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Modular symbols, Eisenstein series, and
congruences

par Jay HEUMANN et Vinayak VATSAL

Résumé. Soient E une série d’Eisenstein et f une forme modu-
laire parabolique, de même niveau N . Supposons que E et f soient
vecteurs propres pour les opérateurs de Hecke, et qu’ils soient tous
les deux normalisés de sorte que a1(f) = a1(E) = 1. Le résultat
principal de cet article est le suivant : si E et f sont congruents
modulo un idéal premier p | p, alors les valeurs spéciales des fonc-
tions L(E,χ, j) et L(f, χ, j) sont également congruentes modulo
p. Plus précisement, on montre que

τ(χ̄)L(f, χ, j)
(2πi)j−1Ωsgn(E)

f

≡ τ(χ̄)L(E,χ, j)
(2πi)jΩE

(mod p)

où le signe sgn(E) est ±1 et ne dépend que de E, et Ωsgn(E)
f est

la période canonique de f . Ici χ désigne un caractère primitif de
Dirichlet de conducteur m, τ(χ̄) une somme de Gauss, et j un
entier tel que 0 < j < k et (−1)j−1 · χ(−1) = sgn(E). Enfin,
ΩE est une unité p-adique indépendante de χ et de j. Ce résultat
est une généralisation des travaux de Stevens et Vatsal en poids
k = 2.

Dans cet article on construit le symbole modulaire de E, et on
calcule les valeurs spéciales. La dernière section conclut avec des
exemples numériques du théorème principal.

Abstract. Let E and f be an Eisenstein series and a cusp form,
respectively, of the same weight k ≥ 2 and of the same level N ,
both eigenfunctions of the Hecke operators, and both normalized
so that a1(f) = a1(E) = 1. The main result we prove is that
when E and f are congruent mod a prime p (which we take in
this paper to be a prime of Q lying over a rational prime p > 2),
the algebraic parts of the special values L(E,χ, j) and L(f, χ, j)
satisfy congruences mod the same prime. More explicitly, we prove
that, under certain conditions,

τ(χ̄)L(f, χ, j)
(2πi)j−1Ωsgn(E)

f

≡ τ(χ̄)L(E,χ, j)
(2πi)jΩE

(mod p)
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where the sign of E is ±1 depending on E, and Ωsgn(E)
f is the cor-

responding canonical period for f . Also, χ is a primitive Dirichlet
character of conductor m, τ(χ̄) is a Gauss sum, and j is an inte-
ger with 0 < j < k such that (−1)j−1 · χ(−1) = sgn(E). Finally,
ΩE is a p-adic unit which is independent of χ and j. This is a
generalization of earlier results of Stevens and Vatsal for weight
k = 2.

In this paper we construct the modular symbol attached to an
Eisenstein series, and compute the special values. We give numer-
ical examples of the congruence theorem stated above, and in the
penultimate section we give the proof of the congruence theorem.

1. Introduction

The idea that congruences between modular forms should carry over to
congruences in the special values of their L-functions began with the work
of Mazur, who studied the case of prime level and the congruences between
Eisenstein series and cusp forms. His results were subsequently generalized
by Stevens [16], and then refined by the second of the present authors, who
also treated the case of congruences between cusp forms [18]. The paper [18]
contains other congruence theorems for cusp forms of higher weight, but the
case of congruences between higher-weight cusp forms and higher-weight
Eisenstein series was left open, as was the case of congruences between
cusp forms at primes for which the corresponding Galois representation is
Eisenstein (reducible), and it is these gaps that we propose to close.

To explain our results, let us introduce some notation. Let Γ denote
a congruence subgroup of SL2(Z) and let Div0(P1(Q)) be the group of
degree zero divisors on the rational cusps of the upper half-plane. If A
is any Γ-module, an A-valued modular symbol over Γ is a Γ-equivariant
homomorphism Div0(P1(Q))→ A. An A-valued boundary symbol over Γ is
a Γ-equivariant homomorphism Div(P1(Q))→ A, where Div(P1(Q)) is the
group of all divisors on the rational cusps. Let SΓ(A) and BΓ(A) denote
the groups of A-valued modular symbols and boundary symbols over Γ
respectively. Then according to [5], Section 4, there is an exact sequence as
follows:

0→ BΓ(A)→ SΓ(A)→ H1
p (Γ, A)→ A

where H1
p (Γ, A) denotes the parabolic coholomogy group of Eichler and

Shimura. If f is a cusp form on Γ, then there is a standard modular symbol
Mf associated to f given by integration of a (vector-valued) differential
form associated to f , and the values of this modular symbol are related to
special values of L-functions.
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The main idea (which goes back to Mazur) for proving congruences be-
tween the special values of L-functions of cusp forms runs as follows, and
may be easily explained in the case of cusp forms of weight 2 and ra-
tional coefficients, when the coefficient module is simply C and the ac-
tion of Γ is trivial. One knows (by work of Shimura) that one can write
Mf = Ω+

f N
+
f + Ω−f N

−
f , where Ω±f are certain complex numbers, and N±f

are modular symbols with values in Z ⊂ C. If g is another cusp form, one
gets in the same manner another pair of modular symbols N±g , again with
values in Z. Since everything is Z-valued, one can simply reduce modulo p
to obtain modular symbols N±f with values in Fp, and similarly for g. Now
one can apply the exact sequence above with A = Fp. Then one observes
that the modular symbols N±f and N±g both map to H1

p (Γ,Fp)±. By choos-
ing the scalars Ω±f and Ω±g appropriately, we can arrange for the images of
these elements to be nonzero modulo p.

Note now that all these elements land inside the subspace of the coho-
mology group where the action of the Hecke algebra is given by the Hecke
eigenvalues of f and g respectively. In particular, when there is a congru-
ence between f and g, the eigenvalues are the same modulo p. Thus, if
we know that the corresponding eigenspace of H1

p (Γ,Fp)± has dimension 1
(“multiplicity one") then the images of N±f and N±g are equal up to scal-
ing by a fixed nonzero constant. In other words, the images of the modular
symbols of f and g are themselves congruent, if a suitable scaling is applied!

Since the values of the modular symbols of f and g are related to their
L-values, one would like to conclude that the special values of f and g
are equal, modulo p. This is essentially correct, but notice that there is a
delicate point here that must be addressed. The values in question are com-
puted as values of the modular symbols N±f and N±g , which lie in SΓ(Fp).
However, the multiplicity one theorem is only valid for the cohomology
group H1

p (Γ,Fp), and one cannot conclude (and indeed it may not even
be true in general) that the modular symbols N±f and N

±
g are equal up

to constant: one can only conclude that they are equal up to constant and
some unknown element that maps to zero in cohomology, namely, up to
some Fp- valued boundary symbol. This appears to be rather unfortunate,
but happily the situation can be salvaged by observing that the boundary
symbol actually evaluates to zero on the divisors of interest, since, as is
well known, the divisors in question are homologically trivial under a mild
hypothesis, and therefore have trivial boundary in the completed modular
curve XΓ. Observe also that one cannot circumvent this issue by splitting
the boundary exact sequence above, since in general we will be dealing with
Eisenstein primes, and that the sequence has no splitting at such primes
(Manin-Drinfeld).
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Our task is therefore to generalize this procedure to Eisenstein series
and forms of higher weight. However, we run in to two main problems that
have to be solved. The first of these is to produce a modular symbol for
a higher weight Eisenstein series that has suitable rationality and integral-
ity properties. Thus we first construct a modular symbol attached to an
Eisenstein series, assuming the presence of a congruence modulo p with a
cuspform. The modular symbol we define takes values in a certain module
over Fp[Γ], and is built on the maps used in [17], Example 6.4(a). With the
modular symbol in hand, one can attempt to imitate the argument based
on multiplicity one that we have sketched above. Here again one must deal
with the fact that the map from modular symbols to cohomology does not
split. In the higher weight case there is a further complication coming from
the fact that we are dealing with non-constant coefficients, so that an ar-
bitrary boundary symbol does not necessarily evaluate to zero on a divisor
with boundary zero in the completed modular curve. We get around this
issue by showing that all boundary symbols nevertheless have the property
that their twisted special values are zero (Theorem 4.5). While this result
is rather simple and the proof entirely elementary, it is nevertheless rather
important, and seems not to have been remarked previously.

The organization of this paper is as follows. The material in Section
2 is mostly a review of results already in the literature: first we define
some functions related to special values of L-functions attached to modular
forms, and we state some basic properties of those functions. In Section
3 we define the modular symbol attached to an Eisenstein series, and we
prove some basic properties of it in more generality than just the weight 2
case. In Section 4 we calculate the special values of this modular symbol,
and relate them to the character twists of the corresponding L-functions.
In Section 5, we give the proof of the congruence theorem for the special
values of character twists of a cusp form and a congruent Eisenstein series.
In Section 6, we give some numerical examples.

The authors would like to thank Samit Dasgupta for some useful sugges-
tions. We remark also that result similar to our main congruence theorem
has recently been announced by Y. Hirano [8]; his result is more general
than ours in that it includes characters whose conductor may be divisible
by p. However, the principal idea is very similar. We also thank Hirano for
pointing out a mistake in an earlier version of the paper.

2. Preliminary Results

2.1. Functions Connected to Special Values. Before we can state the
main results later on, we need to define some functions connected to special
values of L-functions and prove some results about them. The results in this
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section hold for general modular forms; throughout this section let f be a
modular form of weight k ≥ 2 and any level.

Let A be a ring, and let Ln(A) (for a nonnegative integer n) be the
symmetric polynomial algebra over A of degree n. (Thus the elements of
Ln(A) are homogeneous polynomials of degree n with coefficients in A.)
Throughout what follows, we will always take A to be a subring of C.
Ln(C), for any nonnegative integer n, admits a left action of GL+

2 (Q): if

α =

a b

c d

 ∈ GL+
2 (Q), and P (X,Y ) ∈ Ln(C), then

α|P (X,Y ) = det(α)−n · P (aX + cY, bX + dY )
We will make frequent use of this action below.

Throughout what follows we will always put σ =

0 −1

1 0

. Also, let
Df (s) :=

∫ ∞
0

f̃(z)ys−1dz

where the tilde means that we subtract a0(f), and y is the imaginary part of
z. This integral will converge whenever we take s with real part big enough
(it depends on the weight). The main point is:

Proposition 2.1. In the region of convergence of the integral,
Df (s) = i · Γ(s) · (2π)−s · L(f, s)

This identity links the above integral to the L-function of f . For the
proof, see [12], p. I-5.

The next few results stated below are generalizations of weight 2 results
that can be found in [16], Chapter 2—in particular see Propositions 2.1.2
and 2.2.2. The proofs in higher weight are adaptations of the proofs used
there; the modifications are simple and we omit them.

Proposition 2.2. Within the region of convergence of the integral, we have
the formula

Df (s) =
∫ ∞
i

f̃(z)ys−1dz + ik
∫ ∞
i

( ˜f |σ)(z)yk−1−sdz

−i
(
a0(f)
s

+ ik
a0( ˜f |σ)
k − s

)
Furthermore, this formula defines a meromorphic continuation of Df (s) to
the entire complex plane, with functional equation

Df (s) = ikDf |σ(k − s)
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With this in mind, let us now define a new function that takes values in
Ln(C):

Ff (s) :=
∫ ∞

0
f̃(z)(zX + Y )k−2ys−1dz

This integral will clearly converge for large enough values of s.

Proposition 2.3. Within the region of convergence of the integral, we have
the formula

Ff (s) =
k−2∑
j=0

k − 2

j

 · ij ·Df (s+ j) ·XjY k−2−j

Furthermore, this defines a meromorphic continuation of Ff (s) to the entire
complex plane.

