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Bennett’s Pillai theorem with fractional bases and
negative exponents allowed

par Reese SCOTT et Robert STYER

Résumé. Bennett a démontré que si a, b et c sont des nombres
entiers positifs avec a ≥ 2 et b ≥ 2, l’équation ax − by = c n’ad-
met au plus que deux nombres entiers positifs x et y, comme
solution. Nous pouvons généraliser ceci en choisissant a, b et c
dans l’ensemble des nombres rationnels positifs permettant à x et
y d’être des nombres entiers, positifs, négatifs ou nuls. Il n’y a
quand même, au plus, que deux solutions à l’exception de deux
case où l’équation a exactement trois solutions.

Abstract. Bennett has proven: If a, b, and c are positive inte-
gers with a, b ≥ 2, then the equation ax − by = c has at most two
solutions in positive integers x and y. Here we generalize this by
allowing a, b, and c to be positive rational numbers and, further,
allowing x and y to be any integers, positive, negative, or zero.
There are still at most two solutions except for two designated
cases.

1. Introduction

In [3], Bennett proves

Theorem A. If a, b, and c are positive integers with a, b ≥ 2, then the
equation

ax − by = c (1.1)
has at most two solutions in positive integers x and y

and conjectures

Conjecture. There are exactly eleven choices of (a, b, c) such that (1.1)
has two solutions.

(Bennett’s formulation of Theorem A actually reads “If a, b, and c are
nonzero integers with a, b ≥ 2 . . . ”, but since any case with negative c
is equivalent to a case with positive c, we take c positive to simplify the
formulations of Theorems 1 and 2 below.)

Manuscrit reçu le 1er août 2013, accepté le 2 janvier 2014.
Mots clefs. Pillai’s equation, Exponential Diophantine equations.
Mathematics Subject Classification. 11D61.
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Equation (1.1) of Theorem A is generally known as the Pillai equation;
brief histories are given in [3] and [14], but see [18] for a much more extended
history.

The purpose of this paper is to generalize Theorem A by allowing a, b,
and c to be any positive rational numbers (with a 6= 1, b 6= 1) and, further,
allowing x and y to be any integers, positive, negative, or zero; there are still
at most two solutions except for two designated cases, though an infinite
number of choices of (a, b, c) such that (1.1) has exactly two solutions.

The first step towards these generalizations is the following:

Theorem 1. If a, b, and c are positive integers with a, b ≥ 2, then the
equation

ax − by = c (1.2)
has at most two solutions in nonnegative integers x and y except for
(a, b, c) = (2, 5, 3), which has solutions (x, y) = (2, 0), (3, 1), (7, 3), and
no further solutions.

We will use Theorem 1 in the proof of the following:

Theorem 2. Let A 6= 1, B 6= 1, and C be positive rational numbers. Then
the equation

Ax −By = C (1.3)
has at most two solutions (x, y) where x and y are any integers, positive,
negative, or zero, except when (A,B,C : x1, y1;x2, y2;x3, y3) is (2u, 5v, 3 :
7u, 3v; 3u, v; 2u, 0) or (

(
2n−1

2n
)u
, (1/2)v, 2n−1−1

2n−1 : 2u, 2nv;u, nv; 0, (n − 1)v)
where u, v ∈ {1,−1}, n > 1 is a positive integer, and (xi, yi) is a solution
(x, y) to (1.3) for 1 ≤ i ≤ 3, taking x1 > x2 > x3; in these cases there are
exactly three solutions.

There are an infinite number of choices of A, B, C giving exactly two
solutions (x, y) to (1.3).

Before proceeding, we note several infinite families giving exactly two
solutions to (1.3). We first list several infinite families in which x and y are
both positive:

A = u(un ± vn)
un+1 ± vn+1 , B = v(un ± vn)

un+1 ± vn+1 (1.4)

for given positive integers u and v with u > v, which gives the solutions
(x1, y1) = (n, n+ 1) and (x2, y2) = (n+ 1, n) when all of the ± in (1.4) are
plus, and also gives the solutions (x1, y1) = (n, n) and (x2, y2) = (n+1, n+1)
when all of the ± in (1.4) are minus;

A = 2n−1 ± 1
2n , B = 1

4 , (x1, y1) = (1, 1), (x2, y2) = (2, n) (1.5)
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where n is an integer with n ≥ 2 when we take the upper sign in A and
n ≥ 3 when we take the lower sign in A;

A = 2uv + u2

u2 + uv + v2 , B = u2 − v2

u2 + uv + v2 , (x1, y1) = (1, 3), (x2, y2) = (3, 1),
(1.6)

where u and v are positive integers with u > v (a similar parameterization
produces an infinite family with (x1, y1) = (1, 1) and (x2, y2) = (3, 3)).

