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On the structure of the Galois group of the
Abelian closure of a number field

par Georges GRAS

Résumé. A partir d’un article de A. Angelakis et P. Steven-
hagen sur la détermination d’une famille de corps quadratiques
imaginaires K ayant des groupes de Galois Abéliens absolus AK

isomorphes, nous étudions une telle question pour les corps de
nombres K quelconques. Nous montrons que ce type de propriété
n’est probablement pas facilement généralisable, en dehors des
corps quadratiques imaginaires, en raison d’obstructions p-adiques
provenant des unités globales de K. En se restreignant aux p-
sous-groupes de Sylow de AK et en admettant la conjecture de
Leopoldt nous montrons que l’étude correspondante est liée à une
généralisation de la notion classique de corps p-rationnel que nous
approfondissons, y compris au point de vue numérique pour les
corps quadratiques.
Cependant nous obtenons (Théorèmes 2.1 et 3.1) des informa-
tions non triviales sur la structure de AK , pour tout corps de
nombres K, par application de résultats de notre livre sur la théo-
rie p-adique du corps de classes global.

Abstract. From a paper by A. Angelakis and P. Stevenhagen
on the determination of a family of imaginary quadratic fields K
having isomorphic absolute Abelian Galois groups AK , we study
any such issue for arbitrary number fields K. We show that this
kind of property is probably not easily generalizable, apart from
imaginary quadratic fields, because of some p-adic obstructions
coming from the global units of K. By restriction to the p-Sylow
subgroups of AK and assuming the Leopoldt conjecture we show
that the corresponding study is related to a generalization of the
classical notion of p-rational field that we deepen, including nu-
merical viewpoint for quadratic fields.
However we obtain (Theorems 2.1 and 3.1) non-trivial information
about the structure of AK , for any number field K, by application
of results of our book on the p-adic global class field theory.
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Mots clefs. Class field theory; Abelian closures of number fields; p-ramification; p-rational
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1. Introduction – Notation

Let K be a number field of signature (r1, r2), so that r1 +2 r2 = [K : Q],
and let AK be the Galois group Gal

(
Kab/K

)
where Kab is the maximal

Abelian pro-extension of K.

1.1. Statement of the problem. The question that was asked was the
following: in what circumstances the groups AK1 and AK2 are isomorphic
profinite groups when K1 and K2 are two non-conjugate number fields ?

A first paper on this subject was published in [15] by M. Onabe from the
work of T. Kubota [12] using the difficult approach with Ulm invariants.
In [1], using class field theory, A. Angelakis and P. Stevenhagen show that
AK ' Ẑ2 ×

∏
n≥1

Z/nZ for a specific family of imaginary quadratic fields,
conjecturally infinite. In this paper we prove that for any number field K
(under the Leopoldt conjecture for all primes), AK contains a subgroup
isomorphic to

Ẑr2+1×
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
,

where δ = 1 if K contains
√
±2 but not

√
−1 , δ = 0 otherwise, and where

w =
∏

p prime
wp is an integer whose local factors wp depend simply on the

intersections K ∩ Q(µp∞) (see Definition 2.3); then we give a class field
theory interpretation of the quotient of AK by this subgroup, by showing
that this quotient is isomorphic to

∏
p
Tp where each p-group Tp is finite and

measures the defect of p-rationality of K (see Definition 2.1).
Such isomorphisms about AK are only (non-unique) isomorphisms of

Abelian profinite groups for which Galois theory and, a fortiori, descrip-
tion of arithmetical objects (e.g. decomposition and inertia groups) are not
effective. When an isomorphism is canonical (essentially if it is induced by
the reciprocity map of class field theory), we shall write can' contrary to the
non-canonical case denoted nc' if necessary.

1.2. Local notation. Let p be a prime number. In a general setting, the
notation G(p) (resp. L(p)) refers to the p-Sylow subgroup of an Abelian
profinite Galois group G (resp. the maximal p-subextension of an Abelian
extension L), over K, and Op refers to any other object depending on p.
Let

H(p), Hpra
(p) , Hta

(p), K̂(p),

be the p-Hilbert class field in ordinary sense 1, the maximal p-ramified (i.e.,
unramified outside p) Abelian pro-p-extension of K in ordinary sense, the

1Maximal Abelian p-extension of K, unramified at finite places, in which (when p = 2) the
finite real places do not complexify (= do not “ramify”).
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maximal tamely ramified Abelian pro-p-extension of K in restricted sense 2,
the compositum of the Zp-extensions of K, respectively.

Since we shall assume that the Leopoldt conjecture is satisfied in K for
all p, the notation K̂(p) makes sense if we define K̂ as the maximal Ẑ-
extension of K, for which we have by assumption Gal

(
K̂/K

)
' Ẑr2+1, with

Gal
(
K̂(p)/K

)
' Zr2+1

p since Ẑ(p) ' Zp for all p.
Then let

Tp := Gal
(
Hpra

(p) /K̂(p)
)

and C̀ (p) := Gal
(
H(p)/K

)
,

C̀ (p) being canonically isomorphic to the p-class group of K in ordinary
sense. Note that a priori Tp is not the localisation of a known arithmetical
invariant similar as a class group. For some recalls about the finite group
Tp, see § 3.4.

For any finite place v of K, we denote by Kv the completion 3 of K at v,
then by

Uv := {u ∈ Kv, |u |v = 1} and U1
v := {u ∈ Uv, |u− 1 |v < 1},

the unit group and principal unit group of Kv, respectively. So, Uv/U1
v is

isomorphic to the multiplicative group of the residue field Fv of K at v. We
shall denote by ` the characteristic of Fv; then U1

v is a Z`-module.
If v is a real infinite place, we put Kv = R, Uv = R×, U1

v = R×+, hence
F×v = {±1}, according to [5], I.3.1.2.

Denote by µ(k) (resp. µp(k)) the group of roots of unity (resp. the group
of roots of unity of p-power order) of any field k.

It is well known (using Hensel lemma) that, for a finite place v, we have
µ(Kv) ' F×v × µ1

v, where µ1
v is the torsion subgroup of the Z`-module U1

v ;
thus µ1

v is a finite `-group.
So µp(Kv) ' F×v,(p) if and only if v -p and µp(Kv) = µ1

v if and only if v|p.