Corollary 2.4. We have

Ff (s) =
k−2∑
j=0

k − 2

j

 · ij+1 · Γ(s+ j) · 1
(2π)s+j · L(f, s+ j) ·XjY k−2−j

and this holds for all s.

The corollary shows that

Ff (1) =
k−2∑
j=0

k − 2

j

 · ij+1 · (j!) · 1
(2π)j+1 · L(f, j + 1) ·XjY k−2−j

In other words, Ff (1) is a polynomial whose coefficients encode all the
special values of the L-function of f at the so-called critical integers, namely
those strictly between 0 and k.

Now we return to Proposition 2.3. There is another formula as well, and
we state it here as a separate result.

Proposition 2.5. We have the formula

Ff (s) =
∫ ∞
i

f̃(z)(zX + Y )k−2ys−1dz−
∫ ∞
i

( ˜f |σ)(z)[σ|(zX + Y )k−2]y1−sdz

+ia0(f |σ) · σ|

k−2∑
j=0

k − 2

j

 · ij ·XjY k−2−j · 1
2−s+j



−ia0(f) ·
k−2∑
j=0

k − 2

j

 · ij ·XjY k−2−j · 1
s+j



Modular symbols, Eisenstein series, and congruences 715

Corollary 2.6. For an arbitrary base point z0 in the upper half-plane,

Ff (1) =
∫ ∞
z0

f̃(z)(zX + Y )k−2dz −
∫ ∞
z0

( ˜f |σ)(z)[σ|(zX + Y )k−2]dz

−a0(f) ·
∫ z0

0
(zX + Y )k−2dz + a0(f |σ) ·

∫ z0

0
σ|(zX + Y )k−2dz

−
∫ σz0

z0
f(z)(zX + Y )k−2dz

We now state two more lemmas which will be used in later sections.

Lemma 2.7. Put α :=

a b

0 d

 with rational entries and positive determi-

nant. Then

a0(f |α) = ak−1

d
· a0(f)

Lemma 2.8. Put α :=

a b

c d

 and τ :=

t 0

0 1

, all with rational entries

and positive determinant. Then

Ff |ατ (1) = τ−1|Ff |α(1)

Finally, we state need one last lemma, which is a generalization of [16],
Lemma 3.1.1. Once again, the proof is standard.

Lemma 2.9. Let f be a modular form of weight k ≥ 2, and let χ be a
primitive Dirichlet character of conductor m. Then

τ(χ̄)Df⊗χ(s) = m1−s
m−1∑
a=0

χ̄(a)D
f |

1 a

0 m

(s)

2.2. Modular Symbols and Cusp Forms. In this section, we let f be
a normalized (meaning a1 = 1) cuspidal eigenform of even weight k ≥ 2
and level Γ for some congruence subgroup Γ. Our goal in this section is to
define a modular symbol Mf attached to f and show a link between Mf

and the algebraic parts of special values L(f, χ, j) for a primitive character
χ and an integer j with 1 ≤ j ≤ k − 1. (The meaning of “algebraic part”
will be explained below.) The discussion in this section will closely follow
that of [5], Section 4.

We first state the definition of a modular symbol, along with two other
definitions that we will use below:
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Definition 2.10. Let Div0(P1(Q)) be the group of degree zero divisors on
the rational cusps of the upper half-plane. Let A be a Q[M2(Z)∩GL+

2 (Q)]-
module (with the matrices acting on the left). We refer to a map as an
A-valued modular symbol over a congruence subgroup Γ if the map is a
Γ-homomorphism from degree zero divisors to elements of A.
Definition 2.11. Let f be as above. Then the standard weight k modular
symbol Mf is the Lk−2(C)-valued modular symbol defined as follows: on
divisors {b} − {a} (with a, b ∈ P1(Q)),

Mf ({b} − {a}) := 2πi
∫ b

a
f(z)(zX + Y )k−2dz

Define Mf on all other degree-zero divisors by linearity.
Definition 2.12. Let χ be a primitive Dirichlet character of conductor m.
Let Φ by any A-valued modular symbol. The operator Rχ, called the twist
operator, is defined as follows: for any degree-zero divisor D,

(Φ|Rχ)(D) :=
m−1∑
a=0

χ̄(a)

1 a

0 m

−1

|Φ(

1 a

0 m

D)

Remark 2.13. This operator also appears in Section 4 of [5], but our
definition is slightly different. This is because our matrix action (of GL2(Q
on Lk−2(C) is a left action. If we switch to a right action by inverting, this
is the same action that Greenberg and Stevens use. So here we adjust to
the fact that we are using a left action by using χ̄ in the definition instead

of χ, and changing from a right action of

1 a

0 m

 to a left action of the

inverse.
Now we can state a result concerning the special values of the L-function

of f :
Theorem 2.14. Let f be as above, and let χ be a primitive Dirichlet char-
acter of conductor m. Then

(Mf |Rχ)({∞}−{0}) = 2πiτ(χ̄)
k−2∑
j=0

k − 2

j

·ij ·mj ·Df⊗χ(1+j)·XjY k−2−j

This theorem is equivalent to [5], Theorem 4.14 (after adjusting the no-
tation).
Corollary 2.15. With f and χ as in the above theorem,

(Mf |Rχ)({∞}−{0}) =
k−2∑
j=0

(−1)j+1

k − 2

j

·j!·mj · τ(χ̄)L(f,χ,1+j)
(2πi)j ·XjY k−2−j
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Proof. Combine the theorem with Proposition 2.1. �

The above corollary gives a connection betweenMf and L(f, χ, j); but so
far we do not have any assurances of any algebraicity properties of either.
To show how we get algebraic numbers from the modular symbol Mf , we
define an involution on modular symbols induced by the action of the matrix

ι =

1 0

0 −1

, which sends

Mf ({b} − {a}) 7→ ι|Mf ({−b} − {−a})

(the left action of ι on polynomials simply sends Y 7→ −Y ). Now choose a
“sign” ±—meaning the +1 or −1 eigenspace of this involution—and project
the modular symbol Mf to one of these eigenspaces. We obtain a new
modular symbol which we will denote M±f (for one choice of sign). It is a
theorem of Shimura (proved in [6], or also see [5], [9], or [18]) that there
exist transcendental numbers Ω±f , called periods, such that the modular
symbols 1

Ω±
f

M±f both give values in Lk−2(K), where K is the algebraic
field extension generated over Q by the Hecke eigenvalues of f . Shimura’s
theorem even tells us, for a primitive character χ and a critical integer j,
which sign to choose so that the number

τ(χ̄)L(f, χ, j)
(2πi)j−1Ω±f

is algebraic. (The choice of sign is (−1)j−1sgn(χ).) For that choice of sign,
the above expression is called the algebraic part of L(f, χ, j). A priori, this
algebraic part is only defined up to a factor in K×. However, since OK,p is a
discrete valuation ring, we may normalize up to a unit in O×K,p by requiring
that the algebraic part of L(f, χ, j) lies in OK,p for all χ and j , and that
at least one algebraic part lies in O×K,p. Of course, if OK is a principal ideal
domain, then we can normalize up to a factor in O×K .

3. Modular Symbols and Eisenstein Series

3.1. A Basis of Eisenstein Series. We begin with a definition of our
basic Eisenstein series φk,x1,x2 . Following [17], Section 6, pick a positive
integer k > 2 (unlike in that paper, here we do not assume k is even) and
let x1, x2 ∈ Q/Z, and define

Gk,x1,x2(z) := (k − 1)!
(2πi)k

∑
(a1,a2)∈Q−(0,0)

(a1,a2)≡(x1,x2) (mod Z)

(a1z + a2)−k
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This series converges absolutely and defines a holomorphic Eisenstein se-
ries of weight k. Define φk,x1,x2 as follows. Let N be the least common
denominator of x1 and x2 and consider the map

ψx1,x2 : ( 1
NZ/Z)2 → C×

defined by
ψx1,x2(a1

N ,
a2
N ) = e2πi(a2x1−a1x2)

Then define
φk,x1,x2(z) =

∑
(a1,a2)∈( 1

N Z/Z)2

ψx1,x2(a1, a2)Gk,a1,a2(z)

φk,x1,x2 can also be understood as the Fourier transform of the distribution
f 7→ Gf , in the sense of [17], Definition 3.6 (and the beginning of Section
4). A basic fact is that φk,x1,x2 is a modular form of weight k and level
Γ(N).

Our first goal is to study the special values of the L-functions attached
to these Eisenstein series. First we quickly define the periodified Bernoulli
functions. Let B̃k(x) be the k-th Bernoulli polynomial for k ≥ 0. If b·c is
the greatest integer function on real numbers, then define

Bk(x) = B̃k(x− bxc)
Now we can state our first result:
Proposition 3.1. φk,x1,x2 has Fourier expansion

φk,x1,x2(z) = Bk(x1)
k

− J(k, x1, x2; z)− (−1)kJ(k,−x1,−x2; z)

where
J(k, a, b; z) :=

∑
κ≡a (mod 1)

κ∈Q+

κk−1 ·
∞∑
m=1

e2πizmκe2πimb

For the proof, see [14]. (It is useful to notice that J(k, a, b; z) is uniformly
convergent for z in the upper half-plane.)

Let α =

a b

c d

 be a matrix with all integer entries and positive deter-

minant; then we can use the distribution law given in ([17], equation 3.9)
to conclude
(3.1) φk,x1,x2 |α−1 = det(α)−k+2 ∑

y=(y1,y2)∈(Q/Z)2

yα≡x (mod Z)

φk,y1,y2

If α has determinant 1, this specializes to
φk,x1,x2 |α = φk,ax1+cx2,bx1+dx2
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Remark 3.2. Any element of GL+
2 (Q) can be written as a scalar matrix

times the inverse of a matrix with integral entries, so this also shows how
to evaluate φk,x1,x2 |α for any matrix α ∈ GL+

2 (Q). As an example, we will

compute, for a general φk,x1,x2 , the action of the matrix

1 0

0 d

. To begin,

we write the matrix as d 0

0 d

d 0

0 1

−1

By the definition of matrices acting on modular forms, the action of the
scalar matrix is simply to multiply by dk−2. Now we can use (3.1) directly
on the second matrix:

φk,x1,x2 |

d 0

0 1

−1

= d−k+2
d−1∑
ν=0

φ
k,
x1+ν
d ,x2

Since we also have a scalar multiple of dk−2 from the action of the scalar
matrix, the final result is

φk,x1,x2 |

1 0

0 d

 =
d−1∑
ν=0

φ
k,
x1+ν
d ,x2

This example will be used later.

Define, for x ∈ Q/Z,

Z(s, x) :=
∞∑
n=1

e2πinxn−s

and
ζ(s, x) :=

∑
m≡x (mod 1)

m∈Q+

m−s

(Clearly these functions are well-defined for x ∈ Q/Z.) Now we have:

Proposition 3.3. L(φk,x1,x2 , s) = −ζ(1− (k−s), x1)Z(s, x2)− (−1)kζ(1−
(k − s),−x1)Z(s,−x2).

Proof. Consider J(k, a, b; z), defined above. If we put q = e2πiz, then

J(k, a, b; z) =
∑

κ≡a (mod 1)
κ∈Q+

κk−1 ·
∞∑
m=1

qmκe2πimb
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So its L-function is ∑
κ≡a (mod 1)

κ∈Q+

κk−1 ·
∞∑
m=1

(mκ)−se2πimb

=
∑

κ≡a (mod 1)
κ∈Q+

κk−1−s ·
∞∑
m=1

m−se2πimb

= ζ(1− (k − s), a)Z(s, b)
Now the result follows from the above proposition. �

We will need the following three properties of the two functions defined
above:

Proposition 3.4. For any positive integer n and any x as above (and Bn
as above),

ζ(1− n, x) = −Bn(x)
n

This is a well-known property of the Hurwitz zeta function. See, for
example, [11], p. 341.