Finally, we can obtain further examples of infinite families (with positive
x and y) by noting that, for certain fixed choices of (x1, y1, x2, y2), the
equation

Ax1 −By1 = Ax2 −By2 (1.7)

can be converted to a Weierstrass equation (using, e.g., Connell [9], pages
105 and 115) which can be used to show (using, e.g., [13, Theorem 1] or [15])
that (1.7) has an infinite number of solutions in positive rational numbers
A 6= 1 and B 6= 1. In this way we can show the following (see [16] for
details):

Let S1 be the set of all quadruples of positive integers (x1, y1, x2, y2) with
the following properties:

• x1 < x2, y1 6= y2,

• max(x2, y1, y2) ≤ 4,

• if max(x2, y1, y2) = 4, then min(x2,max(y1, y2)) < 3,

and let S2 = {(1, 1, 4, 4), (2, 2, 4, 4), (3, 3, 4, 4), (3, 4, 4, 3)}. Then, if
(x1, y1, x2, y2) ∈ S1 ∪ S2, there are an infinite number of choices of (A,B)
satisfying (1.7) (so that we have an infinite family of cases giving two so-
lutions to (1.3)) except for two choices of (x1, y1, x2, y2): (1, 2, 2, 3) and
(2, 1, 3, 2), for which there are no solutions to (1.7) with A 6= 1, B 6= 1.

When at least one of x1x2 and y1y2 is negative, and x1y1x2y2 6= 0, the
same approach as above can be used to find infinite families of cases of
exactly two solutions to (1.3). For example, a case similar to (1.5) is

A = 2n + 1
2 , B = 4, (x1, y1) = (1,−1), (x2, y2) = (2, n− 1) (1.8)

where n ≥ 2 is an integer. Also, examples of quadruples (x1, y1, x2, y2)
generating infinite families of (A,B) satisfying (1.7) are given by (x1, y1, x2,
y2) = (1, 1, 2,−2)), (1,−2, 2, 1), and (1,−1, 2, 1), corresponding to the
Weierstrass equations y2 = x3 + x2 + T where T = 64, −64, and −16x,
respectively, and also by (x1, y1, x2, y2) = (1,−2, 2, 2), corresponding to the
Weierstrass equation y2 + 18xy + 32y = x3 − 56x2 − 16x+ 896.
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When x1y1x2y2 = 0 we consider the equation
Ar −As + 1 = Bn (1.9)

where n is a positive integer and r and s are integers (the pair (A,B) in
(1.9) may correspond to the pair (B,A) in (1.3)). When either n = 1 or
rs = 0, (1.9) is trivially easy to satisfy, so we consider n ≥ 2 and rs 6= 0.
For certain choices of (n, r, s) such that max(n, |r|, |s|) ≤ 4, we can use
elliptic functions as above (or even simpler methods) to show there are an
infinite number of (A,B) satisfying (1.9). But when any of n, r, or s is not
bounded, known results appear to be limited to very specific cases: an old
result on the Nagell-Ljunggren equation (xt − 1)/(x− 1) = yq, given in [8,
Section 2], can be used to handle the case (r, s) = (2, 1) with n ≥ 2 when A
and B are positive integers; Luca [11] and Szalay [17] handle the case n = 2
with r > s > 0 when A is a prime integer. We will use the main result of
[11] (given as Proposition 4.1 in the Appendix of this paper) in the proof
of Theorem 1 in the next section.

2. Proof of Theorem 1:

Before using lower bounds on linear forms in logarithms in the proof of
Theorem 1, we need to justify the use of a ≥ 6 as in [3] by first proving
Theorem 1 for the case a prime. In [3], Bennett handles Theorem A for the
case a prime by using results from [14], but this will not work here since
we are allowing the exponents x and y to be zero. Instead, we will use a
result of Luca [11] on the equation pr ± ps + 1 = z2, where p, r, s, and z
are positive integers with p prime. Although the proof in [11] is long and
not elementary, we can provide a short elementary proof (see the Appendix
of this paper). Thus, the proofs of both Theorem A and Theorem 1 are
elementary when a is prime, but use a theorem of Mignotte [12] on lower
bounds on linear forms in logarithms when a is composite.

We now deal with the case a prime:

Lemma 2.1. For integers b > 1, c > 0, and positive prime a, equation
(1.2) has at most two solutions in nonnegative integers (x, y), except for
(a, b, c) = (2, 5, 3), which has solutions (x, y) = (2, 0), (3, 1), (7, 3), and no
further solutions.

(Note that there are an infinite number of (a, b, c) giving two solutions
to (1.2), even when a is restricted to prime values as in Lemma 2.1: set
b = ax2 − ax1 + 1; or set b2 = ax2 − ax1 + 1 with a = 2 and x2 = 2x1 − 2.)

Proof. We apply Theorem 3 of [14] which states that, when a is prime and
the parity of y is fixed, Equation (1.1) has at most one solution in positive
integers (x, y) except for the following five exceptional (a, b, c;x1, y1, x2, y2):
(3, 2, 1; 1, 1, 2, 3), (2, 3, 5; 3, 1, 5, 3), (2, 3, 13; 4, 1, 8, 5), (2, 5, 3; 3, 1, 7, 3),
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(13, 3, 10; 1, 1, 3, 7). Noting that none of these five exceptional cases has
a further solution with 2 | y > 0 (use congruences modulo 3 or modulo
8), we see that, if (1.2) has more than two solutions in nonnegative in-
tegers x and y when a is prime, we must have exactly one solution with
y = 0 and exactly two further solutions. If these two further solutions are
among the five exceptional cases, a solution with y = 0 occurs only when
(a, b, c) = (2, 5, 3), in which case the three solutions are (2, 0), (3, 1), (7, 3).
So from here on we exclude the five exceptional cases of Theorem 3 of [14]
so that we can assume that we have three solutions (x1, y1), (x2, y2), (x3, y3)
with y1 = 0 and 2 6 | y2 − y3. Without loss of generality, assume 2 | y2 = 2t
for some integer t. Then we have a solution to the equation

b2t + c = ax2 ,

as well as a solution to the equation
1 + c = ax1 .