If v is a real infinite place, we then have µ(Kv) ' F×v , hence µ1
v = 1.

With the above definitions, the structure of Gal
(
Hpra

(p) /K
)
is summarized

by the following diagram, from [5], III.2.6.1, Fig. 2.2, under the Leopoldt
conjecture for p in K, where E is the group of global units of K and where
E⊗Zp is diagonally embedded in

∏
v | p U

1
v from the obvious map (injective

under the Leopoldt conjecture) ip := (iv)v | p:

2 i.e., the real infinite places may be complexified (= “ramified”) in Hta
(2).

3As in [5], I, § 2, we consider that Kv = iv(K)Q` ⊂ C` for a suitable embedding iv of K in C`
(iv is defined up to the Q`-isomorphisms of Kv in C`), where ` is the residue characteristic.
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Tp

Zr2+1
p

C̀(p)

∏
v | pU

1
v

/
E⊗Zp

Hpra
(p)K̂(p)H(p)K̂(p)

H(p)K̂(p)∩H(p)

K

1.3. Some p-adic logarithms. To characterize the notion of p-rationality
in a computational point of view (see Definition 2.1 and Remark 2.1), we
shall make use of suitable p-adic logarithms as follows ([5], III.2.2):

(i) We consider the p-adic logarithm logp : K× −→
∏
v | pKv defined by

logp = log ◦ ip on K×, where log : C×p −→ Cp is the Iwasawa extension of
the usual p-adic logarithm.

(ii) We then define the Qp-vector space Lp :=
∏
v | pKv

/
Qplogp(E). We

have dimQp(Lp) = r2 + 1 under the Leopoldt conjecture for p in K.
(iii) Finally, we denote by Logp the map, from the group Ip of ideals of

K prime to p, to Lp, sending a ∈ Ip to Logp(a) defined as follows: let m 6= 0
be such that am = (α), α ∈ K×; we set Logp(a) := 1

m logp(α) + Qplogp(E).
This does not depend on the choices of m and α.

2. Structure of AK := Gal
(
Kab/K

)
2.1. Class field theory – Fundamental diagram – p-rationality.
Let p be a prime number and let Kab

(p) ⊂ Kab be the maximal Abelian
pro-p-extension of K. From [9], § 2.7, we have given in [5], III.4.4.1, III.4.4.5
(assuming the Leopoldt conjecture for p in K) the following diagram for
the structure of Gal

(
Kab

(p)/K
)
isomorphic to the p-Sylow subgroup of AK :∏

v - p F
×
v,(p)

∏
v | p U

1
v

E⊗Zp
Kab

(p)M(p)Hpra
(p)

Hta
(p)H(p)

K

where F×v,(p) is the p-Sylow subgroup of the multiplicative group of the resi-
due field Fv of K at v, including real infinite places for which F×v = {±1};
M(p) is the direct compositum, over H(p), of H

pra
(p) and Hta

(p).
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Note that Gal
(
Kab

(p)/H
pra

(p)
) can'

∏
v - p F

×
v,(p) is equivalent to the Leopoldt

conjecture ([5], III.4.4.5.2). The diagonal embeddings ita := (iv)v - p and
ip := (iv)v | p of E⊗Zp in

∏
v - p F

×
v,(p) and

∏
v | p U

1
v , respectively, are injective

(under the Leopoldt conjecture for ip). Each F×v,(p) (for v - p finite or v real
infinite) or U1

v (for v | p) is canonically isomorphic to the inertia group of v
in Kab

(p)/K.
Let U(p) '

∏
v - p F

×
v,(p) ×

∏
v | p U

1
v be the p-Sylow subgroup of the group

of unit idèles U :=
∏
v Uv, and let ρ be the reciprocity map on U(p). The

kernel of ρ is i(E ⊗ Zp), where i = (ita, ip). This yields the isomorphisms:
• Gal

(
Kab

(p)/H(p)
) can' U(p)/i(E ⊗ Zp),

• Gal
(
Kab

(p)/H
pra

(p)
)

= ρ
(∏
v - p

F×v,(p) × {1}
) can'

∏
v - p

F×v,(p),

since
(∏
v - p

F×v,(p) × {1}
)
∩ i (E ⊗ Zp) = 1,

• Gal
(
Kab

(p)/H
ta

(p)
)

= ρ
(
{1} ×

∏
v | p

U1
v

) can'
∏
v | p

U1
v in the same way as above.

Definition 2.1. The number field K is said to be p-rational (see e.g. [13],
[4], [10], [5], IV.3.4.4) if it satisfies the Leopoldt conjecture for p and if
Tp = 1.

Remark 2.1. Assuming the Leopoldt conjecture for p in K, we have:
(i) The p-rationality of K is equivalent to the following three conditions

(from [5], IV.3.4.5 and III.2.6.1 (i)):
(i1)

∏
v|p
µp(Kv) = ip(µp(K)).

(i2) the p-Hilbert class field H(p) is contained in the compositum K̂(p)
of the Zp-extensions of K, which is equivalent (refer to § 1.3), to | C̀ (p) | =(
ZpLogp(Ip) :

∏
v|p

log(U1
v ) + Qplogp(E)

)
,

(i3) Zplogp(E) is a direct factor in the Zp-module
∏
v|p

log(U1
v ), which

expresses the “minimality” of the valuation of the p-adic regulator.
(ii) If K is p-rational, we have an isomorphism of the form

Gal
(
Kab

(p)/K
)
' Zr2+1

p ×
∏
v - p

F×v,(p), in which Gal
(
Kab

(p)/K̂(p)
) can'

∏
v - p

F×v,(p).

(iii) Let K̂ be the compositum, over p, of the K̂(p). By assumption (Leo-
poldt conjecture for all p), K̂ is the maximal Ẑ-extension of K for which
Gal

(
K̂/K

)
' Ẑr2+1. A sufficient condition to get an isomorphism of the

form AK ' Ẑr2+1×
∏
v
F×v is that K be p-rational for all p, i.e.,

∏
p
Tp = 1.
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2.2. Structure of
∏
v

F×v . Let (Fv)v be the family of residue fields ofK at
its finite or real infinite places v. We intend to give, for all p, the structure
of the p-Sylow subgroup

∏
v
F×v,(p) of

∏
v
F×v . If v | p, then F×v,(p) = 1; so we

can restrict ourselves to
∏
v - p

F×v,(p). We shall prove (in Proposition 2.1) that

there exist integers δ ∈ {0, 1} and w ≥ 1 such that∏
v - p

F×v,(p)
nc'
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
(p)
, for all p.