Proposition 3.5. With n and x as above, unless x ∈ Z and n = 1,

ζ(1− n,−x) = (−1)nζ(1− n, x)

This follows from a well-known property of the Bernoulli polynomials.
See, for example, [11], equations B.10 and B.13.

Proposition 3.6. With n and x as above, unless x ∈ Z and n = 1,

Z(n, x) + (−1)nZ(n,−x) = −in · (2π)n · Γ(n)−1 · Bn(x)
n

This follows from the definition of Z(n, x) and from the Fourier expan-
sions of the periodified Bernoulli polynomials (which can be found in [13],
p. 16).

Now we will use these facts to prove a result about the polynomial FE(1)
when E is of the form φk,x1,x2 .

Proposition 3.7. Let E be equal to φk,x1,x2 for some integer k > 2 and
some x1, x2 ∈ (Q/Z)2. Then for any integer j with 0 ≤ j ≤ k − 2, the
coefficient of the XjY k−2−j term in FE(1) isk − 2

j

 (−1)jBk−j−1(x1)
k − j − 1 · Bj+1(x2)

j + 1
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except in the following cases. When x1 = 0, and k is even, the coefficient
of Xk−2 will be

ik+1(k − 2)! · (2π)−(k−1) ·
∞∑
n=1

cos(2πnx2)
nk−1

and when x1 = 0 and k is odd, the coefficient of Xk−2 is

ik+2(k − 2)! · (2π)−(k−1) ·
∞∑
n=1

sin(2πnx2)
nk−1 .

When x2 = 0 and k is even, the coefficient of Y k−2 will be

ik+3(k − 2)! · (2π)−(k−1) ·
∞∑
n=1

cos(2πn(−x1))
nk−1

and when x2 = 0 and k is odd, the coefficient of Y k−2 will be

ik(k − 2)! · (2π)−(k−1) ·
∞∑
n=1

sin(2πn(−x1))
nk−1

Remark 3.8. We have excluded the case k = 2 from the result above, but
it is treated in [16], Section 2.5. The non-exceptional cases yield the same
formula as the above proposition when k = 2, but the exceptional cases are
different (and when k = 2 we exclude the case x1 = x2 = 0 entirely).

Proof. First we will deal with the exceptional cases. The first is when k is
even, j = k − 2 and x1 = 0. In this case, we will have

L(E, k − 1) = −1
2(Z(k − 1, x2) + Z(k − 1,−x2)) = −

∞∑
n=1

cos(2πnx2)n1−k

and the claim follows. (We are computing the coefficient using
Corollary 2.4). If k is odd instead of even, the second exceptional case
is proved using a similar calculation.

The last two cases are when j = 0 and x2 = 0. Here we can simply use
the functional equation at the end of Proposition 2.2 and then this reduces
to the same computations as in the first case.

It only remains to show the general case. We are looking to compute
L(E, j + 1) for 0 ≤ j ≤ k − 2, and all three of the above identities apply.
Starting from Proposition 3.3, we begin by applying Proposition 3.5 to
the Hurwitz zeta functions. Then we take out a factor of −ζ(1 − (k − j −
1), x1), which is equal to Bk−j−1(x1)

k−j−1 by Proposition 3.4. Finally we apply
Proposition 3.6 to the sum or difference of Z(j + 1, x2) and Z(j + 1,−x2)
terms. When we combine the results with the formula in Corollary 2.4, the
factors of 2π and the gamma factors cancel; collecting all the powers of i,
we obtain exactly the desired result. �
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An important fact that is immediately implied by the result above is the
following:

Corollary 3.9. Let E be of the form φk,x1,x2 as above. Then the real part
of FE(1) is rational.

Before we continue, we introduce one last definition. Given any number
field K, we let Ek(K) be the K-span of the Eisenstein series φk,x1,x2 for all
x1, x2 ∈ Q/Z.

3.2. The Map SE.

3.2.1. Definition and Basic Properties. Given a fieldK and an Eisen-
stein series E ∈ Ek(K), our immediate goal is to define a map which takes
as input an element of GL+

2 (Q) and outputs an element of Lk−2(K). The
purpose of this map will be to help us define a modular symbol attached
to E in terms of outputs of this map, as we will show later. To that end we
define the map SE , which does not quite give a K-rational polynomial in
all cases, but after proving some basic properties of SE we will be able to
define a new map which does give K-rational polynomials.

Corollary 2.6, proved above, leads us to the following definition:

Definition 3.10. Define SE : GL+
2 (Q)→ Ln(C) by

SE(α) :=
∫ αz0

z0
E(z)(zX + Y )k−2dz

+a0(E) ·
∫ z0

0
(zX + Y )k−2dz − a0(E|α) ·

∫ z0

0
α|(zX + Y )k−2dz

−
∫ ∞
z0

Ẽ(z)(zX + Y )k−2dz +
∫ ∞
z0

(Ẽ|α)(z)[α|(zX + Y )k−2]dz

Notice that this is well-defined because, as we can easily check, the de-
rivative with respect to z0 is 0, so this definition does not depend on the
choice of z0. Notice also (directly from the definition) that we can write
E as a linear combination of Eisenstein series of the form φk,x1,x2 and the
map SE will respect the linearity.

It is an immediate consequence of Corollary 2.6 that

(3.2) SE(σ) = −FE(1)

We now prove some basic properties of SE . Both of the next two results
were proved for the case k = 2 in Proposition 2.3.3 of [16].

Proposition 3.11. SE satisfies the relation

SE(αβ) = SE(α) + α|SE|α(β)
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Proof. If we consider the last four terms in the definition of SE , it is a
simple calculation to show that grouped together without the first term,
they satisfy the relation. (We need to use the fact that the action of α on
the polynomials inside the integrals commutes with integration, which we
know since the integrals are absolutely convergent.) But the first term also
satisfies this relation; to see this it suffices to show the identity∫ βz0

z0
(E|α)(z)[α|(zX + Y )k−2]dz =

∫ αβz0

αz0
E(z)(zX + Y )k−2dz

This is a straightforward calculation using the substitution u = αz on the
left-hand integral (along with the definition of α−1|(uX + Y )k−2). �

Theorem 3.12. Put α =

a b

c d

 (with all rational entries and positive

determinant) and Mα =

1 a

0 c

. Then SE satisfies the following formula:

if c = 0, then

SE(α) = a0(E)
∫ b/d

0
(tX + Y )k−2dt

If c > 0, then

SE(α) = a0(E)
∫ a/c

0
(tX + Y )k−2dt

+a0(E|α)
∫ 0

−d/c
α|(tX + Y )k−2dt

−Mα|FE|Mα
(1)

Proof. We begin with the case c = 0. Starting from the definition of SE(α),
we split the first integral and obtain

SE(α) =
∫ αz0

z0
Ẽ(z)(zX + Y )k−2dz + a0(E)

∫ αz0

z0
(zX + Y )k−2dz

+a0(E) ·
∫ z0

0
(zX + Y )k−2dz − a0(E|α) ·

∫ z0

0
α|(zX + Y )k−2dz

−
∫ ∞
z0

Ẽ(z)(zX + Y )k−2dz +
∫ ∞
z0

(Ẽ|α)(z)[α|(zX + Y )k−2]dz

Now since this does not depend on z0, as explained above, we let z0 → i∞.
Since c = 0, this means αz0 → i∞ as well. So all the integrals that converge
in this case—namely, the first one and the last two—will vanish, and we
only need to treat the other three. The goal is to show that they combine
to give a polynomial not dependent on z0, and that this polynomial is the
one given above.
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We can combine the first two remaining integrals to conclude that the
expression we need to find the limit of is

a0(E)
∫ αz0

0
(zX + Y )k−2dz − a0(E|α)

∫ z0

0
α|(zX + Y )k−2dz

To prove the formula in this case, it suffices to show that

−a0(E|α)
∫ z0

0
α|(zX + Y )k−2dz = a0(E)

∫ b/d

αz0
(uX + Y )k−2du

for then we could combine the two integrals and obtain the desired result
immediately. But this is simple to show: firstly, we use Lemma 2.7 to replace
a0(E|α) with ak−1

d a0(E). Then we use the definition of α|(zX+Y )k−2 (along
with the fact that the determinant of α is ad) along with the substitution
u = αz = az+b

d . From there an elementary calculation shows the desired
result.

We now turn to the case c > 0, having already proved the c = 0 case
(which we will use below). We begin from the identity

α =

1/c 0

0 1/c

δ a

0 c

0 −1

1 0

c d

0 1


where δ = ad− bc is just the determinant of α.

The first step in evaluating SE(α) is to use Proposition 3.11 to separate
the diagonal matrix from the other three. Then, notice that SE evaluated
on the diagonal matrix is 0 (just by using the c = 0 case). Furthermore, the
action of it on polynomials is simply to multiply everything by the scalar
ck−2 (using the definition and homogeneity). However, by definition of the
action of a matrix on a modular form, we see that

E|

1/c 0

0 1/c

 (z) = c−k+2E(z)

so the scalar multiples cancel when applying Proposition 3.11.
The above argument implies, using Proposition 3.11 repeatedly, that we

now have

SE(α) = SE(

δ a

0 c

)

+

δ a

0 c

 |S
E|

δ a

0 c

(σ)
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+

δ a

0 c

σ|S
E|

δ a

0 c

σ(

c d

0 1

)

Considering the three terms separately will show the final result.

We begin by treating the first term, SE

δ a

0 c

. This is simply an ap-

plication of the c = 0 case above; we obtain

a0(E)
∫ a/c

0
(tX + Y )k−2dt

Next, consider the final term, which (after some matrix multiplication)
is equal to

α ·

1 −d

0 c

 |S
E|α·

1 −d

0 c


c d

0 1



Before we consider the matrix actions at all, we use the c = 0 case to
evaluate SE . We conclude that this term is equal to

α ·

1 −d

0 c

 |a0

E|α ·
1 −d

0 c

∫ d

0
(tX + Y )k−2dt

If we pull out the constants and use Lemma 2.7, we get

1
c · a0(E|α) · α ·

1 −d

0 c

 | ∫ d

0
(tX + Y )k−2dt

Using the substitution u = t−d
c and computing the definition of the action

of the matrix just before the integral, an elementary calculation confirms
that the above expression is equal to

a0(E|α)
∫ 0

−d/c
α|(uX + Y )k−2du

Now we consider the middle term, which Proposition 3.11 tells us isδ a

0 c

 |S
E|

δ a

0 c

(σ)
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After we apply (3.2), this is equal to

−

δ a

0 c

 |F
E|

δ a

0 c

(1)

From here, consider thatδ a

0 c

 =

1 a

0 c

δ 0

0 1


This means we can apply Lemma 2.8 and the expression becomes

−

1 a

0 c

 |F
E|

1 a

0 c

(1)

Putting all the terms together, this gives the above formula and completes
the proof. �

Remark 3.13. It would appear at first glance that we have not covered

the case c < 0. However, it is clear that the matrix

−1 0

0 −1

 evaluates

to 0 under SE . Also, when we take into account the action on polynomials
and the action on modular forms, the combination of the two actions will
always be trivial whether the weight is odd or even. So to evaluate SE in
the c < 0 case we simply change the signs of all the entries in the matrix
and use the c > 0 case:

SE(

a b

c d

) = SE(

−a −b

−c −d

) = a0(E)
∫ a/c

0
(tX + Y )k−2dt

+a0(E|

−a −b

−c −d

)
∫ 0

−d/c
α|(tX + Y )k−2dt−

1 −a

0 −c

 |F
E|

1 −a

0 −c

(1)

3.2.2. The Involution ι. Let ι =

1 0

0 −1

, a matrix of determinant

−1. We define the action of ι on an Eisenstein series as follows: first define
φk,x1,x2 |ι = (−1)kφk,x1,−x2
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and then extend by linearity to general Eisenstein series.
It is elementary to check that for any numbers a and c, the following

holds:

(3.3) ι

1 −a

0 c

 =

1 a

0 c

 ι
We will make frequent use of this fact below.