Now we apply Theorem 4 of [14] which states that, if a = 2, Equation
(1.1) has at most one solution in positive integers x and y except when
(a, b, c;x1, y1, x2, y2) is one of (2, 3, 5; 3, 1, 5, 3), (2, 3, 13; 4, 1, 8, 5), (2, 5, 3;
3, 1, 7, 3). Applying this result to the solutions (x2, y2) and (x3, y3) and
noting that all three cases just listed have already been excluded, we see
that a must be an odd prime. Combining the above two equations, we get

ax2 − ax1 + 1 = b2t,

contradicting the main theorem of [11] (see the Theorem in the introduc-
tion of [11], noting that p > 2 is intended; see also Proposition 4.1 in the
Appendix of the present paper) unless (a, b, c) = (3, 5, 2) or (5, 11, 4). Con-
sidering each of these two cases modulo 3, we see that neither case allows
a solution to (1.2) with y odd, so neither case has a third solution. �

We are now ready to prove Theorem 1 itself.

Proof of Theorem 1. By Lemma 2.1, we can assume a ≥ 6.
Theorem 1.1 of [3] (Theorem A of this paper) handles the case when the

exponents x and y are restricted to positive integers only, so we can assume
from here on that (1.2) has exactly three solutions (x1, y1), (x2, y2), and
(x3, y3) with

0 = y1 < y2 < y3, 1 ≤ x1 < x2 < x3. (2.1)
(2.1) shows that gcd(a, c) = 1 so that gcd(a, b) = 1. Up to a point, the
methods of Bennett in handling the case gcd(a, b) = 1 in the proof of
Theorem 1.1 of [3] apply even when y1 = 0; in particular, we can use
x3

log b < 5309, which is Equation (3.6) of [3], to derive the following two
inequalities:

y3 < 5309 log(a) (2.2)
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and
ax2−x1 ≤ 5309 (2.3)

(see page 904 of [3]). Also (as in page 905 of [3]) we can assume that
x3/y3 = pr/qr where pr/qr = arpr−1+pr−2

arqr−1+qr−2
is the r-th convergent in the

simple continued fraction
log(b)
log(a) = [a0; a1, a2, a3, . . . ] (2.4)

where the ai are the partial quotients of the continued fraction. Letting ar+1
be the (r + 1)-th partial quotient in (2.4), we can use ar+1 >

by3 log a
cy3

− 2,
which is Equation (3.9) of [3]. Then, using by2 > c (since ax1(ax2−x1 − 1) =
by2 − 1 and ax1 > c) we can assume (after (3.9) of [3])

ar+1 >
by3−y2 log(a)

y3
− 2. (2.5)

Note that these results do not require y1 > 0. But when y1 = 0, we cannot
immediately get a bound on b as in [3], so instead we obtain a bound on
x1 so that we can use (2.3) to obtain a bound on x2, allowing us to use
the solution (x2, y2)to obtain a bound on b. To do this requires several new
steps.

We first show y2 | y3. We have
ax1(ax2−x1 − 1) = by2 − 1 (2.6)

and
ax1(ax3−x1 − 1) = by3 − 1. (2.7)

Let g1 = gcd(x2 − x1, x3 − x1) and g2 = gcd(y2, y3). Since ag1 − 1 divides
both sides of (2.6) and (2.7), there must be a least number j such that
ax1(ag1 − 1) | bj − 1, and j must divide g2, so that

bg2 − 1 = ax1(ag1 − 1)w (2.8)
where w is a positive integer. But then, since (bg2 − 1)/ax1 divides both
ax2−x1 − 1 and ax3−x1 − 1, there must be a least number k such that (ag1 −
1)w | (ak − 1) where k | g1, so that (ag1 − 1)w | (ag1 − 1), giving w = 1. So
now (2.8) shows that taking (x, y) = (x1 + g1, g2) gives a solution to (1.2),
so that g2 equals one of y1, y2, or y3. But g2 = y3 > y2 contradicts the
definition of g2. Also, g2 6= y1 = 0. So g2 = y2 | y3.

So we can take y2 = 1 (replacing by2 by b, so that y3 in the new notation
corresponds to y3/y2 in the old notation), giving

b = ax2 − ax1 + 1. (2.9)
Next we find lower bounds on y3 and x3. From (2.9) we derive

log(b) = x2 log(a) + log
(

1− 1
ax2−x1

)
+ log

(
1 + 1

ax2 − ax1

)
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so that
log(b)
log(a) = x2 −

1
u

where u > ax2−x1 log(a)/2 (using | log(1 − z) |< 2z for 0 < z < 0.7968).
Recalling (2.4) we have

a0 = x2 − 1, a1 = 1, a2 = bu− 1c (2.10)

where bu− 1c is the greatest integer less than or equal to u−1. Since x3/y3
is a convergent pr/qr of (2.4) with r odd (since ax3 > by3), we derive from
(2.10) (noting r = 1 is impossible)

y3 >
ax2−x1 log(a)

2 (2.11)

and

x3 >
ax2−x1 log(a)x2

2 − 1. (2.12)

From (2.12) we derive (using a ≥ 6)

x3 > 5x1. (2.13)