The property giving such an isomorphism is that for any given p-power
pm, m ≥ 1, these two pro-p-groups (which are, by nature, explicit direct
products of cyclic groups) have the “same number” of direct cyclic factors of
order pm in these writings (finite number or countable infinite number). It
is obvious that for any p and any fixed m ≥ 1,

∏
n≥1

(
(Z/2Z)δ ×Z/wnZ

)
(p)

has 0 or infinitely many direct cyclic factors of order pm. More precisely, by
the decomposition N \ {0} =

⋃
k≥0

pk
(
N \ pN

)
(with disjoint sets), we have( ∏

n≥1
Z/wnZ

)
(p)
'
∏
k≥0

(
Z/wp p

k Z
)N \ pN

, where wp is the p-part of w.

Remark 2.2. (i) The right hand side of this isomorphism shows that the
isomorphy class of the group is the same for wp = p and for wp = 1 and is
uniquely determined by wp as soon as this number is taken different from p.
By globalization, the isomorphy class of

∏
n≥1

Z/wnZ is uniquely determined

by w as soon as this number has no “simple factor” (i.e., w =
∏
p

wp with
wp 6= p for all p). Then in the sequel we can ensure that w will be defined
in such a way. In this manner, w is unique.

(ii) In
( ∏
n≥1

Z/wnZ
)

(p)
'

∏
k≥0

(
Z/wp p

k Z
)N \ pN

'
∏
k≥0

(
Z/wp p

k Z
)N

,
it is not difficult to see that there are no direct cyclic factors of order pm,
m ≥ 1, if and only if pm+1|wp.

Definition 2.2. For any e ≥ 2 denote by µe the group of eth roots of unity
in an algebraic closure of any field of characteristic 0 or ` - e.

(i) Let Qpν , ν ≥ 1, be for any p the unique subfield of degree pν of the
cyclotomic Zp-extension of Q. Let Q′2ν , ν ≥ 1, be the non-real cyclic subfield
of Q(µ2∞) of degree 2ν such that Q′2νQ(µ4) = Q(µ4.2ν ); in particular, Q2 =
Q(
√

2 ) and Q′2 = Q(
√
−2 ). We put Q20 = Q′20 = Q.

(ii) Let νp(K) =: ν be the integer defined as follows:
• for p 6= 2, ν is the maximal integer such that Qpν ⊆ K;
• for p = 2, K ∩Q(µ2∞) ∈

{
Q2ν , Q

′
2ν ,Q(µ4.2ν )}, which defines ν ≥ 0.
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SinceQpνQ(µp)=Q(µpν+1) (p 6= 2) andQ′2νQ(µ4)=Q2νQ(µ4)=Q(µ4.2ν ),
the field K(µp) (resp. K(µ4)) contains µpν+1 (resp. µ4.2ν ) if p 6= 2 (resp.
p = 2) and no more roots of unity of p-power order.

2.2.1. Analysis of the case p 6= 2. In the study of the product
∏
v - p F

×
v,(p),

we can restrict the index v - p to the places (infinite in number) such that
|F×v | ≡ 0 (mod p) (i.e., splitting of v in K(µp)/K, which includes the case
where K contains µp).
a) If K contains µp, then µp(K) = µpν+1 and necessarily |F×v | ≡ 0

(mod pν+1) for all the places v - p. We obtain the following tower of ex-
tensions (where ⊂ means a strict inclusion)

K = K(µpν+1) ⊂ K(µpν+2) ⊂ · · ·
From Chebotarev’s theorem (see e.g. [14], Ch. 7, § 3), for any m ≥ ν + 1

there exist infinitely many places v ofK whose inertia group inK(µpm+1)/K
is the subgroup Gal

(
K(µpm+1)/K(µpm)

)
, which is cyclic of order p ; so we

get |F×v | ≡ 0 (mod pm) and |F×v | 6≡ 0 (mod pm+1) for these places.
b) If K does not contain µp, we have the tower of extensions

K ⊂ K(µp) = · · · = K(µpν+1) ⊂ K(µpν+2) ⊂ · · ·
For anym ≥ ν+1 there exist infinitely many places v whose inertia group

in K(µpm+1)/K is the subgroup Gal
(
K(µpm+1)/K(µpm)

)
, cyclic of order p;

thus, |F×v | ≡ 0 (mod pm) and |F×v | 6≡ 0 (mod pm+1) for these places, split
in K(µp)/K as required (otherwise |F×v | is prime to p).

Whatever the assumption on the intersection K ∩Q(µp), the case p 6= 2
leads to identical results from the knowledge of ν.

2.2.2. Analysis of the case p = 2. In that case, we always have |F×v | ≡
0 (mod 2) in the study of

∏
v - 2 F

×
v,(2) (v finite or real infinite).

a) If K contains µ4, hence µ4.2ν , we have |F×v | ≡ 0 (mod 4.2ν) for all
odd places, and the tower of extensions

K = K(µ4.2ν ) ⊂ K(µ4.2ν+1) ⊂ · · ·
From Chebotarev’s theorem, for any m ≥ ν there exist infinitely many

places v whose inertia group inK(µ4.2m+1)/K is Gal
(
K(µ4.2m+1)/K(µ4.2m)

)
,

cyclic of order 2; so |F×v | ≡ 0 (mod 4.2m) and |F×v | 6≡ 0 (mod 4.2m+1) for
these places.
b) If K does not contain µ4, we have two possible towers depending on

the intersection K ∩Q(µ2∞):
K ∩Q(µ2∞) = Q (ν = 0) : K ⊂ K(µ4) ⊂ K(µ8) ⊂ · · ·
K ∩Q(µ2∞) ∈ {Q2ν , Q

′
2ν}, ν ≥ 1 : K ⊂ K(µ4) = K(µ8) = · · ·

= K(µ4.2ν ) ⊂ K(µ4.2ν+1) ⊂ · · ·
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(i) In the first case (ν = 0), for any m ≥ 1 Chebotarev’s theorem gives
infinitely many places v whose inertia group in K(µ2m+1)/K is the sub-
group Gal

(
K(µ2m+1)/K(µ2m)

)
, cyclic of order 2; so |F×v | ≡ 0 (mod 2m)

and |F×v | 6≡ 0 (mod 2m+1) for these places. So, in this case we obtain an
isomorphism of the form∏

v - 2
F×v,(2) '

∏
m≥1

(
Z/2m Z

)N
.