Now for α ∈ GL+
2 (Q), define the map

SιE(α) := (−1)k−1ι|SE|ι(ι−1αι)
We will need the following lemma:

Lemma 3.14. SιE satisfies the relation
SιE(αβ) = SιE(α) + α|SιE|α(β)

Proof. We compute directly from the definition and Proposition 3.11:
SιE(αβ) = (−1)k−1ι|SE|ι(ι−1αβι) = (−1)k−1ι|SE|ι(ι−1αιι−1βι)

= (−1)k−1ι|SE|ι(ι−1αι) + (−1)k−1ι−1αι|SE|αι(ι−1βι)

= (−1)k−1ι|SE|ι(ι−1αι) + (−1)k−1α|ι|S(E|α)|ι(ι−1βι)
= SιE(α) + α|SιE|α(β)

which is the desired result. �

3.2.3. The Map ξE and Rationality. Define the map
ξE := 1

2(SE + SιE)
The main result about ξE is the following:

Proposition 3.15. For any number field K, any E in Ek(K) and any
α ∈ GL+

2 (Q), ξE(α) ∈ Lk−2(K).

Proof. We will show this for an arbitrary Eisenstein series of the form

φk,x1,x2 and then the result will follow by linearity. Put α =

a b

c d

.
Without loss of generality, we can assume the matrix has integer entries
and c ≥ 0 (because it is equal to such a matrix times a scalar matrix). First
notice that

ι−1αι =

 a −b

−c d


Now we will use Theorem 3.12 (and the subsequent remark), as well as the
notation Mα from the statement of the theorem.
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First we see that if c = 0, the result is clear (since both summands in
the definition of ξE are clearly K-rational in this case). So we may assume
c > 0. Now (using Equation (3.3)) it suffices to show that the expression

Mα|FE|Mα
(1) + (−1)k−1Mαι|FE|Mαι(1)

gives a K-rational polynomial.
We first compute using the distribution law:

E|Mα =
c−1∑
ν=0

φ
k,
x1+ν
c ,x2+ax1+ν

c

(To see this more clearly, separate the matrix into the product1 0

0 c

1 a

0 1


and for the action of the former, refer to Remark 3.2.) This means that
FE|Mα

(1) will equal

k−2∑
j=0

c−1∑
ν=0

k − 2

j

 ij+1(j!) 1
(2π)j+1 · L(φ

k,
x1+ν
c ,x2+ax1+ν

c
, j + 1) ·XjY k−2−j

Similarly, we can compute FE|Mαι using

E|Mαι = (−1)k
c−1∑
ν=0

φ
k,
x1+ν
c ,−x2−a

x1+ν
c

By Proposition 3.7, FE|Mα
(1) and FE|Mαι(1) are rational polynomials, un-

less one of the terms x1+ν
c or x2 + ax1+ν

c is zero. There are now 4 cases
to consider, based on whether one of these vanishes and whether k is even
or odd. Suppose we are in the first case, i.e. that k is even and one of the
terms x1+ν

c vanishes. Then

FE|Mα
(1) = Xk−2 · ik+1(k − 2)! · (2π)−(k−1) ·

∞∑
n=1

cos(2πnx2)
nk−1 +G(X,Y )

and

FE|Mαι(1) = Xk−2 · ik+1(k− 2)! · (2π)−(k−1) ·
∞∑
n=1

cos(2πn(−x2))
nk−1 +H(X,Y )

for some rational polynomials G,H ∈ Lk−2(K). Since the cosine function
is even, and the action of ι on polynomials is trivial on X, it is clear that

FE|Mα
(1) + (−1)k−1ι|FE|Mαι(1) = G(X,Y )− ι|H(X,Y )
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which is a rational polynomial. The other three cases are similar, keeping
track of the action of ι, the parity of k, and whether we are using the cosine
function, which is even, or the sine function, which is odd. �

3.2.4. The Map ξ′
E. Our definition and the subsequent computation with

ξE leads us to consider another map

ξ′E := 1
2i(SE − S

ι
E)

Under this definition, we have

SE = ξE + iξ′E

We wish to do a similar computation as in the previous section, using the

explicit formula to compute ξ′E(α) for a matrix α =

a b

c d

 with inte-

ger entries and positive determinant (as before, we can extend to rational
entries by using multiplication by a scalar matrix). As in the above com-
putation, we start by letting E = φk,x1,x2 for some x1, x2 ∈ Q/Z and then
we can extend by linearity.

By definition, and by the remark following Theorem 3.12,

SE(α)− SιE(

a b

c d

) = SE(α)− (−1)k−1ι|SE|ι(

−a b

c −d

)

If c = 0, the two terms cancel. This is because the terms a0(E) are the
same in both (the action of ι does not change it in the second term when k
is even, and multiplies it by −1 when k is odd) which makes the sum equal
to

a0(E) ·
[∫ b/d

0
(tX + Y )k−2dt+ (−1)k

∫ −b/d
0

(tX − Y )k−2dt

]
Now it is clear, using the transformation t 7→ −t in the second integral,
that the two terms must cancel.

Now we suppose c > 0 (as before, we can reduce the c < 0 case to this
case). The explicit formula has three terms. Breaking up the computation
term-by-term, the first term will be

a0(E) ·
[∫ a/c

0
(tX + Y )k−2dt+ (−1)k

∫ −a/c
0

(tX − Y )k−2dt

]
which, similarly to the above, is 0.

The corresponding calculation for the second term will also be zero; here
we need to know that a0(E|α) = (−1)ka0(E|αι), which is clear when E is
of the form φk,x1,x2 , since the constant term only depends on x1, which is
unchanged by the ι-action.
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That leaves the third term; so (using Equation (3.3)) it remains to com-
pute

F

E|

1 a

0 c

(1)− (−1)k−1ι|F
E|

1 a

0 c

ι(1)

and then apply the action of

1 a

0 c

 to get the final result.

As in the computation for ξE , the distribution law tells us that

E|

1 a

0 c

 =
c−1∑
ν=0

φ
k,
x1+ν
c ,x2+ax1+ν

c

Now we will carry out the rest of the computation using Proposition 3.7.
The proposition tells us that for each summand above, the XjY k−2−j-term
is k − 2

j

 (−1)j
Bk−j−1(x1+ν

c )
k − j − 1 ·

Bj+1(x2 + ax1+ν
c )

j + 1 XjY k−2−j

except for the exceptional cases which we will deal with below. For now
let us treat the non-exceptional cases. When we act by ι on the above
Eisenstein series and the polynomial part before using Proposition 3.7, we
end up with terms corresponding to the above, of the formk − 2

j

 (−1)j
Bk−j−1(x1+ν

c )
k − j − 1 ·

Bj+1(−(x2 + ax1+ν
c ))

j + 1 Xj(−Y )k−2−j

In general, we have Bn(−x) = (−1)nBn(x), and if k − 2 − j is even, then
j + 1 is odd, and vice versa (since k is even). This means that in all cases,
the two corresponding terms will be equal and will cancel when we subtract
them.

So it remains to compute the two exceptional cases: the Xk−2 term when
the first subscript is zero, and the Y k−2 term when the second subscript
is zero. We show the result for the even weight case; the odd weight case
is exactly the same. Looking at the terms from the distribution law above,
and again using Proposition 3.7, the Y k−2 term will be

c−1∑
ν=0

Y k−2 · δ
x2+ax1+ν

c
· ik−2(k − 2)! · (2π)−(k−1) ·

∞∑
n=1

cos(2πn(x1+ν
c ))

nk−1
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(where here δ means 1 if the subscript is an integer and 0 otherwise). By
similar logic, the Xk−2 term is

−
c−1∑
ν=0

Xk−2 · δx1+ν
c
· ik−2(k − 2)! · (2π)−(k−1) ·

∞∑
n=1

cos(2πn(x2))
nk−1

This means we have shown the following:

Proposition 3.16. For an Eisenstein series E = φk,x1,x2 of even weight,

and a matrix α =

a b

c d

 ∈ GL+
2 (Q) as above, ξ′E(α) is 0 when c = 0, and

when c 6= 0 it is

(aX + cY )k−2 ·
c−1∑
ν=0

δ
x2+ax1+ν

c
· ik−2(k− 2)! · (2π)−(k−1) ·

∞∑
n=1

cos(2πn(x1+ν
c ))

nk−1

−
c−1∑
ν=0

Xk−2 · δx1+ν
c
· ik−2(k − 2)! · (2π)−(k−1) ·

∞∑
n=1

cos(2πn(x2))
nk−1

If instead E has odd weight, then ξ′E(α) is 0 when c = 0, and when c 6= 0
it is

(aX + cY )k−2 ·
c−1∑
ν=0

δ
x2+ax1+ν

c
· ik−1(k− 2)! · (2π)−(k−1) ·

∞∑
n=1

sin(2πn(x1+ν
c ))

nk−1

−
c−1∑
ν=0

Xk−2 · δx1+ν
c
· ik−1(k − 2)! · (2π)−(k−1) ·

∞∑
n=1

sin(2πn(x2))
nk−1

There is a more succinct way to phrase the above formula. If we put, for
E = φk,x1,x2 and k even,

C(E) := ik−2 ·Xk−2 · δx1 · (k − 2)! · (2π)−(k−1)
∞∑
n=1

cos(2πnx2)
nk−1

and for k odd,

C(E) := ik−1 ·Xk−2 · δx1 · (k − 2)! · (2π)−(k−1)
∞∑
n=1

sin(2πnx2)
nk−1

and extend the definition by linearity to other Eisenstein series, we can
state:
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Corollary 3.17. For an Eisenstein series E = φk,x1,x2 and a matrix α =a b

c d

 ∈ GL+
2 (Q) as above, ξ′E(α) is 0 when c = 0, and when c 6= 0 it is

1 a

0 c

 |
σ|C(E|

1 a

0 c

σ)− C(E|

1 a

0 c

)



where σ =

0 −1

1 0

.
This result has another corollary which will be useful below:

Corollary 3.18. For an Eisenstein series E = φk,x1,x2 and a matrix α =a b

c d

 ∈ SL2(Z), we have

ξ′E(α) = α|C(E|α)− C(E)

Proof. We first check this property on generators of SL2(Z). For

0 −1

1 0

,
the result follows directly from the formula in the above corollary (with

a = 0 and c = 1). For

1 1

0 1

, we wish to show that ξ′E evaluates to

1 1

0 1

 |C(φk,x1,x1+x2)− C(φk,x1,x2)

Now if x1 6= 0, both terms above vanish by the definition of C(E). But
if x1 = 0, then the infinite sum in both terms is identical, so since the
polynomial term on the left is also unchanged, the two terms will cancel.

Since the above corollary states that ξ′E(

1 1

0 1

) is in fact 0, this shows

the desired result for the two generators of SL2(Z).
To show the result in general, we use the fact that

ξ′E(αβ) = ξ′E(α) + α|ξ′E|α(β)

for any α, β ∈ SL2(Z). (This is a consequence of the definition, Proposi-
tion 3.11, and Lemma 3.14.) If the desired property is satisfied for the two
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matrices α and β, then
ξ′E(αβ) = α|C(E|α)− C(E) + α|[β|C(E|αβ)− C(E|α)]

= αβ|C(E|αβ)− C(E)
This shows the desired result for all of SL2(Z). �

3.3. Primes Dividing the Denominators of Values of ξE. In this
section we wish to prove the following:

Lemma 3.19. Suppose E is an Eisenstein series of the form φk,x/N,y/N .
Then for any α ∈ SL2(Z), ξE(α) is a polynomial whose coefficients’ de-
nominators are divisible only by primes dividing N and primes less than or
equal to k + 1.