Next we derive an upper bound on x1.
Assume first 2x1 ≥ x2. Using (2.9) we have

ax3 = by3 + c

= (ax2 − ax1 + 1)y3 + ax1 − 1

= G+ y3(y3 − 1)
2 a2x1(ax2−x1 − 1)2 + y3a

x2 − (y3 − 1)ax1 (2.14)

where G is an integer divisible by a3x1 . Then, by (2.13), we must have
y3 − 1 = hax2−x1 for some integer h, so that, letting λ = 0 or 1 according
as a is odd or even, (2.14) becomes

ax3 = G+ y3h

21−λ (ax2−x1 − 1)2a
x1+x2

2λ + (y3 − h)ax2

where y3h
21−λ is an integer. Thus,

ax1

2λ | y3 − h > 0, (2.15)

which, with (2.2), gives

ax1 < 2λ5309 log(a). (2.16)

If, on the other hand, 2x1 < x2, then (2.3) implies ax1 < 5309 which
implies (2.16). So we can use (2.16) to get a bound on x1 in terms of a.
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Next we obtain an upper bound on a. Assume a ≥ 241. Then from (2.16)
we get x1 = 1, so that using (2.3) we get x2 = 2. In this case, noting that
(2.15) holds when 2x1 ≥ x2, we have

y3 −
y3 − 1
a

= ja

2λ (2.17)

for some positive integer j. From (2.17) we get

y3 =
ja2

2λ − 1
a− 1 = a+ 1 + t

a2

2λ (2.18)

where t = j−2λ
a−1 must be an integer since y3 is an integer and gcd(a, a−1) =

1. If t ≤ 0 then (2.18) contradicts (2.11) since a ≥ 241; if t > 0 then (2.18)
implies a2/2λ < y3 < 5309 log(a) which is impossible for a ≥ 241. So we
must have

a < 241. (2.19)
Now for each a < 241, we use (2.16) to find all possible x1 and then use

(2.3) to find all possible x2. We then find b using (2.9) and then examine the
numbers qi, which are the denominators of the convergents in the simple
continued fraction expansion of log(b)/ log(a). y3 = qr for some r. If (1.2)
has three solutions when a ≥ 6, we must have some qr and qr+1 such that

qr < 5309 log(a) (2.20)

and

qr+1 >
bqr−1 log(a)

qr
− 2 (2.21)

where (2.20) follows from (2.2) and (2.21) follows from (2.5), noting qr+1 >
ar+1. For convenience in calculation we actually use

qr ≤ b5309 log(240)c = 29096 (2.22)

and

qr+1 >
2bd

a
− 2, d = a log(a)

2 − 1 (2.23)

where (2.23) is derived from replacing qr in (2.21) by a log(a)
2 , recalling (2.11).

We find no cases satisfying both (2.22) and (2.23). �

3. Proof of Theorem 2

We will use two elementary lemmas.

Lemma 3.1. Let R, S,M , and t1 be positive integers such that gcd(R,S) =
1 and M | Rt1 − St1. Let t0 be the least positive integer such that M |
Rt0 − St0. Then t0 | t1.
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Proof. Let t1 = st0 + r, 0 ≤ r < t0. Since Rt0 ≡ St0 mod M and Rt1 ≡
St1 mod M , we must have Rr ≡ Sr mod M . Since t0 is the least positive
value of t such that Rt ≡ St mod M , we must have r = 0 so that t0 | t1. �

Lemma 3.2. If R, S, t1, and t2 are positive integers with gcd(R,S) = 1,
R > S, t1 > t2, t2 | t1, and each prime dividing Rt1 − St1 also divides
Rt2 − St2, then t1 = 2, t2 = 1, and R+ S = 2α for some integer α > 1.

Proof. Assume Rt1 −St1 is divisible only by primes which divide Rt2 −St2 .
Considering the binomial expansion ((Rt2−St2)+(St2))p where p is a prime
dividing t1/t2 (noting that Rpt2 − Spt2 | Rt1 − St1), we find t1 = 2t2 with
Rt2 + St2 = 2α for some integer α > 1, which requires t2 odd, R+ S = 2α,
t2 = 1. (See also the stronger result in [7, Theorem V].) �

For Lemma 3.3 which follows, we will need some notation. For each
solution (x, y) to (1.3) we write

Ax = ux
vx
, By = uy

vy

where ux and vx are relatively prime positive integers, and uy and vy are
relatively prime positive integers. Let C = c/d where c and d are relatively
prime positive integers. We have

uxvy − uyvx = c

d
vxvy. (3.1)

Let pk ‖ d for some prime p and integer k ≥ 0. Then there are just three
possible types of solutions which we will call Type X, Type Y, and Type
E:

• we say that a solution (x, y) to (1.3) is ‘Type X for p’ when
pk ‖ vx, pk 6 | vy; (3.2)

• we say that a solution (x, y) to (1.3) is ‘Type Y for p’ when
pk ‖ vy, pk 6 | vx; (3.3)

• we say that a solution (x, y) to (1.3) is ‘Type E for p’ when, for
some integer q,

pq ‖ vx, pq ‖ vy, q ≥ k. (3.4)
Now write

A = a

g
,B = b

h

where a, b, g, h are positive integers such that gcd(a, g) = 1, gcd(b, h) = 1,
and neither a/g nor b/h equals 1. As before, take C = c/d. We can rewrite
(1.3) as (

a

g

)x
−
(
b

h

)y
= c

d
. (3.5)
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Observation 3.1. If (3.5) has more than one solution for which both x
and y are positive, then, for any prime p, p | g ⇐⇒ p | h.