(ii) In the second case (ν ≥ 1), we will have two infinite disjoint sets of
places v - 2 of K for the structure of the product

∏
v - 2 F

×
v,(2):

– There exist infinitely many places v inert in K(µ4)/K. Then |F×v | ≡ 0
(mod 2) and |F×v | 6≡ 0 (mod 4) for these places.

– For anym ≥ ν, there exist infinitely many places v whose inertia group
in K(µ4.2m+1)/K is the subgroup Gal

(
K(µ4.2m+1)/K(µ4.2m)

)
, cyclic of or-

der 2; a fortiori, these places are split in K(µ4)/K and even in K(µ8)/K.
So we get |F×v | ≡ 0 (mod 4.2m) and |F×v | 6≡ 0 (mod 4.2m+1).

In the exceptional case K∩Q(µ2∞)∈{Q2ν , Q
′
2ν}, ν ≥ 1, we have a group

isomorphism of the form∏
v - 2

F×v,(2) '
(
Z/2Z

)N × ∏
m≥ν

(
Z/4.2m Z

)N
.

Definition 2.3. From the above discussion, we can define, in a unique way,
the integers δ ∈ {0, 1} and w :=

∏
p wp, where wp depending on ν := νp(K)

(see Definition 2.2 (i), (ii)) is given as follows:
(i) Case p 6= 2. We know that µpν+1 is the maximal group of roots of unity

of p-power order contained in K(µp), whether K contains µp or not; we put
wp = pν+1 if ν ≥ 1 and wp = 1 otherwise (from the use of Remark 2.2 (i)).

(ii) Case p = 2 and K contains µ4. Hence µ4.2ν is the maximal group of
roots of unity of 2-power order contained in K; we put w2 = 4.2ν , ν ≥ 0.

(iii) Case p = 2 and K does not contain µ4. Thus µ4.2ν is the maximal
group of roots of unity of 2-power order contained in K(µ4); we put w2 =
4.2ν if ν ≥ 1 and w2 = 1 otherwise (from the use of Remark 2.2 (i)).

(iv) We put δ = 1 in the case (iii) when ν ≥ 1, and δ = 0 otherwise.

We can state the following result similar to that of [1], Lem. 3.2.

Proposition 2.1. Let K be a number field. We have a group isomorphism
of the form

∏
v
F×v

nc'
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
(see Definition 2.3).

We have δ = 1 if and only if K contains
√
±2 but not

√
−1 , δ = 0 other-

wise. If δ = 1, then w ≡ 0 (mod 8). If w = 1, then
∏
v
F×v

nc'
∏
n≥1

Z/nZ.
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Examples 2.1. (i) Examples with p = 3. Let K be the maximal real
subfield of Q(µ9); we have w = 9 since K = Q3. The prime ` = 5 is totally
inert in Q(µ9) (hence in K); then for v | `, Fv does not contain µ3 since
`3 = 125 6≡ 1 (mod 3). But for ` = 7, inert in K and split in Q(µ3), we get
Fv = F343 which contains µ9 as expected.

Note that for K = Q(µ3), we have w = 1.
(ii) Examples with p = 2. For K = Q(

√
2 ), we have δ = 1 and w = 8.

The prime ` = 7 splits in K and is inert in Q(µ4); so for v | `, Fv = F7 does
not contain µ4. But for the prime ` = 5 ≡ 1 (mod 4), inert in K and split
in Q(µ4), we get Fv = F25 which contains µ8.

In conclusion, for K = Q(
√

2 ), we get the extra direct factor (Z/2Z)N
and there is no direct cyclic factor of order 4 in Gal

(
Kab

(2)/K̂(2)
)
(see Remark

2.2 (ii)).
For K = Q(µ4), we have δ = 0, w = 4, and Fv = F` (resp. Fv = F`2) if

` ≡ 1 (mod 4) (resp. ` ≡ −1 (mod 4)).

2.3. Consequences for the structure of AK . From Proposition 2.1
and the fundamental diagram (see § 2.1), we can state, under the Leopoldt
conjecture in K for all p:

Proposition 2.2. Let H be the compositum, over p, of the fields Hpra
(p)

(maximal p-ramified Abelian pro-p-extensions of K). 4 We have a group
isomorphism of the form Gal

(
Kab/H

) nc'
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
.

If w = 1, then Gal
(
Kab/H

) nc'
∏
n≥1

Z/nZ.

We have obtained the following globalized diagram (under the Leopoldt
conjecture for all p), where Hta (compositum of the Hta

(p)) is the maximal
Abelian tamely ramified extension ofK andM = HHta (direct compositum
over the Hilbert class field H):∏

n≥1((Z/2Z)δ×Z/wnZ)

∏
v finite U

1
v

E⊗Ẑ
KabMH

HtaH

K

4A specific notation, for the compositum of the Hpra
(p) , is necessary to avoid confusions with

H or with Hpra which depends on p. The extension Hpra does exist as pro-extension p-ramified
and Hpra

(p) = (Hpra)(p) as usual, but Hpra
(p) depends on p with two different meanings.
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Let LK =: L be the compositum, over p, of some finite extensions L(p) of K
such that Hpra

(p) = K̂(p) L(p) for each p (direct compositum over K, so that
Gal(L(p)/K) ' Tp; see the diagram in § 1.2). Then Gal(L/K) '

∏
p
Tp and

H = K̂ L with Gal(H/K) ' Ẑr2+1 ×
∏
p
Tp.

The Galois group Gal(L/K) measures the defect of p-rationalities (for
all p) which expresses a mysterious degree of complexity of AK .