Proof. We begin by showing that this is true when α is one of the two
generators of SL2(Z). We begin by using Theorem 3.12 and Proposition 3.1
to compute

ξE(

1 1

0 1

) = Bk(x/N)
k

∫ 1

0
(tX + Y )k−2dt

Since the Bernoulli polynomial’s coefficients only have denominators divis-
ible by primes at most k+1 (a fact that follows from, for example, the Von
Staudt-Clausen Theorem), it is clear that our claim holds for this generator.

The other generator is σ =

0 −1

1 0

. To evaluate ξE on this generator

we use the equation SE = ξE + iξ′E , the equation SE(σ) = −FE(1), Propo-
sition 3.7, and the computation in the proof of Proposition 3.16. The result
is that ξE(σ) is a rational polynomial whose coefficients are 0 or are given
by the values of Bernoulli polynomials evaluated on x/N and y/N divided
by positive integers less than k. So the denominators of these coefficients
must be divisible only by primes dividing N and primes less than k. This
proves the claim for both generators.

Now to complete the proof, we use the fact that for any α, β ∈ SL2(Z),
(3.4) ξE(αβ) = ξE(α) + α|ξE|α(β)
(which follows from Proposition 3.11, Lemma 3.14, and the definitions). We
need to know that E|α satisfies the same hypotheses as E, which is clearly
true; and we need to know that the matrix action of α does not introduce
any new denominators, which is clearly true since α has integer entries and
determinant 1. This proves the desired result. �

Remark 3.20. Going carefully through the steps of the proof, we see that if
k+ 1 is prime, and relatively prime to N , then the only place this appears
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as a factor of any of the denominators is from the constant term of the
Bernoulli polynomial Bk. We will use this fact below.

3.4. The Eisenstein Series Associated to a Pair of Dirichlet Char-
acters.

Definition 3.21. Let ε1 and ε2 be two Dirichlet characters mod N1 and
N2 respectively; we do not assume they are primitive, but we assume that
N1 and N2 are not both 1 and that the product of the two characters is
odd when k is odd and even when k is even. Then for any integer k ≥ 2,
we define the Eisenstein series

E(k, ε1, ε2; z) :=
N2−1∑
x=0

N1−1∑
y=0

ε2(x)ε̄1(y)φ(k, xN2
,
y
N1

)(N2z)

Let K be the field generated over Q by the values of the two charac-
ters. Then E(k, ε1, ε2) ∈ Ek(K). In this section we compute the Fourier
expansion and the L-function of E(k, ε1, ε2).

Define, for any Dirichlet character ψ mod m,

ψ̂(n) :=
m−1∑
a=0

ψ(a)e2πian/m

Recall the definition

J(k, a, b; z) :=
∑

κ≡a (mod 1)
κ∈Q+

κk−1 ·
∞∑
m=1

e2πizmκe2πimb

We used this definition earlier (in Proposition 3.1) to state the Fourier
expansion of φk,x1,x2 . Now, to help compute the Fourier expansion of
E(k, ε1, ε2), we compute

N2−1∑
x=0

N1−1∑
y=0

ε2(x)ε̄1(y)J(k, x/N2, y/N1;N2z)

=
∞∑
m=1

N1−1∑
y=0

ε̄1(y)e2πim(y/N1)


N2−1∑

x=0

∑
κ≡x/N2 (mod 1)

κ∈Q+

κk−1ε2(x)e2πimN2zκ


=
∞∑
m=1

ˆ̄ε1(m) ·
N2−1∑
x=0

∑
h≡x (mod N2)

h∈Z+

hk−1 · 1
Nk−1

2
· ε2(x)e2πimzh

= N1−k
2

∞∑
m=1

ˆ̄ε1(m)
∞∑
h=1

hk−1ε2(h)e2πizmh
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= N1−k
2

∞∑
n=1

 ∑
mh=n
m,h∈Z+

ˆ̄ε1(m)hk−1ε2(h)

 qn
where in the last line, q = e2πiz.

Since ε̄1ε2 has the same sign as (−1)k, it follows that the corresponding
sum for (−1)kJ(k,−x/N2,−y/N1) will be the same as for J(k, x/N2, y/N1).
Using Proposition 3.1, this proves

Proposition 3.22. Let E = E(ε1, ε2) as above. Then

L(E, s) = −2N1−k
2 L( ˆ̄ε1, s)L(ε2, s− k + 1)

where the L-functions on the right are Dirichlet L-functions.

When ε1 is primitive, this construction is the same (up to scaling) as the
usual construction of the Eisenstein series associated to a pair of Dirichlet
characters, such as the one that can be found in [10].

3.5. Modular Symbols Attached to Eisenstein Series. >From now
on we will add the following hypotheses on our Eisenstein series E. We
assume that it is of the form −Nk−1

2
2 E(k, ε1, ε2) (in light of the above com-

putation for the Fourier expansion, the coefficient is a normalizing factor so
that a1 = 1). We also make two more assumptions on E. To state them, let
K be the field generated over Q by the Hecke eigenvalues of E, with ring of
integers OK . We suppose that there exists a prime ideal p ⊂ OK such that
at any cusp, the constant term of the Fourier expansion has positive p-adic
valuation. Finally, if we let p be the unique rational prime lying under p,
we suppose p > k.

We recall the definition of a modular symbol. Let Div0(P1(Q)) be the
group of degree zero divisors on the rational cusps of the upper half-
plane. Let A be a Q[M2(Z) ∩ GL+

2 (Q)]-module. We refer to a map as an
A-valued modular symbol over a congruence subgroup Γ if the map is a
Γ-homomorphism from degree zero divisors to elements of A.

Suppose that r is the greatest integer such that pr divides all the constant
terms at the cusps of E. By assumption, r is positive. Now we define a map

ME : Div0(P1(Q))→ Lk−2(K+/prOK,p)

where K+ means we are thinking of K as an additive group only, and OK,p
is the localization of OK at the prime ideal p. The map is defined as follows:

ME({b} − {a}) = ξE(γb)− ξE(γa)
where γb and γa are elements of SL2(Z) that map the cusp at infinity to
the cusps b and a, respectively.

Our goal is to show:
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Theorem 3.23. Let E, K, OK , p, OK,p, p, and r be as above. Let N1
and N2 be the moduli of ε1 and ε2, respectively, and suppose that p is
relatively prime to N , the least common multiple of N1 and N2. Then ME

is a modular symbol, over the same congruence subgroup Γ for which E is
modular, taking values in Lk−2(OK,p/prOK,p).

Proof. To begin with, we must show that the map is well-defined. In other
words, the matrices γb and γa are defined only up to multiplication by the
stabilizer of ∞ on the right, and the stabilizer of the specific cusp on the
left. We will show that for any cusp, choosing a different γ does not change
the value of ξE(γ) mod pr.

Let γa be a matrix in SL2(Z) that sends∞ to a cusp a. Let α be another
such matrix that stabilizes a, so that αγa also sends ∞ to a. But αγa =
γa(γ−1

a αγa), and γ−1
a αγa stabilizes ∞. So now it suffices to show that for

any choice of integer n, γa

1 n

0 1

 gives the same values mod pr as γa does

when evaluating ξE on them. Now by Equation (3.4) (and the definition of
ξE),

ξE(γa

1 n

0 1

)− ξE(γa) = γa|ξE|γa(

1 n

0 1

)

= a0(E|γa)
∫ n

0
γa|(tX + Y )k−2dt

where for the last line we have used Theorem 3.12 and the definition of ξE .
By choice of r, it is now clear (since p > k and the action of γa introduces no
denominators) that the coefficients of the last expression are p-adic integers
divisible by pr, which suffices to show that ME is well-defined.

The next step is to show that this is a Γ-homomorphism. This is a simple
computation using Equation (3.4): if a and b are any cusps, and γ ∈ Γ,

ME(γ({b} − {a})) = ξE(γγb)− ξE(γγa)

= γ|ξE(γb)− γ|ξE(γa)
which is the desired result. (We have used the fact that E|γ = E.)

The last step is to show that ME takes values with coefficients not just
in K, but with denominators not divisible by p. This is a consequence
of the fact that E is a half-integer multiple of an algebraic integer linear
combination of Eisenstein series satisfying Lemma 3.19, and the fact that
p > k and p and N are relatively prime. This shows the theorem when
p 6= k + 1.

To finish the proof, we must show this still holds in the case p = k + 1,
when p appears exactly once in the denominator of each of the constant
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coefficients of Bk(x/N2) (for 0 ≤ x ≤ N2−1). But now we use the definition
of E(k, ε1, ε2) to see that

a0(E) =
N2−1∑
x=0

N1−1∑
y=0

ε2(x)ε̄1(y)Bk(x/N2)/k

and so the constant coefficients will cancel when we take the sum of char-
acter values. A similar calculation shows the same result for a0(E|α) for
any α ∈ SL2(Z). This shows that p does not appear in the denominators of
ξE(α) even when p = k + 1, completing the proof. �

3.6. Hecke Operators and Modular Symbols. In this section E will
be an Eisenstein series satisfying the same assumptions as in the above
theorem. So far we have not discussed the action of Hecke operators on
modular symbols. In this section, now that we have defined the modular
symbol ME , we prove a result concerning the action of the Hecke operators
on it.

First we need the general definition of the Hecke operators. Following [5],
we define them using double coset operators. Let g be a matrix with positive
determinant and integer entries, and let Γ̃ be any congruence subgroup. The
double coset Γ̃gΓ̃ can be written as a finite disjoint union of right cosets of
the form Γ̃gj . We now write, for any modular symbol Φ,

Φ|T (g) =
∑
j

Φ|gj

where for a degree-zero divisor D, (Φ|gj)(D) = g−1
j |Φ(gD) (as we did be-

fore, we change the definition in [5] to account for the fact that our matrix
action on polynomials is a left action). For any prime `, the Hecke operator

T` arises from the matrix

1 0

0 `

. We also have, for any positive integer d,

the diamond operator 〈d〉 which arises from any element of Γ0(N) whose
lower right entry is congruent to d mod N . (Here N is the level of the
modular form we are acting on.)

This shows that the Hecke operators act on modular symbols in a similar
way to modular forms: as a sum of actions by matrices. For a cusp form f
and the corresponding modular symbol Mf , it is a fact stated in [5] (and
easily proved from the definitions) that for a matrix α ∈ GL+

2 (Q),

Mf |α = Mf |α

We will now prove the corresponding result for an Eisenstein series E:

Lemma 3.24. Let E be an Eisenstein series as in the above theorem, let
ME be the associated modular symbol, and let α ∈ GL+

2 (Q). Then for any
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degree-zero divisor of the form {b} − {a},
(ME |α)({b} − {a}) = ξE|α(γb)− ξE|α(γa)

where γb and γa are elements of SL2(Z) that map the cusp at infinity to the
cusps b and a, respectively.

Proof. This is a straightforward computation from the definitions (and also
Proposition 3.11 and Lemma 3.14):

(ME |α)({b} − {a}) = α−1|ME({αb} − {αa})
= α−1|[ξE(αγb)− ξE(αγa)]

= α−1|[ξE(α) + α|ξE|α(γb)− ξE(α)− α|ξE|α(γa)]
= ξE|α(γb)− ξE|α(γa)

�

Combining the above lemma with the fact that the Hecke operators can
be expressed as the sum of right actions of matrices, we arrive at the fol-
lowing:

Corollary 3.25. Let E be an Eisenstein series as above, and suppose that
E is a simultaneous eigenfunction for the Hecke operators T` (` prime) and
〈d〉. Then ME is also a simultaneous eigenfunction for the Hecke operators
with the same eigenvalues as E.