Proof. Suppose there is a prime ph such that ph | h but ph 6 | g. Then any
solution to (3.5) with both x > 0 and y > 0 must be Type Y for ph, so that,
by (3.3), there is at most one such solution. Similarly, if there is a prime pg
such that pg | g but pg 6 |h, there can be at most one solution with x and
y positive. �

Now we are ready to state

Lemma 3.3. Suppose that, for positive integers a, b, g, h, c, d with g >
1, (3.5) has two solutions (x1, y1) and (x2, y2) with min(x1, y1, x2, y2) >
0, taking x1 > x2. If both the solutions (x1, y1) and (x2, y2) are Type E
with q > k for every prime dividing g, then (3.5) has no further solution
(x, y) where x and y are any integers, positive, negative, or zero, except
when (a, g, b, h, c, d : x1, y1;x2, y2;x3, y3) = (2n − 1, 2n, 1, 2, 2n−1 − 1, 2n−1 :
2, 2n; 1, n; 0, n− 1) where n > 1 is a positive integer.

Proof. Assume (3.5) has two solutions (x1, y1) and (x2, y2) with
min(x1, y1, x2, y2) > 0

such that both the solutions (x1, y1) and (x2, y2) are Type E with q > k for
every prime dividing g > 1. Let x1/y1 = m/n where m and n are positive
integers such that gcd(m,n) = 1. Let p be any prime such that pi ‖ g for
some positive integer i. Then there must exist a positive integer j such that
pj ‖ h and

im = jn,

from which, using Observation 3.1, we derive the result that there exists a
positive integer w such that

g = wn, h = wm.

Since also x2
y2

= m
n , we can write x1 = mt1, y1 = nt1, x2 = mt2, y2 = nt2,

where t1 and t2 are positive integers, taking t1 > t2. Then, for ν in the set
{1, 2}, (

am

wmn

)tν
−
(
bn

wmn

)tν
= c

d
(3.6)

so that

(am)tν − (bn)tν = c

(
wmntν

d

)
(3.7)

where
d | wmntν . (3.8)

From (3.8) we see that every prime dividing d divides g so that both of
the solutions (x1, y1) and (x2, y2) are Type E with q > k for every prime
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dividing d, so that wmntν
d is an integer divisible by every prime dividing d.

Thus, for every prime p,
p | (am)t1 − (bn)t1 ⇐⇒ p | (am)t2 − (bn)t2 . (3.9)

Now let gcd(am, bn) = z. Let a0 = am/z and b0 = bn/z so that
zt(at0 − bt0) = (am)t − (bn)t (3.10)

where gcd(a0, b0) = 1 and t can equal either t1 or t2. Since gcd(a,w) =
gcd(b, w) = 1, we see from (3.7) that any prime dividing z must divide c.
If z > 1, let pv ‖ c, where p is a prime which divides z and v is a positive
integer. Then also pv ‖ (am)t − (bn)t for t = t1 and for t = t2. But, since
zt2 < zt1 , by (3.10) we see that, if v1 and v2 are nonnegative integers such
that pv1 ‖ at10 − b

t1
0 and pv2 ‖ at20 − b

t2
0 , we must have

v1 < v2. (3.11)
In what follows we allow z = 1 as well as z > 1.

Let
∏µ
ι=1 p

αι
ι be the prime factorization of at10 −b

t1
0 , and letM =

∏µ
ι=1 pι.

Let t0 be the least positive integer such that M | at00 − b
t0
0 . Noting that

(3.11) holds when z > 1, we see, using (3.9) and (3.10), thatM | at20 −b
t2
0 , so

t0 < t1. By Lemma 3.1, t0 | t1, so that Lemma 3.2 gives t1 = 2, t2 = t0 = 1,
and a0 + b0 = 2α, where α > 1 is an integer. We get

am + bn = 2α (3.12)
by showing z = 1: noting that (3.11) holds when z > 1, we find (since
t2 | t1)

z = 1, gcd(a, b) = 1, a0 = am, b0 = bn,

so that (3.12) holds.
Since t1 = 2 and t2 = 1, we have, recalling (3.6) ,(

am

wmn

)
−
(
bn

wmn

)
=
(
am

wmn

)2
−
(
bn

wmn

)2
= c

d
,

which requires
wmn = am + bn = 2α, (3.13)

by (3.12). We have gcd(c, d) = 1, gcd(am− bn, am + bn) = 2, cd = am−bn
am+bn , so

that
d = am + bn

2 = wmn

2 = 2α−1. (3.14)

Note α− 1 corresponds to k in (3.2), (3.3), and (3.4) when p = 2.
Now suppose (x3, y3) is a third solution to (3.5). Using (3.13) and (3.14)

and noting α > 1, we see that at least one of x3 and y3 is positive, so it
suffices to consider two cases (according as nx3 = my3 or not):
Case 1. Equation (3.5) has three solutions (x, y):(2m, 2n),(m,n), (mt3, nt3),
where t3 > 2 is a positive integer.
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Case 2. Equation (3.5) has three solutions (x, y): (2m, 2n), (m,n), (x3, y3),
where nx3 6= my3 and max(x3, y3) > 0.

If Case 1 holds, then we have (3.6) with ν = 3, so that the solution
(x3, y3) is Type E with q > k for every prime dividing w, so that we can
use the same reasoning as above to get t3 = 2, a contradiction.