When they are non-trivial, the extensions L(p)/K are non-unique p-rami-
fied p-extensions; numerical calculations of some of these exceptional ex-
tensions L(p) can be interesting, especially for totally real number fields K
since in that case the finite subextensions of K̂(p) are cyclic and well known.
For K totally real, p = 2,

√
2 /∈ K, | T2 | = 2, then L(2) = K(

√
θ )

for a suitable totally positive 2-unit θ defined up to multiplication by 2.
For K = Q(

√
17 ) one has | T2 | = 2 (see § 3.3.2), the group of 2-units is〈

− 1, 2, 4 +
√

17, 1
2(5 +

√
17)
〉
; so L(2) = K

(√
1
2(5±

√
17 )

)
.

We can state, from Proposition 2.2, still assuming the Leopoldt conjec-
ture in K for all p:
Theorem 2.1. Let K be a number field and let Kab be the maximal Abelian
pro-extension of K. Let H be the compositum, over p, of the maximal p-
ramified Abelian pro-p-extensions Hpra

(p) of K.
Then there exists an Abelian extension LK of K such that H is the direct
compositum over K of LK and the maximal Ẑ-extension K̂ of K, and such
that we have a group isomorphism of the form (see Definition 2.3)

Gal
(
Kab/LK

) nc' Ẑr2+1 ×
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
,

with Gal
(
Kab/H

) nc'
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
. If w = 1, then we have

Gal
(
Kab/LK

) nc' Ẑr2+1 ×
∏
n≥1

Z/nZ, with Gal
(
Kab/H

) nc'
∏
n≥1

Z/nZ.

Corollary 2.1. The Galois groups Gal
(
Kab/LK

)
(up to non-canonical iso-

morphisms of profinite groups) are independent of the number fields K as
soon as these fields satisfy the Leopoldt conjecture for all p, have the same
number r2 of complex places, and the same parameters δ,w.
Thus, under the Leopoldt conjecture, for all number fields K satisfying the
condition K ∩ Q(µp∞) ⊆ Q(µp) for all p | [K : Q] (i.e., νp(K) = 0 for all
p | [K : Q]), we have Gal

(
Kab/LK

) nc' Ẑr2+1 ×
∏
n≥1

Z/nZ.

For example, all the subfields K of the maximal real and tame Abelian
extension Hta+

Q of Q verify the above property with r2 = δ = 0 (note that
Hta+

Q is the maximal real subfield of the compositum of the Q(µp), p 6= 2).
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Of course, the groups Gal(LK/K) '
∏
p Tp strongly depend on K, even

if the parameters r2, δ,w are constant. From Remark 2.1 (i), we see that the
first two conditions (i1), (i2) of p-rationality involve an explicit finite set of
primes p, but that the third condition (i3) is the most intricate since all the
primes are a priori concerned when K contains units of infinite order.

For instance, for K = Q(
√

2 ), the condition (i3) is not satisfied for the
primes p = 13, 31, 1546463 up to 109. The great rarity of the solutions
(nothing between 31 and 1546463) is to point out. We shall give more
examples in § 3.4.1 and theoretical arguments in § 3.4.2.

It is likely that for the fields K such that r1 + r2 − 1 > 0, LK/K can
be infinite, despite numerical experiments for increasing values of p; but
the existence of such number fields, p-rational for all p, remains an open
question.

There are no serious conjectures about the finitness or not of these exten-
sions, except perhaps some arguments stronger than the ABC conjecture.

The case r1 + r2 − 1 = 0 corresponds to K = Q (p-rational for all p)
and to K imaginary quadratic for which

∏
p Tp is finite and computable.

So, an exceptional family is that of imaginary quadratic fields, studied in
[1], for which the condition (i3) is empty; the conditions (i1), (i2) can be
verified (for all p) probably for infinitely many imaginary quadratic fields
as suggested in [1], Conj. 7.1.

Remark 2.3. From the results of [6], III, or [5], IV.3.5.1, the 2-rational
Abelian 2-extensions of Q are the subfields (for ` prime) of Q(µ2∞)Q(

√
−` ),

` ≡ 3 (mod 8), or of Q(µ2∞)Q
(√√

` a−
√
`

2
)
, ` = a2 + 4b2 ≡ 5 (mod 8).

So the 2-rational quadratic fields are Q(
√
±2 ), Q(

√
−1 ), Q(

√
±` ), and

Q(
√
±2` ), ` prime, ` ≡ 3, 5 (mod 8).

3. A generalization of p-rationality

As we shall see now, we can strengthen a few the previous results, for
all number fields, by showing that the first condition (i1), involved in the
definition of p-rationality (Remark 2.1 (i)), is not an obstruction to get a
straightforward structure for AK , contrary to the conditions (i2), (i3).

This concerns the finite p-groups
∏
v | p µp(Kv)

/
ip(µp(K)) whose global-

ization measures the gap between the Regular and Hilbert kernels in K2(K)
(see e.g. [4] or [5], II.7.6.1).

3.1. Another consequence of the Leopoldt conjecture. Consider,
for all finite place v of K, the decomposition µ(Kv) ' F×v ×µ1

v (see § 1.2).
The places such that µ1

v 6= 1 (called the irregular places of K) are finite in
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number. Let
Γp :=

∏
v - p

F×v,(p) ×
∏
v | p

µ1
v '

∏
v
µp(Kv).

LetH1pra
(p) be the subfield ofHpra

(p) fixed by ρ(Γp), where ρ is the reciprocity
map on the p-Sylow subgroup U(p) '

∏
v - p

F×v,(p) ×
∏
v | p

U1
v of the group of

unit idèles U =
∏
v
Uv of K. The kernel of ρ is i(E ⊗ Zp), where i = (ita, ip)

(see § 2.1). Then from the (non-trivial) local-global characterization of the
Leopoldt conjecture at p ([9], § 2.3, or [5], III.3.6.6), we get

ρ(Γp)
can' Γp/i(E ⊗ Zp) ∩ Γp = Γp/i(µp(K)).

Take, as in [1], Lem. 3.3, 3.4, v0 such that the residue image of µp(K) is
equal to F×v0,(p) (for the existence of v0, use the results of §§ 2.2.1, 2.2.2);
we get Gal

(
Kab

(p)/H
1pra

(p)
) can' Γp/i(µp(K)) nc'

∏
v - p, v 6=v0

F×v,(p) ×
∏
v | p

µ1
v.