Proof. As implied above, this follows from the lemma and the definition
of the Hecke operators. We also use the fact that the ξE map respects
summing different Eisenstein series (in the sense that for two Eisenstein
series E1, E2 ∈ Ek(K), ξE1 + ξE2 = ξE1+E2) and also scalar multiplication.
These facts show that for any Hecke operator T with eigenvalue aT ,

aT ξE = ξE|T =
∑
j

ξE|gj

and then the definitions and the lemma show that for any cusps a and b,
(ME |T )({b} − {a}) =

∑
j

(ξE|gj (γb)− ξE|gj (γa)) = aTME({b} − {a})

�

4. Twisted Special Values

In this section we keep the same assumptions on E as we had at the
end of the previous section, which we restate here. We assume that it is of
the form −Nk−1

2
2 E(k, ε1, ε2) (the coefficient is a normalizing factor so that

a1 = 1). We also make two more assumptions on E. To state them, let K
be the field generated over Q by the Hecke eigenvalues of E, with ring of
integers OK . We suppose that there exists a prime ideal p ⊂ OK such that
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at any cusp, the constant term of the Fourier expansion has positive p-adic
valuation. Finally, if we let p be the unique rational prime lying under p,
we suppose p > k.

We know from the previous section that we can associate to E a modular
symbol ME . Let χ be a primitive Dirichlet character of conductor m. We
recall the definition of the twist operator Rχ on modular symbols. If Φ is
any modular symbol, then for any degree-zero divisor D,

(Φ|Rχ)(D) :=
m−1∑
a=0

χ̄(a)

1 a

0 m

−1

|Φ(

1 a

0 m

D)

As in [5], we refer to the “special values” attached to a modular symbol as
the evaluation of that modular symbol on the divisor {∞} − {0}.

4.1. Twisted Special Values on Boundary Symbols.

Definition 4.1. Let Div(P1(Q)) be the group of divisors on the rational
cusps of the upper half-plane. Let A be a Q[M2(Z)∩GL+

2 (Q)]-module. An
A-valued boundary symbol over a congruence subgroup Γ is a Γ-equivariant
homomorphism Div(P1(Q))→ A.

Comparing this definition with that of a modular symbol, it is clear
that all boundary symbols are modular symbols. Therefore we can apply
the twist operator to a boundary symbol when we restrict the boundary
symbol to degree-zero divisors. In this section we will let A = Lk−2(S)
where S is any ring in which (k − 2)! is invertible. The goal of this section
is to show that for any A-valued boundary symbol B, and any primitive
character χ of conductor m, we have (B|Rχ)({∞} − {0}) = 0, at least for
the group Γ1(N) with (N, pm) = 1. In practice, we will use the cases where
S = C or where S is a finite ring of characteristic p.

Our first result classifies polynomials fixed by certain elements stabilizing
the cusp at infinity.

Lemma 4.2. Let P be a homogeneous polynomial in X and Y of degree
k − 2 with coefficients in S. Suppose P is fixed under the SL2(Z)-action of

the matrix

1 n

0 1

. Suppose that n and (k − 2)! are invertible in S. The

P is of the form CXk−2 for some constant C ∈ S.

Proof. In general, P is of the form CXk−2 +ak−3X
k−3Y + · · ·+a1XY

k−3 +

a0Y
k−2. Meanwhile, we are assuming P is fixed by

1 n

0 1

. The action of
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a matrix of this form fixes X and sends Y 7→ nX + Y . So the action on P
gives a polynomial of the form

CXk−2 + ak−3X
k−3(nX + Y ) + · · ·+ a1X(nX + Y )k−3 + a0(nX + Y )k−2

Collecting all the Xk−2 terms together and using our hypothesis that P is
fixed under this action, we obtain the equation

ak−3n+ ak−4n
2 + · · ·+ a1n

k−3 + a0n
k−2 = 0

However, if this equation is true for one nonzero n, then by iterating the
matrix action, it is also true for all multiples of n. Choosing the multiples
n, 2n, . . . (k−2)n, we obtain a system of k−2 equations in ak−3, ak−2, . . . , a1,
a0 whose coefficient matrix is invertible (since its determinant will be a
power of n times a Vandermonde determinant of 1, 2, . . . , k − 2). This is
enough to show that ak−3, ak−2, . . . , a1, a0 are all zero, which completes the
proof. �

Observe that this lemma is much easier in characteristic zero than in
characteristic p, since we do not need any hypothesis on invertibility of n
or (k − 2)!.

Next we want an analogue of the lemma above that deals with the sta-
bilizer of general cusp. To deal with this case, we need to introduce some
notation. Thus let s denote a cusp of Γ. If γ ∈ SL2(Z) is such that γ(∞) = s,
then define a positive integer n = ns to be the smallest positive integer such

that γ

1 n

0 1

 γ−1 lies in Γ. Note that such a matrix necessarily lies in the

stabilizer of s. The integer n is sometimes called the width of the cusp s, at
least for regular cusps of Γ. We note that, once again, this piece of notation
is only relevant in dealing with characteristic p.

Lemma 4.3. Let P be a homogeneous polynomial in X and Y of degree k−2
with coefficients in S. Suppose P is fixed under the action of the stabilizer
in Γ of the cusp at a rational number a/c in lowest terms. Suppose that n
and (k − 2)! are invertible in S, where n = ns as above. Then P is of the
form C(aX + cY )k−2 for some constant C.

Proof. We have s = a/c in lowest terms, so that we may take γ =

a b

c d


to be a matrix with γ(∞) = s, where ad − bc = 1. By hypothesis, Γ

contains an element of the form γ

1 n

0 1

 γ−1, and this matrix lies in the

stabilizer of s in Γ. Now for a matrix of this form to fix P , we must have
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γ

1 n

0 1

 γ−1|P = P , which implies

1 n

0 1

 γ−1|P = γ−1|P.

This means that P ′ = γ−1|P and the integer n satisfy the hypotheses of
Lemma 4.2. Thus P ′ is of the form CXk−2 for a constant C and,

P =

a b

c d

 |CXk−2

= C(aX + cY )k−2

which is the desired result. �

Now we wish to specialize to the case where Γ = Γ1(N). The following
result is elementary.

Lemma 4.4. Suppose Γ = Γ1(N), where (N, p) = 1. Let s = a/c in lowest
terms be a rational cusp of Γ where c 6= 0 and (c,N) = 1. Then the following
statements hold:

• if s′ = a′/c with the same c, the cusps s′ and s are Γ-equivalent,
and
• we have n = ns = N , so that n is relatively prime to p.

Proof. For the first statement, we refer the reader to [3], Example 9.1.3,
page 76. For the second, we compute directly:a b

c d

1 n

0 1

 d −b

−c a

 =

1− acn a2n

−c2n 1 + acn


and this lies in Γ1(N) if and only if n is divisible by N , since (c,N) = 1 by
assumption. �

With all these results in hand, we can state the following useful result.

Theorem 4.5. Let B be an Lk−2(S)-valued boundary symbol for Γ =
Γ1(N), where S is any ring in which N and (k − 2)! are invertible. Let
χ be a primitive Dirichlet character of conductor m relatively prime to N .
Then (B|Rχ)({∞} − {0}) = 0.

Proof. From the definitions, we have

(B|Rχ)({∞} − {0}) =
m−1∑
a=0

χ̄(a)

1 −a/m

0 1/m

 |B(

1 a

0 m

 ({∞} − {0}))
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=
m−1∑
a=0

χ̄(a)

1 −a/m

0 1/m

 |B({∞})−
m−1∑
a=0

χ̄(a)

1 −a/m

0 1/m

 |B({ am})

where we may split the sum because B is a boundary symbol.
The key observation now is that if γ is a matrix in Γ that stabilizes a cusp

α, then it must also fix the polynomial B(α) under the matrix action. (This
follows directly from the Γ-homomorphism property.) So we may treat each
of the sums above using Lemmas 4.2 and 4.3.

For the first sum, we use Lemma 4.2 to conclude that B({∞}) is of the

form C1X
k−2. That polynomial is fixed under the action of

1 −a/m

0 1/m

,
so the first sum is a constant times Xk−2 times a sum of character values,
and thus is zero. For the second sum, we use Lemma 4.3 together with
Lemma 4.4, and argue in a similar manner. The point is that the constant
C provided by Lemma 4.3 is independent of a, since B is Γ-equivariant, and
all such cusps are Γ-equivalent according to Lemma 4.4. We need to know
also that the widths are invertible, which was checked in Lemma 4.4. �

4.2. Twisted Special Values Associated to E. Now we are able to
connect the modular symbol ME with the special values of L(E,χ, j), for
a primitive Dirichlet character χ, at the critical integers.

Theorem 4.6. Let E, k, ε1, ε2, N1, N2, p, p, and r be as above, and let χ
be a primitive Dirichlet character of conductor m, with m relatively prime
to both p and N , the least common multiple of N1 and N2. Then

(ME |Rχ)({∞}−{0}) ≡ τ(χ̄)
k−2∑
j=0

k − 2

j

 · ij ·mj ·DE⊗χ(1 + j) ·XjY k−2−j

where the equivalence is mod pr where p is understood to be an ideal of the
ring of integers of K[χ] localized at a prime above p.

Proof. We begin by computing from the definitions:

(ME |Rχ)({∞} − {0}) =
m−1∑
a=0

χ̄(a)

1 −a/m

0 1/m

 |ME({∞} − { am})

=
m−1∑
a=0

χ̄(a)

m −a

0 1

1/m 0

0 1/m

 |[ξE(

1 0

0 1

− ξE(γa/m)]
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where γa/m is a matrix of the form

 a ba

m da

 of determinant 1, i.e. it is an

element of SL2(Z) that carries ∞ to a
m . Since ξE(

1 0

0 1

) = 0, the sum is

equal to

−mk−2
m−1∑
a=0

χ̄(a)

m −a

0 1

 |ξE(γa/m)

Now we claim that

−
m−1∑
a=0

χ̄(a)

m −a

0 1

 |ξ′E(γa/m) = 0

To prove the claim, we define a map BE on divisors on cusps: for a cusp
α,

BE(α) := γα|C(E|γα)
where C(E) is as defined in the previous section, and we extend linearly
to other divisors. It is elementary to check that this map is a well-defined
Γ-homomorphism, where Γ is the congruence subgroup that stabilizes E;
so now we can use Theorem 4.5 to conclude that

(BE |Rχ)({∞} − {0}) = 0
But computing from the definitions and Corollary 3.18, we see that

0 = (BE |Rχ)({∞} − {0}) =
m−1∑
a=0

χ̄(a)

m −a

0 1

 |[BE({∞})−BE({ am})]

=
m−1∑
a=0

χ̄(a)

m −a

0 1

 |[BE({∞})−BE({ am})]

=
m−1∑
a=0

χ̄(a)

m −a

0 1

 |[C(E)− γa/m|C(E|γa/m)]

= −
m−1∑
a=0

χ̄(a)

m −a

0 1

 |ξ′E(γa/m)

which proves the claim.
The claim shows that

−mk−2
m−1∑
a=0

χ̄(a)

m −a

0 1

 |ξE(γa/m)
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= −mk−2
m−1∑
a=0

χ̄(a)

m −a

0 1

 |SE(γa/m)

From here we carry out the computation using Theorem 3.12, which says
that

SE(γa/m) = a0(E)
∫ a/m

0
(tX + Y )k−2dt

+a0(E|γa/m)
∫ 0

−da/m
γa/m|(tX + Y )k−2dt

−

1 a

0 m

 |F
E|

1 a

0 m

(1)

The first two terms of the sum are p-integral and divisible by pr, by our
assumption on E. (In order to know this, we need to know that the integrals
contain no terms with negative p-adic valuation. That is implied by the
hypotheses that p and m are relatively prime and also that p > k−1.) The
matrix action in the definition of the twist operator will not change these
facts since it introduces no denominators.