It remains to treat Case 2. In the notation of (3.2), (3.3), and (3.4), for
the solution (x3, y3) we have

vx = wnx3 , vy = wmy3 . (3.15)
Assume first nx3 > my3. Then (x3, y3) must be Type X for 2, so that, using
(3.2) with (3.15) and (3.14), we find

d = wnx3 = wmn

2 = 2α−1, (3.16)

which requires w = 2 and n = 1, so that (3.13) becomes 2m = am+b, which
requires a = 1, g = wn = 2, b = 2m−1, h = wm = 2m, c/d = (1−b)/2m ≤ 0,
contradicting c/d > 0.

So we must have my3 > nx3, so that, using the same reasoning as above,
(3.16) becomes

d = wmy3 = wmn

2 = 2α−1, (3.17)

which requires w = 2 and m = 1, so that (3.13) becomes 2n = a+bn, which
requires

b = 1, h = wm = 2, a = 2n − 1, g = 2n, c
d

= a− 1
2n = 2n−1 − 1

2n−1 .

Since w = 2 and m = 1, (3.17) shows that the only possible third solution
has y3 = n − 1, which requires x3 = 0, giving the exception in Lemma
3.3. �

Proof of Theorem 2: Assume (1.3) has three solutions (x1, y1), (x2, y2),
(x3, y3).

Consider first the case in which C is not an integer, so that d > 1 in
(3.5). Let p be any prime dividing d with pk ‖ d for some positive integer
k, and let

pi1 ‖ vx1 , p
i2 ‖ vx2 , p

i3 ‖ vx3 , p
j1 ‖ vy1 , p

j2 ‖ vy2 , p
j3 ‖ vy3 ,

where i1, i2, i3, j1, j2, j3 are nonnegative integers and

Ax1 = ux1

vx1
, By1 = uy1

vy1
, Ax2 = ux2

vx2
, By2 = uy2

vy2
, Ax3 = ux3

vx3
, By3 = uy3

vy3
,

where all fractions are in reduced form.
Assume first that (x1, y1) is Type E for p, (x2, y2) is Type X for p, and

(x3, y3) is Type Y for p. Then (3.2), (3.3), and (3.4) require
i1 > i2 > i3 ≥ 0, (3.19)
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which requires either ux1/vx1 > ux2/vx2 > ux3/vx3 or ux1/vx1 < ux2/vx2 <
ux3/vx3 so that

min (Ax1 , Ax2 , Ax3) < Ax2 < max (Ax1 , Ax2 , Ax3) . (3.20)

Similarly (3.2), (3.3), and (3.4) require

j1 > j3 > j2 ≥ 0, (3.21)

which requires

min (By1 , By2 , By3) < By3 < max (By1 , By2 , By3) . (3.22)

But now considering (1.3), we see that (3.20) requires

min (By1 , By2 , By3) < By2 < max (By1 , By2 , By3) ,

contradicting (3.22). So we cannot simultaneously have solutions of Type
E, Type X, and Type Y for p.

From (3.2) and (3.3) we see that there is at most one solution which is
Type X for p and at most one solution which is Type Y for p. So now we see
that at least two of the three solutions under consideration must be Type
E for p. Now let p1 be any prime distinct from p such that pk1

1 ‖ d for some
positive integer k1. Using the same argument as above, we see that at least
two of the three solutions under consideration must be Type E for p1. Since
the set of three solutions under consideration contains at least two solutions
which are Type E for p and at least two solutions which are Type E for p1,
it must contain at least one solution which is Type E for both p and p1.
Now recalling (3.4) we see that without loss of generality we can assume
that in (1.3) A and B are such that A = a/g and B = b/h with pp1 | g and
pp1 | h; indeed, g and h are each divisible by every prime dividing d. Take
x1 > x2 > x3. Then, noting that for every prime p dividing d at least two
of the three solutions under consideration are Type E, we can use (3.2),
(3.3), and (3.4) to see that the solutions (x1, y1) and (x2, y2) are both Type
E for p with q > k, where pk ‖ d with k > 0 and min(x1, y1, x2, y2) > 0.

Now let p2 be any prime dividing g which does not divide d, where we
are using the same A = a/g and B = b/h and the same x1 > x2 > x3 as
above, so that min(x1, y1, x2, y2) > 0. Any solution to (1.3) must be Type
E for p2 since Type X and Type Y are impossible by (3.2) and (3.3). Since
here we have pk2

2 ‖ d with k2 = 0, we see that the solutions (x1, y1) and
(x2, y2) are both Type E for p2 with q > k2 (noting q > 0 since p2 | g).
Thus we have shown that the solutions (x1, y1) and (x2, y2) are Type E
with q > k for every prime dividing g > 1 (so that every such prime also
divides h), where min(x1, y1, x2, y2) > 0. Now we can apply Lemma 3.3
to the solutions (x1, y1) and (x2, y2) to show that there can be no third
solution to (1.3) when d > 1, except for the second exceptional case in the
formulation of Theorem 2.
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Now consider the case in which C is an integer so that d = 1 in (3.5).
This requires

vx = vy (3.23)
for every solution (x, y) to (1.3), since (3.1) must hold. Since C ≥ 1, Ax > 1
for every solution to (1.3), so we can assume without loss of generality that
x is positive in any solution (x, y) to (1.3). At most one solution to (1.3)
has y = 0, and (3.23) shows that we can take y > 0 in any solution such
that y 6= 0.