To study the influence of the direct cyclic factors µ1
v = µp(Kv) for

v | p, on the structure of the component
∏

v - p, v 6=v0
F×v,(p) still isomorphic to∏

n≥1

(
(Z/2Z)δ × Z/wnZ

)
(p)

, we refer to Definitions 2.2, 2.3 defining ν, δ,
wp, and to Proposition 2.1.

(i) Case p 6= 2. If K contains µp, then wp = pν+1 = |µp(K)| divides
|µp(Kv)|; so, for v | p, the direct cyclic factor µp(Kv) = µ1

v does not modify
the global structure. If K does not contain µp, we have only to look at the
case ν ≥ 1 for which wp = pν+1. If µp(Kv) is non-trivial (v | p is split in
K(µp)), |µp(Kv)| is a multiple of pν+1, giving the result.

(ii) Case p = 2. If K contains µ4, then w2 = 4.2ν = |µ2(K)| divides
|µ2(Kv)|, hence the result. If K does not contain µ4, we have only to con-
sider the case K∩Q(µ2∞) ∈ {Q2ν , Q

′
2ν}, ν ≥ 1. Then δ = 1 and w2 = 4.2ν ;

so µ2(Kv) = µ2 (if v | 2 is not split in K(µ4)) or µ4.2m , m ≥ ν (if v | 2 is
split in K(µ4)), hence the result.

We then have Gal
(
Kab

(p)/H
1pra

(p)
) nc'

∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
(p)

for all p.

Note that Gal
(
Hpra

(p) /H
1pra

(p)
) can'

∏
v | p µ

1
v

/
µp(K) ([5], III.4.15.3).

We have obtained, as a consequence of the Leopoldt conjecture in K for
all p, an analogue of the Theorem 2.1 using an extension LK/K such that
Gal(LK/K) nc'

∏
p
Tp:

Theorem 3.1. Let K be a number field and let Kab be the maximal Abelian
pro-extension of K. Let H1 ⊆ H be the compositum, over p, of the H1pra

(p)

which are the subfields of the Hpra
(p) fixed by

∏
v | p

µ1
v

/
µp(K).
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Then there exists an Abelian extension L1
K ⊆ LK of K such that H1 is the

direct compositum over K of L1
K and the maximal Ẑ-extension K̂ of K,

and such that (see Definition 2.3)

Gal
(
Kab/L1

K

) nc' Ẑr2+1 ×
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
,

with Gal
(
Kab/H1) nc'

∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
and Gal

(
H/H1) can'

∏
v
µ1
v

/
µ(K). If w = 1, then we obtain

Gal
(
Kab/L1

K

) nc' Ẑr2+1 ×
∏
n≥1

Z/nZ, with Gal
(
Kab/H1) nc'

∏
n≥1

Z/nZ.

In the following exact sequence, where T 1
p := Gal

(
H1pra

(p) /K̂(p)
)
,

0→
∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
−→ Gal

(
Kab/K̂

)
−→

∏
p
T 1
p → 1,

we do not know if the structure of Gal
(
Kab/K̂

)
can be the same for various

K because of the unknown groups
∏
p
T 1
p

nc' Gal(L1
K/K) (which non-trivially

depend on the p-adic properties of the classes and units of the fields K)
and the nature of the corresponding group extension.

3.2. Notion of weakly p-rational fields. We have an isomorphism of
the form

AK
nc' Ẑr2+1 ×

∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
as soon as the conditions (i2), (i3) of p-rationality (Remark 2.1 (i)) are
satisfied for all p, which is an extremely strong assumption. In an opposite
manner, the conditions (i2), (i3) for fixed prime p are very common and
leads to the following definition which may have some interest:

Definition 3.1. Let p be a prime number. The number field K is said to
be weakly p-rational if it satisfies the Leopoldt conjecture for p and the two
following conditions (equivalent to T 1

p = 1 or to Tp =
∏
v | p µ

1
v

/
µp(K)):

(i2) The p-Hilbert class field is contained in the compositum of the Zp-
extensions of K (i.e., | C̀ (p) | =

(
ZpLogp(Ip) :

∏
v|p log(U1

v ) + Qplogp(E)
)
),

(i3) Zplogp(E) is a direct factor in
∏
v|p log(U1

v ).

From [5], III.4.2.4, we can analyse Gal
(
Hpra

(p) /K̂(p)H(p)
)
as follows:

Lemma 3.1. Under the Leopoldt conjecture, we have the exact sequence:

1→
∏
v | p

µ1
v

/
µp(K)→ Gal

(
Hpra

(p) /K̂(p)H(p)
) can' torZp

(∏
v | p

U1
v

/
ip(E ⊗ Zp)

)
→

→ torZp
(∏
v | p

log(U1
v )
/
Zplogp(E)

)
→ 0.
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Thus we have, under the condition (i2) (H(p) ⊆ K̂(p), satisfied of course
if | C̀ (p) | = 1), a practical description of T 1

p :

Corollary 3.1. When the condition (i2) holds, we have the exact sequence

1→
∏
v | p

µ1
v

/
µp(K) −→ Tp −→ T 1

p = torZp
( ∏
v | p

log(U1
v )
/
Zplogp(E)

)
→ 0.

So, the conditions (i2) and (i3) give Tp =
∏
v | p

µ1
v

/
µp(K) (weak p-rationality).

For imaginary quadratic fields K 6= Q(
√
−1 ),Q(

√
−2 ), we find again

that AK
nc' Ẑ2×

∏
n≥1 Z/nZ, as soon as H(p) ⊆ K̂(p) for all p

∣∣ |C̀ K |, which
is equivalent to | C̀ (p) | =

(
ZpLogp(Ip) :

∏
v|p log(U1

v )
)
for all these p.

Remark 3.1. From the results of [7], Th. 2.3, for an imaginary quadratic
field K, the 2-Hilbert class field is contained in the compositum of its Z2-
extensions if and only if K is one of the following fields:
Q(
√
−1 ), Q(

√
−2 ), Q(

√
−` ) (` prime, ` ≡ 3, 5, 7 (mod 8)), Q(

√
−2` )

(` prime, ` ≡ 3, 5 (mod 8)), Q(
√
−`q ) (`, q primes, ` ≡ −q ≡ 3 (mod 8)).