We now wish to treat the sum

mk−2
m−1∑
a=0

χ̄(a)

m −a

0 1

1 a

0 m

 |F
E|

1 a

0 m

(1)

= mk−2
m−1∑
a=0

χ̄(a)

m 0

0 m

 | k−2∑
j=0

k − 2

j

·ij ·D
E|

1 a

0 m

(1+j)·XjY k−2−j

by Proposition 2.3. Then we apply the definition of matrices acting on
polynomials and switch the order of summation to obtain

k−2∑
j=0

k − 2

j

 · ij ·∑
a

χ̄(a)D
E|

1 a

0 m

(1 + j) ·XjY k−2−j

Now we use Lemma 2.9 with s = j + 1; the resulting sum is

τ(χ̄)
k−2∑
j=0

k − 2

j

 · ij ·mj ·DE⊗χ(1 + j)XjY k−2−j
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Since the first two terms reduce to 0 mod pr, this is exactly the desired
result. �

Corollary 4.7. With all notation the same as in the above theorem,

(ME |Rχ)({∞} − {0})

≡
k−2∑
j=0

(−1)j+1

k − 2

j

 · j! ·mj · τ(χ̄)L(E,χ,1+j)
(2πi)j+1 ·XjY k−2−j

where the equivalence is mod pr where p is understood to be an ideal of the
ring of integers of K[χ] localized at a prime above p.

Proof. Combine the above theorem with Proposition 2.1. �

4.3. The Sign of E and the Action of ι. We keep the same assumptions

on E as earlier in this section. Recall the matrix ι =

1 0

0 −1

 and consider

the degree-zero divisor

ΛE(χ) :=
m−1∑
a=0

χ̄(a)({∞} − { am})

For any a, b ∈ P1(Q), the action of ι on a degree-zero divisor {b}−{a} is

({b} − {a})ι = {−b} − {−a}

(see, for example, [2] or [17]). We are going to obtain identities involving
the twisted special values computed above by considering the polynomial
ME(ΛE(χ)ι) for an arbitrary primitive character χ.

By the above, we have

ΛE(χ)ι =
∑
a

χ̄(a)({∞} − {− a
m})

and so
ΛE(χ)ι = χ(−1)

∑
a

χ̄(−a)({∞} − {− a
m})

This means
ME(ΛE(χ)ι) = sgn(χ)ME(ΛE(χ))

Now recall that E is of the form E(k, ε1, ε2). We define the sign of E to
be −ε1(−1). (This is the same definition as in [16]. Note that it does not
change with the weight of E.)

Lemma 4.8. For any E as above and any degree-zero divisor d,

ME(dι) = sgn(E) · ι|ME(d)
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Proof. If {α} is a cusp, ι sends it to {−α}. If we let γα =

a b

c d

 be an

element of SL2(Z) mapping {∞} to {α}, then an element mapping {∞} to

{−α} is

 a −b

−c d

 = ι−1γαι. We will show that

ξE(ι−1γαι) = sgn(E) · ι|ξE(γα)

and then the definition of ME will imply the lemma. To show the identity
claimed above, we simply compute directly:

ξE(ι−1γαι) = 1
2(SE(ι−1γαι) + SιE(ι−1γαι))

= 1
2(SE(ι−1γαι) + (−1)k−1ι|SE|ι(γα))

Because the action of ι on Eisenstein series and on polynomials is an invo-
lution, this is equal to

1
2 ι|(ι|S(E|ι)|ι(ι−1γαι) + (−1)k−1SE|ι(γα))

= (−1)k−1 1
2 ι|[SE|ι(γα) + (−1)k−1ι|S(E|ι)|ι(ι−1γαι)]

= (−1)k−1ι|ξE|ι(γα)

Now using the fact that E = E(k, ε1, ε2) and the definition of the ι-action
on E, we see that E|ι = (−1)kε1(−1)E, so this shows the claim and hence
the lemma. �

If we combine the lemma with the equation immediately before it, we
see that we now have two different ways of computing ME(ΛE(χ)ι), so the
results are equal:

sgn(χ)ME(ΛE(χ)) = sgn(E) · ι|ME(ΛE(χ))

On the right-hand side, ι acts as (−1)k times the involution on polynomials
Y 7→ −Y . So any term with the power of Y having the same parity as the
weight will be fixed by the involution, and any term with the power of Y
having opposite parity as the weight will be negated by it. This shows the
following:

Proposition 4.9. Let E and χ be as above, and consider the polyno-
mial ME(ΛE(χ)). If sgn(E) = sgn(χ), then the coefficients of the terms
XjY k−2−j with 0 ≤ j ≤ k − 2 with j odd are all zero. If sgn(E) 6= sgn(χ),
then the coefficients of the terms XjY k−2−j with 0 ≤ j ≤ k− 2 with j even
are all zero.
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Remark 4.10. In weight 2, where there is only one term, a constant times
X0Y 0, this proposition implies that ME(ΛE(χ)) can be nonzero only if
sgn(E) = sgn(χ), and is always zero when the signs do not match. This
was already known in weight 2—see, for example, [16].

5. The Congruence Theorem

The foregoing results were obtained in order to show congruence results
concerning the special values of the L-functions of a cusp form and a con-
gruent Eisenstein series. (We will explain below what it means for two
modular forms to be congruent mod a prime.)

In this section we keep the same assumptions on E as we had at the
end of the previous section, which we restate here. We assume that it is of
the form −Nk−1

2
2 E(k, ε1, ε2) (the coefficient is a normalizing factor so that

a1 = 1). We also make two more assumptions on E. To state them, let K
be the field generated over Q by the Hecke eigenvalues of E, with ring of
integers OK . We suppose that there exists a prime ideal p ⊂ OK such that
at any cusp, the constant term of the Fourier expansion has positive p-adic
valuation. Finally, if we let p be the unique rational prime lying under p,
we suppose p > k.

We now begin with the following:

Theorem 5.1. Let E be as above. Then the modular symbol ME is not
identically zero mod p.

Proof. We will show that there exists a character χ such that the χ-twisted
special value of ME is indivisible by p. To do this, we shall use the cal-
culation of special values above, together with a result of Friedman and
Washington on indivisibility of twisted Bernoulli numbers. Let ` denote an
odd prime which we will specify later, and let χ denote a primitive Dirichlet
character of `-power conductor `n with n large. We assume that χ = χt ·χw
where χt is some fixed character (independent of n) and χw has order `n
(for large n). The character χt will have parity depending on the sign of E.

Then we may apply Proposition 6.1 and Corollary 4.7 to determine
the p-adic divisibility of the coefficients of the χ-twisted special value of
ME . Combining these results shows that the coefficient of XjY k−j−2 is
the product of three types of term: elementary explicit constants, Euler
products over primes q|N1N2, and twisted Bernoulli numbers Bj+1(ε̃1χ)
and Bk−j−1(ε̃2χ). We want to show that for suitable ` and large n, that
all these quantities are p-adic units. This is obvious in the case of the ele-
mentary constants for all ` 6= p and any n, since p > k. In the case of the
Euler factors, it is evident that, since the `-power roots of unity are distinct
modulo p, then for any given ` there are only finitely many integers n such
that terms of the form 1 − ε̃1(q)χ(q)

qj+1 or 1 − ε̃2(q)χ(q)qk−j are congruent to
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zero modulo p. It remains to deal with the Bernoulli numbers, and this we
do by appealing to a theorem of Friedman and Washington.

The main idea is very simple. We want to show that we can choose χ such
that Bj(ε̃1χ) and Bk−j−1(ε̃2χ) are both units, for any convenient choice of
j. This is a well-known fact, but unfortunately the precise statement has
many cases, because of trivial vanishing of twisted Bernoulli numbers if the
parities are not exactly correct (Bj(ν) = 0 if ν and j have opposite parity).

Let us start with the case of even weight, and the sub-case the characters
ε1 and ε2 are both odd. In this case the result is most easily phrased for
the coefficient of Y k−2, so that j = 0. Then we are dealing with L(E,χ, 1),
and the Bernoulli numbers are B1(ε̃1χ) ·Bk−1(ε̃2χ). We want to know that
these are p-adic units for suitable ` and n and χ. We take χt (and hence
χ) to be even. Then the required result follows directly from [4], especially
the remark at the end of the proof of Lemma 3 on page 432, and a brief
translation of the notation from section 1 of that paper.

It remains to treat the sub-case where ε1 and ε2 are even, and the case
of odd weight and the corresponding subcases of that, depending on the
(opposite) parities of the εi. The arguments are entirely similar and we omit
them. For instance, in the remaining case of even weight, we take χt and
hence χ to be odd (since the sign of E is minus, in this case), and again
j = 0 works as before. �

Now let f be a normalized (meaning a1 = 1) cuspidal eigenform of the
same weight and level as E. We will also assume that f is congruent to E
mod pr in the following sense. If f =

∑
anq

n and E =
∑
bnq

n are given
by the standard Fourier expansions in terms of q = e2πiz, we say that E
and f are congruent modulo pr if an ≡ bn (mod pr) for all n ≥ 1 and pr

divides the constant terms of the Fourier expansions of E at all cusps. Here
we understand that p is a prime of residue characteristic p in the ring of
integers of a number field K containing the Fourier coefficients of E and f .

With this definition, we can finally state our main result:

Theorem 5.2. Let f and E be a cusp form and an Eisenstein series re-
spectively, of the same weight k ≥ 2 and level N , with E ≡ f (mod p), and
(N, p) = 1, and p > k. Then there exists a canonical period Ωsgn(E)

f for f
and a p-adic unit ΩE such that the following statement holds:

Let χ be a primitive Dirichlet character of conductor m, with m prime to
both N and p. Then for all positive integers j < k with (−1)j−1 · χ(−1) =
sgn(E), we will have

τ(χ̄)L(f, χ, j)
(2πi)j−1Ωsgn(E)

f

≡ −τ(χ̄)L(E,χ, j)
(2πi)jΩE

(mod pr).
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Proof. Let Mf denote the modular symbol associated to f in Section 2.
Let Mf = M+

f + M−f denote the decomposition of Mf into eigenspaces
for the involution ι, and write M±f = NfΩ±f , where Ω±f are periods of
f selected so that the modular symbols N±f are K-rational. The precise
normalization of the periods is delicate, and we proceed as follows. If Γ is
any congruence subgroup and A is a Γ-module, then there is a map which
we denote δ = δA from the space of A-valued modular symbols for Γ to the
cohomology group H1(Γ, A), as explained in [5]. The image of this map is
the parabolic cohomology group, and the kernel is the group of A-valued
boundary symbols.

In the case at hand, we select the periods Ω±f so that the cohomology
classes δ(N±f ) = δ(Nf )± lie inH1(Γ, Lk−2(OK,p)), where O denotes the ring
of integers of K, and such that δ(Nf )± are nonzero modulo p. We remark
here that this definition is rendered somewhat complicated by the fact that
the group H1(Γ, Lk−2(OK,p)) may have nontrivial torsion and may not be
a lattice inside the rational cohomology. In fact there is no torsion to worry
about: since we have (N, p) = 1 and we are dealing with an Eisenstein prime
p which is therefore ordinary, we may apply of the results of Hida (see for
instance [7], Lemma 4.6), which state that the ordinary part of the integral
cohomology is torsion-free and therefore forms a lattice inside the rational
cohomology. We note also that Hida assumes p ≥ 5; this assumption holds
in our case since p > k ≥ 3. (One could also address the issue of torsion via
a multiplicity one theorem, as in equation (5.1) below and the discussion at
the end of the present proof, but an elementary argument via Hida theory
seems to be preferable.) Thus this definition makes sense, and is consistent
with the definition of canonical periods given in [18].

