients of prime order (necessarily of order p). Let Gi be the schematic
closure of Gi,K in G. It is a finite and flat over R by construction. It is con-
nected and commutative since G is, it is a closed normal subgroup scheme
of Gi+1 and the quotient Gi+1/Gi is of order p. In particular, since LieGk
is 1–dimensional, Gi,k is the kernel Gk

[
F i
]
of the i–th iterated of Frobenius

F i : Gk → G
(pi)
k on Gk. In particular LieGi,k is also 1–dimensional. Since

the Hopf algebra underlying Gk is monogenic because LieGk has dimen-
sion 1, these are the only subgroup schemes of Gk so that Hk = Gi,k for
some i. �

3.2. Example. Let R be a dvr of unequal characteristic with field of frac-
tions K and perfect residue field k. Let X̃ be a smooth and projective
curve over R such that the Jacobian of Xk contains αpn as a closed sub-
group scheme and such that the pn–torsion of the Jacobian of X̃K is rational
over K. For example, for n = 1, any prime to p cover of a supersingular
elliptic curve has this property.

The number of non–isomorphic geometric cyclic covers of order p of X̃K

is bounded by a constant c depending only on p and the genus g of X̃K (but
independent of K). Indeed Pic0(X̃K/K)[p] ∼= F2g

p by assumption so that,
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due to [8, Prop. III.4.16], the non-trivial torsors over X̃K under a group
scheme of order p are Z/pZ–torsors and are in bijection with the non-zero
elements of Hom(Fp,F2g

p ). Since the relative Jacobian Pic0(X̃/R) is proper,
the Z/pZ–torsors of X̃K extend uniquely to torsors over X̃ under suitable
finite and flat group schemes of order p over R (take the Zariski closure of
the corresponding subgroup of Pic0(X̃K/K) in Pic0(X̃/R)).

The αp–torsors over Xk are in one to one correspondence with the mor-
phisms from αp to Pic0(Xk/k); it follows from our assumptions that Xk

has at least as many non–trivial and non–isomorphic αp–torsors as the car-
dinality of Aut(αp) ∼= k∗. In particular, if such cardinality is strictly bigger
than c not every αp–torsor can be lifted.

For example, one can take a curve whose special fiber has superspecial
Jacobian e.g. the Fermat curve of degree p + 1 or the curve y2 = xp − x
(cf. [5]). Other examples are provided by curves contained in the product
of two non–isogenous elliptic curves over Q such that there exist infinitely
many primes where both elliptic curves have supersingular reduction.

3.3. Another example. Let Xk be an ordinary, smooth and projective
curve of genus g with 1 ≤ g ≤ 3 over an algebraically closed field k of
characteristic p. If g = 3, we suppose that Xk is not hyperelliptic. Let
Yk → Xk be a non trivial µpn–torsor. This is defined by a closed subgroup
scheme ι : Z/pnZ ↪→ J , where J is the Jacobian of Xk. Let R be a complete
dvr of unequal characteristic and with residue field k. We will show that
there exist lifts X̃ of Xk over R such that ι can not be lifted to a subgroup
scheme isomorphic to Z/pnZ of the Jacobian of X̃ relative toR. This implies
that Yk → Xk can not be lifted to a µpn–torsor over X̃. We do not know if
similar examples exist for curves of higher genus.

Let j : J → A be the isogeny with kernel ι(Z/pnZ). Note that the formal
universal deformation space Def(A) is canonically isomorphic to the for-
mal universal deformation space Def(J, ι) of J with the subgroup scheme
ι(Z/pnZ). From Serre–Tate theory ([7, Theorem 2.1]) we deduce the fol-
lowing commutative diagram:

Def(J, ι) ∼−→ HomZp(Tp(A)⊗Zp Tp(A∨), Ĝm)
f ↓ ↓ j ⊗ (j∨)−1

Def(J) ∼−→ HomZp(Tp(J)⊗Zp Tp(J∨), Ĝm);

where f is the map associated to the forgetful functor, Tp(_ ) is the p–adic
Tate module and we use the fact that the dual map j∨ : Tp(A∨)→ Tp(J∨) is
an isomorphism. We fix suitable bases of the various TP (_ )’s in such a way
that Def(J) ' Mg×g(Ĝm) and Def(J, ι) ' Mg×g(Ĝm) (where Mg×g(_ ) is
the group of g × g matrices), the deformation subspace of J as principally
polarized abelian variety corresponds to the symmetric matrices and the
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map j ⊗ (j∨)−1 is obtained by raising the entries of the first column to the
pn–th power.

Let J̃ be a deformation of J as principally polarized abelian variety
corresponding to a symmetric matrix having at least one entry in the first
column which is not a pn–th power. Then, as proven in [9], J̃ is the relative
Jacobian of a curve X̃ over R over which the µpn–torsor Yk can not be
lifted.

4. An application to the theory moduli of p–covers of curves

Let R be a dvr with residue field k of positive characteristic p and fraction
fieldK. We denote by Gp → Spec(R) the Artin Stack of finite and flat group
schemes of order p over R. An explicit description of this stack is given in
the paper [10]. The stack Gp is regular and the fiber over the closed point of
the structural morphism Gp → Spec(R) is a simple normal crossing divisor.

Let g be a non negative integer. A smooth p torsor of genus g over a base
scheme S is a triple (X,Y,G) where:

i) X → S is a smooth family of curves of genus g;
ii) G→ S is a group scheme of order p over S;
iii) Y → X is a G–torsor.

The smooth p torsors of genus g define a category CCp,g fibered over
Spec(Z). There are evident forgetful functors

prM : CCg,p −→Mg, (X,Y,G) 7→ X

and
prG : CCp,g −→ Gp, (X,Y,G) 7→ G.

The fiber of prM × prG : CCg,p → Mg × Gp over an S–valued point
(X,G) of Mg × Gp consists of all G–torsors Y → X. By a theorem of
Raynaud, see [8, Prop. III.4.16], these correspond to homomorphisms of
S–group schemes HomS

(
G∨,Pic0(X/S)[p]

)
. As X → S is a smooth curve,

then Pic0(X/S) is an abelian scheme and the kernel Pic0(X/S)[p] of mul-
tiplication by p is a finite and locally free S–group scheme. It follows that
prM×prG is representable and that prM satisfies the valuative criterion of
properness. We can apply the main Theorem 1.1 in this context to obtain
Corollary 1.2:

Corollary 4.1. With the notations as above, the morphism prG : CCp,g →
Gp is formally smooth.

Proof. We recall that a morphism of artinian local rings h : B → B′ is said
to be a small extension if it is surjective and ker(h) has length 1 as B
module. This means that ker(h)2 = 0 and ker(h) = (x) with x · m = 0



142 Fabrizio Andreatta, Carlo Gasbarri

where m ⊂ B is the maximal ideal. An equivalent definition of formally
smooth morphism is the following: for every commutative diagram

Spec(B′) f ′−→ CCp,g

h ↓ ↓ prG
Spec(B) f−→ Gp

where h is a small extension, there exist a morphism f : Spec(B)→ CCp,g

making the diagram commutative.
Thus, to conclude we need to prove the following: let h : B → B′ be a

small extension and let G → Spec(B) a flat group scheme of order p. Let
G′ be the base change of G to Spec(B′). Let X ′ → Spec(B′) be a smooth
projective curve of genus g over B′ and Y ′ → X ′ a G′–torsor. Then there
exists a smooth projective curve X → Spec(B) and a G–torsor Y → X
which extends Y ′ → X ′. The proof of Theorem 1.1 applies in this situation
and the conclusion follows. �

From the explicit description of Gp we thus obtain:

Corollary 4.2. The category CCp,g is a regular Artin stack flat over Z with
fibre over the prime ideal (p) which is a simple normal crossing divisor.
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