3.3. The case of quadratic fields. Give examples of non-trivial weakly
p-rational quadratic fields K, i.e., such that Tp =

∏
v | p µ

1
v

/
µp(K) 6= 1,

which supposes p ∈ {2, 3} with the condition (i2).

3.3.1. Imaginary case. For p = 2, K = Q(
√
−m ), m 6= 1, we deduce

from Remarks 2.3, 3.1 that T2 = µ2×µ2/µ2, if and only if m = ` prime,
` ≡ −1 (mod 8), or m = ` . q (`, q primes), ` ≡ −q ≡ 3 (mod 8) (the case
T2 = µ4/µ2 for m ≡ 1 (mod 8) never occurs in this setting).

We have T2 = µ2×µ2/µ2 form = 7, 15, 23, 31, 39, 47, 55, 71, 79, 87, 95, . . .
For p = 3 and K = Q(

√
−m ), m 6= 3, m ≡ 3 (mod 9), T3 = µ3 occurs if

the 3-Hilbert class field is contained in K̂(3), which gives (from [2]):
m = 21, 30, 39, 57, 66, 93, 102, 111, 138, 165, 183, 210, . . . (with C̀ (3) = 1),
m = 129, 174, 237, 246, 255, 327, 426, 453, 543, 597, . . . (with | C̀ (3) | = 3),
m = 1713, 1902, . . . (with | C̀ (3) | = 9).

3.3.2. Real case. For p = 2, K = Q(
√
m ), m > 0, the case T2 = µ2×

µ2/µ2 (resp. µ4/µ2) holds for m ≡ 1 (mod 8) (resp. m ≡ −1 (mod 8)).
Since in that cases K(

√
2 )/K is ramified, the 2-Hilbert class field of K

(in ordinary sense) is disjoint from K̂(2) and we must have C̀ (2) = 1.
Let ε = x + y

√
m be the fundamental unit (m ≡ ±1 (mod 8) implies

x, y ∈ Z and ε of norm 1, so we can suppose ε totally positive). A local
computation shows that the condition (i3) of Definition 3.1 is equivalent to
log2(x+ y

√
m ) ≡ ±4

√
m (mod 8).
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The case T2 = µ4
/
µ2 does not exist. Indeed, m ≡ −1 (mod 8) un-

der the assumption C̀ (2) = 1, implies m = ` prime ([5], IV.4.2.9). More-
over y is odd, otherwise 4 | y and ±ε is 2-primary ([5], I.6.3.4 (ii)) giving
K(
√
±ε )/K unramified at the finite places of K; since the 2-Hilbert class

field in restricted sense of K is K(
√
−1 ), this implies ε ∈ K×2 (absurd).

Furthermore, the relation x2 − ` y2 = 1, with y odd and ` ≡ −1 (mod 8)
prime, implies 8 |x, hence log2(x + y

√
` ) ≡ 0 (mod 8) that is unsuitable.

For example, for m = 7, T2 is of order 4 because of the exact sequence
1→ µ4

/
µ2 −→ T2 −→ T 1

2 ' Z/2Z→ 0 (from Corollary 3.1).
These results probably come from general divisibility properties of the 2-

adic L-function ofK giving the valuation of the product |C̀ (2)|· 1√
4m log2(ε).

So, a broader study of weak p-rationality may clarify the subject.
We have T2 = µ2 × µ2/µ2 for m = 17, 33, 57, 73, 89, 97, . . . but the case

m = 41 fails since log2(ε) = log2(32 + 5
√

41 ) ≡ 0 (mod 32).

For p = 3, the 3-Hilbert class field is disjoint from K̂(3). So we must take
K = Q(

√
m ), m > 0, m ≡ −3 (mod 9), with C̀ (3) = 1 and ε such that

log3(ε) ≡ ±3
√
m (mod 9). Then T3 = µ3 holds for m = 6, 15, 33, 51, . . .

but fails for m = 42 since log3(ε) = log3(13 + 2
√

42 ) ≡ 0 (mod 9).

3.4. Some comments about the torsion groups T 1
p . These groups

represent an obstruction for a straightforward structure of Abelian profi-
nite group for AK and they are probably among the deepest invariants for
class field theory over K. So we intend to recall some information on them.

3.4.1. Computational aspects. Numerical studies of the torsion groups
Tp (or of T 1

p ) essentially concern imaginary quadratic fields, which is rea-
sonable since in that case the invariant

∏
p Tp is finite, easily computable,

and behaves probably as a global class group.
In [2] is given a table of imaginary quadratic fields Q(

√
−m) (m square-

free up to 2000) giving the class number h and for each prime p |h the
numbers [K̂(p) ∩ H(p) : K] =

(
ZpLogp(Ip) :

∏
v|p log(U1

v )
)
and | Tp |. When

p - h, T 1
p = 1 and Tp =

∏
v | p µ

1
v

/
µp(K), p = 2, 3 (from Corollary 3.1).

In [17], the viewpoint of Cohen-Lenstra heuristics is studied: the prime p
is fixed (up to 47) and some tables give the proportion of real and imaginary
quadratic fields Q(

√
±m), 0 < m < 109, such that | Tp | 6= 1.

In [1], § 7, the viewpoint is rather analogous to the previous ones for
imaginary quadratic fields K (with primes p |h up to 97), and some tables
give a careful statistical study of the other invariants of p-ramification over
the fields K of arbitrary discriminant.



650 Georges Gras

These works are, in some sense, the opposite approach from ours with
the numerical example of Q(

√
2) recalled in § 2.3, where p is unbounded,

to note the scarcity of non-trivial Tp.
More generally, using PARI [16], for real quadratic fields K = Q(

√
m)

with fundamental unit ε = a + b
√
m, we can find some small solutions

(trivial if p2 | a b), and often few very large ones (for instance, for m = 307
with ε = 2 . 233 . 189977 + 3 . 972. 179

√
307, we obtain p = 97 (trivial) and

p = 2179, 112663, up to 2.108). But for K = Q(
√

14 ) we find the only
solution p = 6707879, up to 2.108, but nothing (up to 1010) for some fields
as K = Q(

√
5 ) or, taking at random some large discriminant, for K =

Q(
√

163489 ). This does not seem to depend on the size of m and ε.
It will be interesting to consider fields with larger groups of units of in-

finite order to see if this phenomenon is similar (fixed field, increasing p).
To this end, for a practical computation, use the main formulas of [5],
III.2.6.1 for the finite number of p such that H(p) 6⊆ K̂(p); otherwise, use the
simplifications given by Lemma 3.1 and Corollary 3.1.