Now, if vx = 1 in any solution (x, y) to (1.3), then vx = vy = 1 for every
solution, and we have the equivalent of (1.2) which is handled by Theorem
1, giving the first exceptional case in the formulation of Theorem 2.

If vx > 1 for any solution (x, y) to (1.3), then vx = vy > 1 for every
solution, so that, taking A = a/g and B = b/h as in (3.5), we have g > 1
and h > 1. Let p be any prime dividing g. Then, since d = 1, every solution
(x, y) to (1.3) must be Type E for p with q > k = 0. Thus the conditions of
Lemma 3.3 are met, and we can use Lemma 3.3 to show there is no third
solution when d = 1 (except for the first exceptional case in the formulation
of Theorem 2).

It remains to show there are an infinite number of choices of A, B, C
for which (1.3) has exactly two solutions (x, y) by referring to the cases
mentioned in the Introduction. �

4. Appendix: the equation pr ± ps + 1 = z2

In this appendix we give a short elementary proof of Proposition 4.1
below, which is proven in [11] using lower bounds on linear forms in loga-
rithms, a deep result of Bennett and Skinner [5], and the well known result
of Bilu, Hanrot, and Voutier [6].

Proposition 4.1. (see the Theorem in the introduction of [11]) The only
solutions to the equation

pr + (−1)vps + 1 = z2

in positive integers (z, p, r, s) and v ∈ {0, 1} with r 6= s and p an odd prime
are (z, p, r, s) = (5, 3, 3, 1), (11, 5, 3, 1), with v = 1 in both cases.

The key to making Proposition 4.1 elementary is the use of Lemmas 4.1
and 4.2 below. Lemma 4.1 removes the need for the use of lower bounds
on linear forms in logarithms and [5], greatly shortening the proof; then
Lemma 4.2 immediately gives Proposition 4.1, bypassing the need for [6].
The clever use of continued fractions in [11] remains untouched.

Lemma 4.1. Let D 6= 1 be any squarefree integer, let u be a positive
integer, and let S be the set of all numbers of the form r + s

√
D, where

r and s are nonzero rational integers, (r, sD) = 1, and u|s. Let p be any
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odd prime number, and let t be the least positive integer such that ±pt is
expressible as the norm of a number in S, if such t exists. Then, if ±pn is
also so expressible, we must have t|n. (Note the ± signs in the statement
of this lemma are independent.)

Comment: We will use this lemma when D > 0 to bypass the problem
of units.

Proof. Assume that for some p and S, there exists t as defined in the state-
ment of the lemma. Then p splits in Q(

√
D); let [p] = PP ′, where P and P ′

are prime ideals in Q(
√
D). For each positive integer k there exists an α in

S such that P kt = [α]. Now suppose ±pkt+g equals the norm of some γ in
S where g is a positive integer with g < t. Since P kt+g must be principal,
P g = [β] for some irrational integer β ∈ Q(

√
D). Therefore, for some unit

ε, either γ = εαβ or γ̄ = εαβ. εαβ has integer coefficients and the norm of
α is odd, so εβ has integer coefficients. Now α ∈ S and εαβ ∈ S, so that
one can see that εβ ∈ S, which is impossible by the definitions of t and
g. �

Lemma 4.2. The equation
(1 +

√
−D)r = m±

√
−D (4.1)

has no solutions with integer r > 1 when D is a positive integer congruent
to 2 mod 4 and m is any integer, except for D = 2, r = 3.

Further, when D congruent to 0 modulo 4 is a positive integer such that
1 +D is prime or a prime power, (4.1) has no solutions with integer r > 1
except for D = 4, r = 3.

Proof. Assume (4.1) has a solution with r > 1 for some m and even D.
From Theorem 13 of [2], we see that r is a prime congruent to 3 mod 4 and
there is at most one such r for a given D. Thus we obtain

(−1)
D+2

2 = r −
(
r

3

)
D +

(
r

5

)
D2 − · · · −D

r−1
2 . (4.2)

If r = 3, (4.2) shows that |D − 3| = 1, giving the two exceptional cases of
the Lemma. So from here on we assume 3 6 | r.

We will use two congruences:

Congruence 1 : (−1)
D+2

2 ≡
(
r

3

)
2r−1 mod D − 3

Congruence 2 : (−1)
D+2

2 ≡ 2r−1 mod D + 1
Congruences 1 and 2 correspond to congruences (9e) and (9f) of Lemma 7
of [2] and can be derived by considering the expansions of (1 +

√
−3)r and

(1 + 1)r respectively. Noting that r − 1 ≡ 2 mod 4, from Congruence 1 we
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see that D − 3 cannot be divisible both by a prime 3 mod 4 and a prime
5 mod 8. So D ≡ 2 mod 4 implies D 6≡ 3 mod 5. Now let D + 1 = y. If
D ≡ 1 mod 5, yr ≡ 3 mod 5; since m2 +D = yr, m2 ≡ 2 mod 5, impossible.
If D ≡ 2 mod 5, yr ≡ 2 mod 5, so that 5 divides m. But then we see from
(4.1) that 5|m implies 3|r, which we have excluded. Now yr is congruent
to −y modulo y2 + 1 so that m2 is congruent −2y + 1 modulo y2 + 1. So,
using the Jacobi symbol, we must have

1 =
( −2y + 1

(y2 + 1)/2

)
=
(

2y2 + 2
2y − 1

)

=
(
y + 2
2y − 1

)
=
( −5
y + 2

)
.