With this normalization the periods Ω±f are determined up to some p-
adic unit. We caution the reader however that it is not apparent whether
or not the modular symbols N±f themselves are integral.

Now let ME denote the modular symbol on Γ1(N) with values in
Lk−2(O/pr) associated to E that was constructed in Section 3. According
to Theorem 5.1, ME is nonzero. Furthermore, we have proven in Section
4 that ME is an eigenvector for ι with eigenvalue given by the sign of E.
Thus we have cohomology classes δ(Nf )sgn(E) and δ(ME) with values in
Lk−2(O/pr), where the bar denotes reduction modulo pr. Then we claim
that

(5.1) c · δ(Nf )sgn(E) = δ(ME)

where c is a unit in O/pr.
Let us admit this claim for the moment and see how to complete the

proof. We wish to lift the cohomology classes δ(ME) and δ(Nf )sgn(E) to
modular symbols over O/pr. In the case of the Eisenstein class, we have
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the obvious lift ME itself. However, as we have remarked above, it is not
clear that Nf is integral, so we cannot simply lift δ(Nf )sgn(E) to Nf

sgn(E),
since Nf

sgn(E) does not make sense. We argue instead as follows. The map
from integral modular symbols to integral cohomology classes is surjective.
Since Nf was defined such that δ(Nf )± lies in the integral cohomology
group, there exists some integral modular symbol A±f such that δ(Af )± =
δ(Nf )±. So we may write N±f = A±f +B±f where Bf is a rational boundary
symbol. By definition δ(Af )± = δ(Nf )±, so we may lift the cohomology
class δ(Nf )sgn(E) to the modular symbol Af

sgn(E).
Since we have δ(Af )sgn(E) = δ(Nf )sgn(E), the claim (5.1) implies that

ME − c ·Af
sgn(E) is a boundary symbol. Applying Theorem 4.5 in charac-

teristic p, we find that the special values of ME coincide with the special
values of Af

sgn(E). The former special values have already been computed
in terms of the special values of E, so it remains to compute the special
values of Af

sgn(E). But since we have Nf = Af +Bf where Bf is a rational
boundary symbol, we may apply Theorem 4.5 again, this time in charac-
teristic zero, to conclude that the special values of Af coincide with those
of Nf . Since the special values of Nf are L-values of f , our theorem follows
if we take ΩE to be a fixed lift of the unit c to O.

It remains therefore to prove the claim. In the case of weight two, it turns
out that H1

p (Γ,O/pr)[m] is isomorphic to a subgroup of the étale part of
a certain group scheme occurring as a subgroup of J1(N, p)[p∞], and the
claim is equivalent to a multiplicity one statement for this subgroup, which
is proved in [19], Theorem 2.1 (and see also [18], Theorem 2.7). The case
of weight k may be reduced to that of weight 2 and J1(Np) by a routine
application of Hida theory as developed in [7], Section 4. We omit the
details of the reduction to weight 2, since they are entirely standard. It is
relevant however to point out that the computed value of sgn(E) is crucial
to distinguish the étale and multiplicative parts of the subgroup schemes
in question. �

Remark 5.3. A different and self-contained proof of the multiplicity one
statement which holds in all weights has recently been given by Hirano [8]
Remark 5.4. As should be clear from the somewhat contorted proof of
the congruence theorem above, the precise normalization of the periods of
the cusp form f is a somewhat delicate matter. It would be natural, for
instance, to normalize the modular symbol of f so that it is integral and
nonzero modulo p; however as we have already remarked, it is not clear in
this case whether or not the modular symbol maps to zero in cohomology.
In principle, this normalization may be different from the one given above,
but it turns out in fact that both normalizations are the same: as we have
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recently learned, this follows from a result of Bellaïche and Dasgupta [1],
Proposition 2.9, which states, roughly speaking, that the boundary symbols
lie in the opposite eigenspace for the involution ι from the modular symbols
of interest. One can use this result to simplify the arguments to a certain
extent, since all issues of lifting cohomology classes to modular symbols are
eliminated, but we have preferred to give a more self-contained treatment.

Remark 5.5. One could also consider a variant of the congruence theorem
where we have a pair of congruent cusp forms, and the congruence prime
is Eisenstein. This case was excluded in [18] for technical reasons. However
it is clear from the proof of Theorem 5.2 that an entirely analogous result
holds in this case too. We leave it to the reader to formulate the statement.

6. Computing Special Values

At the end of this section we will exhibit some computed examples of
twisted special values attached to cusp forms and Eisenstein series. But
first we must explain how these computations were done.

In order to compute the special values
τ(χ)L(f, χ, j)
(2πi)j−1Ω±f

we used the computational method of modular symbols outlined in [15],
Chapter 8. The details are standard, and we omit them. The only point
we wish to make is to clarify how the periods were normalized: they are
selected so that the special values are all integral, and at least one special
value is a unit (see Remark [1]. In the cases tabulated below, the forms
all have rational Fourier coefficients, so the normalization is particularly
simple.

As for the Eisenstein series, we use a standard closed form arising from
the connection between L(E,χ, s) and classical Dirichlet L-functions, since
it is well known that when E is an eigenfunction, that we can find two
Dirichlet characters ε1 and ε2 (not necessarily nontrivial or primitive) such
that

L(E, s) = L(ε1, s)L(ε2, s− k + 1)
(For full details, see [10], chapter 4, in particular section 4.7.)

Now let χ be a nontrivial primitive Dirichlet character. Since χ is totally
multiplicative, we have

L(E,χ, s) = L(χε1, s)L(χε2, s− k + 1)

Then we can evaluate L(E,χ, s) at the critical integers simply by evaluating
the Dirichlet L-functions on the right-hand side of the above equation. This
can be done using standard formulas for Dirichlet L-functions (which can
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be found in [11], chapter 10, or Section 3.3 of [16]). The final result is stated
below.

Proposition 6.1. Let E, ε1, and ε2 be as above, and let N1 and N2 be the
conductors of ε1 and ε2 (though the characters need not be primitive). Let
χ be a primitive Dirichlet character of conductor m. Let ε̃1 and ε̃2 be the
primitive characters that induce ε1 and ε2 respectively, and let Ñi denote
the corresponding conductors. Let j be an integer strictly between 0 and the
weight of E such that ε1χ has the same sign as (−1)j. Then

τ(χ̄)L(E,χ, j)/(2πi)j

= (−i)jτ(χ̄)τ(ε̃1χ) · Cj ·Bj(ε̃1χ) ·Bk−j(ε̃2χ)

·
∏

q|mN1

(1− ε̃1(q)χ(q)
qj

) ·
∏

q|mN2

(1− ε̃2(q)χ(q)qk−j−1)

where if j is odd,

Cj = (−i) · 2−j · (mÑ1)1−j · ( j−1
2 )!−1 · [(−1

2 )(−3
2 ) · · · (2−j

2 )]−1 · 1
j(k−j)

and if j is even,

Cj = 2−j · (mÑ1)−j · ( j2 − 1)!−1 · [(−1
2 )(−3

2 ) · · · (1−j
2 )]−1 · 1

j(k−j)

Remark 6.2. For critical integers not meeting the condition that ε1χ has
the same sign as (−1)j , L(E,χ, j) is zero due to a trivial zero arising from
the Dirichlet L-functions.

Corollary 6.3. With all notation as in the above proposition, including
the definition of Cj, we have DE⊗χ(j) equal to i · j! · τ(ε̃1χ) · Cj times

Bj(ε̃1χ) ·Bk−j(ε̃2χ) ·
∏

q|mN1

(1− ε̃1(q)χ(q)
qj

) ·
∏

q|mN2

(1− ε̃2(q)χ(q)qk−j−1)

Proof. Use the above proposition and Proposition 2.1. �

With this in hand, we can give specific examples of a cusp form and a
congruent Eisenstein series (mod a prime p specified below).

In the first 3 tables, f is the unique newform of weight 4 and level Γ0(5),
and E is a congruent Eisenstein series whose L-function is the product of
Dirichlet L-functions L(ε5, s)L(ε1, s − 3), where εj refers to the principal
character mod j. In the tables, m refers to the conductor of a primitive
quadratic character. In the first and third tables, the character is odd; in
the second table it is even. In the last column, p refers to the prime such
that E ≡ f (mod p); in this case p = 13 (and we exclude characters with
13|m). The “ratio mod p” is the ratio of the second column to the third
column. We have stated the results in this way in order to exhibit the the
unit ΩE in the theorem.
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m τ(χ)L(f,χ,1)
Ω−

τ(χ)L(E,χ,1)
2πi

Ratio mod
p

3 100 -2/45 12

4 -100 -1/10 12

7 300 -48/35 12

8 800 -9/5 12

11 -2400 -12/5 12

15 -400 -16 12

19 -8800 -44/5 12

20 -1400 -30 12

23 5900 -432/5 12

24 -10800 -184/5 12

m τ(χ)L(f,χ,2)
2πiΩ−

τ(χ)L(E,χ,2)
(2πi)2

Ratio mod
p

8 0 13/200 N/A

12 0 13/75 N/A

17 0 208/425 N/A

21 -300/7 64/175 12

24 -50/3 18/25 12

28 0 -208/175 N/A

29 -400/29 432/725 12

33 0 624/275 N/A

37 0 52/37 N/A
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m τ(χ)L(f,χ,3)
(2πi)2Ω−

τ(χ)L(E,χ,3)
(2πi)3 Ratio mod p

3 -10/9 -7/3375 12

4 -5/8 -31/8000 12

7 -30/49 -72/6125 12

8 -5/4 -189/16000 12

11 -240/121 -186/15125 12

15 -8/9 -8/225 12

19 -880/361 -682/45125 12

20 -7/4 -3/80 12

23 -590/529 -4536/66125 12

24 -15/8 -713/18000 12

In these last 3 tables, f is the unique newform of weight 4 and
level Γ0(7). E is the Eisenstein series whose L-function is given by L(ε7, s)
L(ε1, s− 3). This time p = 5 (and we exclude characters with 5|m).

m τ(χ)L(f,χ,1)
Ω−

τ(χ)L(E,χ,1)
2πi Ratio mod p

3 49 -2/63 4

4 -147 -1/7 4

7 49 -8/7 4

8 -539 -12/7 4

11 -1568 -24/7 4

19 6713 -66/7 4

23 -6272 -576/7 4

24 11368 -276/7 4
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m τ(χ)L(f,χ,2)
2πiΩ−

τ(χ)L(E,χ,2)
(2πi)2 Ratio mod p

8 49/8 3/49 4

12 0 25/147 N/A

13 0 100/637 N/A

17 0 400/833 N/A

21 56/3 8/21 4

24 0 75/98 N/A

28 7/2 8/7 4

29 784/29 864/1421 4

33 0 1200/539 N/A

37 0 2400/1813 N/A

m τ(χ)L(f,χ,3)
(2πi)2Ω−

τ(χ)L(E,χ,3)
(2πi)3 Ratio mod p

3 7/18 -19/9261 4

4 21/32 -43/10976 4

7 1/2 -4/343 4

8 77/128 -129/10976 4

11 112/121 -516/41503 4

19 959/722 -99/6517 4

23 448/529 -12384/181447 4

24 203/144 -437/10976 4
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