If D ≡ 2 mod 4, then y ≡ 3 mod 4 and the last Jacobi symbol in this
sequence equals

(
y+2

5

)
=
(
D+3

5

)
, which has the value −1 when D is con-

gruent to 0 or 4 modulo 5. Thus, when D ≡ 2 mod 4 and r 6= 3, we have
shown that there are no values of D modulo 5 that are possible.

So we assume hereafter that D ≡ 0 mod 4. Write D + 1 = pn where p
is prime, and let g be the least number such that 2g ≡ −1 mod p, noting
Congruence 2. We see that g|r − 1 and also g|p− 1|pn − 1 = D. Now (4.2)
gives −1 ≡ 1 mod g so that g ≤ 2. Assume first that n is odd. Since 4|D,
p ≡ 1 mod 4. In this case, we must have g = 2, p = 5. If n is even, since we
have 1 +D = pn and m2 +D = prn, we must have 2prn/2−1 ≤ D = pn−1,
giving r < 2, impossible. So we have n odd, p = 5.

Since n is odd, D ≡ 4 mod 8, and, since
(r

3
)
is odd, (4.2) gives r ≡

3 mod 8. Now assume r ≡ 2 mod 3 and let y = 5n = 1 + D. Then yr ≡
y2 mod y3 − 1, so that m2 ≡ y2 − y + 1 mod y2 + y + 1, so that

1 =
(
y2 − y + 1
y2 + y + 1

)

=
( −2y
y2 + y + 1

)
=
( −2
y2 + y + 1

)

which is false since y2 + y + 1 ≡ 7 mod 8. Thus we have r ≡ 19 mod 24 so
that yr ≡ −y7 mod y12 + 1, so that m2 ≡ −y7 − y + 1 mod y12+1

2 . Thus we
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have

1 =
(
−y7 − y + 1
(y12 + 1)/2

)
=
(
y7 + y − 1
(y12 + 1)/2

)
=
(

2(y12 + 1)
y7 + y − 1

)

=
(

y12 + 1
y7 + y − 1

)
=
(
y6 − y5 − 1
y7 + y − 1

)
=
(
y7 + y − 1
y6 − y5 − 1

)

=
(

y5 + 2y
y6 − y5 − 1

)
=
(

y4 + 2
y6 − y5 − 1

)
= −

(
y6 − y5 − 1
y4 + 2

)

=
(

2y2 − 2y + 1
y4 + 2

)
=
(

y4 + 2
2y2 − 2y + 1

)
=
( 7

2y2 − 2y + 1

)

=
(

2y2 − 2y + 1
7

)
which is possible only when y is congruent to 1, 4, or 0 modulo 7. This is
impossible since y is an odd power of 5. This completes the proof of the
lemma. �

Proof of Proposition 4.1. First consider the case v = 0. We establish some
notation by paraphrasing [11, Section 3]: When v = 0, we see that the
only case in which solutions might exist is when p ≡ 3 mod 4 and r − s is
odd; choose r odd and let ps + 1 = Du2, with D square-free and u > 0 an
integer. At this point we diverge from [11] and note that if S is the set of
all integers of the form h + k

√
D with nonzero rational integers h and k,

(h, kD) = 1 and u|k, then pr and −ps are both expressible as the norms of
numbers in S. Therefore Lemma 4.1 shows that ±pd is expressible as the
norm of a number in S, where d divides both r and s. Now to complete the
treatment of the case v = 0, we return to the method of proof of [11]: r is
odd and s is even, so we have d ≤ s/2. For some coprime positive integers
X and Y such that (X, ps + 1) = 1, we must have

X2 − Y 2(ps + 1) = ±pd. (4.3)

(4.3) corresponds to (17) in [11]. Since |pd| <
√
ps + 1, X/Y must be a

convergent of the continued fraction for
√
ps + 1. But then, since ps + 1 is

of the form m2 + 1, we must have pd = ±1, impossible.
So we must have v = 1. As in [11], we write ps − 1 = Du2, D and u

positive integers and D squarefree. Clearly, p splits in Q(
√
−D), and we

can let [p] = π1π2 be its factorization into ideals. We can take

π1
s = [1 + u

√
−D], π1

r = [z ± u
√
−D].

At this point we diverge from [11]: clearly s is the least possible value of
n such that pn = h2 + k2u2D for some relatively prime nonzero integers h
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and k, so we can apply Lemma 4.1 to obtain s|r. Thus,

(1 + u
√
−D)r/s = (z ± u

√
−D)ε

where ε is a unit in Q(
√
−D). If D = 1 or 3, we note 2|u and 2 6 | z, so that

we must have ε = ±1. Now Proposition 4.1 follows from Lemma 4.2. �

Posted on [16] are further simplifications to other proofs in [11] and in
[17], which handles the case 2r+(−1)v2s+1 = z2. ([16] has the same paper
referenced in [4] as R. Scott, Elementary treatment of pa±pb+1 = x2.) We
give a shorter proof of Szalay’s result for the case v = 0, using a bound of
Bauer and Bennett [1]; we also point out that the proof for the case v = 1
can be made elementary. An outline of a proof of the result for the case
v = 0 was given by Mignotte; see the comments at the end of Section D10
of [10].
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