In the totally real Galois case we then have the more practical formula
(where ∼ means “up to a p-adic unit”)

| Tp | ∼ | C̀ (p) | · [K ∩ Q̂(p) : Q] · p1−[K:Q]/ep · Rp√
D

,

where Rp is the p-adic regulator, D the discriminant of K, and ep the
ramification index of p ([5], III.2.6.5).

In particular, for a real quadratic field K 6= Q(
√

2) and p = 2, we have
| T2 | ∼ | C̀ (2) | ·

log2(ε)
2
√
m

in any case.
The general formula (totally real case) reduces to | Tp | ∼ p1−[K:Q] · Rp

for p large enough (i.e., C̀ (p) = 1, p - D, K ∩ Q̂(p) = Q).
We have tested the case of the cyclic cubic fields K given by the polyno-

mials X3− tX2− (t+3)X−1 (“simplest cubic fields” of Shanks giving the
independent units ε and −(1 + ε−1), and the conclusion seems very similar
to that of real quadratic fields; for instance, for t = 11 the conductor of
K is 163 and the solutions p up to 108 are 3, 7, 73, 10113637. For t = 14
(conductor 13.19), we get the solutions 628261, 8659909. No solutions up
to 108 for t = 6 (conductor 9.7).

In a more general context, it is sufficient to find the irreducible polyno-
mial of a “Minkowski unit” ε, then to compute the p-adic regulator of the
conjugates of ε; the fact that these units are not necessarily fundamental
does not matter for the study of the rarity of the solutions p for Tp 6= 1
when p is increasing.
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3.4.2. Theoretical aspects. The main fact is that Tp is related to Galois
cohomology: if Gp is the Galois group of the maximal p-ramified, non-
complexified (real infinite places are “unramified”) pro-p-extension of K,
then under the Leopoldt conjecture for p in K, Gp is pro-p-free (on r2 + 1
generators) if and only if H2(Gp,Fp) = 1, knowing that the cohomology
group H2(Gp,Zp) is canonically isomorphic to the dual of Tp. For more
details see [5], II.5.4.5, III.4.2.2, [11], Ch. 3, §§ 1.16, 2.6, 2.7, Th. 3.74.

The arithmetical nature of the group Tp brings into play p-class groups
via Kummer duality and reflection theorems, and p-adic L-functions: in the
totally real case, Tp is connected with the residue of the p-adic ζ-function
of K as studied by J. Coates in [3], App. 1, and J-P. Serre in [18].

A means to realize the rarity of prime numbers p such that Tp 6= 1 when
r1+r2−1 > 0, may be the following p-rank formula ([5], III.4.2.2), where for
a Galois module T , Tω denotes its ω-component, ω being the Teichmüller
character (i.e., the p-adic character of the Galois action on µp):

rkp(Tp) := dimFp(Tp/T pp ) = rkp
(
C̀ spl
ω

(
K(µp)

))
+
∑
v | p

dv − d,

where C̀ spl corresponds, by class field theory, to the Galois group of the
subfield of the p-Hilbert class field (of K(µp)) in which all the places above
p totally split, where dv (resp. d) = 1 or 0 according as Kv (resp. K)
contains µp or not. Since

∑
v | p dv− d = 0 for p > [K : Q] + 1, we then have

to satisfy the condition C̀ spl
ω

(
K(µp)

)
6= 1; but in general (e.g. the places

v | p of K are not totally split in K(µp)/K), C̀ spl
ω = C̀ ω for K(µp).

So the rarity comes perhaps from the fact that C̀ ω(K(µp)) is a very
particular part of the p-class group of K(µp) since Gal(K(µp)/K) has in
general p− 1 distinct p-adic characters χ, a number that increases with p.
Moreover, an analytic viewpoint seems to indicate that non-trivial p-classes
of K(µp) “preferably” come from characters χ 6= 1, ω; this is well known
for K = Q since C̀ ω(Q(µp)) = 1 (p-rationality of Q for all p).

For a real quadratic field K of discriminant D 6≡ 0 (mod p), of Dirichlet
character ψ, the condition C̀ spl

ω

(
K(µp)) 6= 1 is equivalent to

1
Dp

Dp∑
a=1

ψ ω−1(a) a ≡ 0 (mod p) (summation over a prime to Dp).

See also the work of Kazuyuki Hatada [8] giving relationships between the
p-adic regulator and the value ζK(2− p), with statistical investigations.

4. Conclusion

Let us return to the group structure of AK . Let L1
(p) be an extension

of K such that H1pra
(p) is the direct compositum over K of K̂(p) and L1

(p).
We know (see e.g. [5], III.4.15.8) that any cyclic extension L′ ⊆ L1

(p) of K
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can be embedded in a cyclic p-extension of arbitrarily large degree (except
perhaps in the special case p = 2, K ∩Q(µ2∞) = Q2ν , ν ≥ 2, which needs
specific study since δ = 1).

The subgroup Cp of Tp corresponding to the compositum of the p-cycli-
cally embeddable extensions of K is

∏
v | p µ

1
v

/
µp(K), except perhaps in the

special case where
∏
v | p µ

1
v

/
µp(K) may be of index 2 in Cp.

Thus, when p 6= 2 and L1
(p) 6= K, Gal

(
Kab

(p)/H
1pra

(p)
)
cannot be a direct

factor in Gal
(
Kab

(p)/K̂(p)
)
, since T 1

p is finite. For any large p-power pk, taking
a suitable set of cyclic extensions L′i ⊆ L1

(p), by composition with K̂(p) there
exists L̂k ⊂ Kab

(p), such that K̂(p) ⊆ H1pra
(p) ⊆ L̂k, with Gal

(
L̂k/K̂(p)

)
of

exponent pk. We can even assume that Gal
(
L̂k/K̂(p)

)
' (Z/pkZ)r, where

r := rkp(T 1
p ). It is possible that only numerical computations may help to

describe the structure of Gal
(
Kab

(p)/K̂(p)
)
when T 1

p 6= 1.
An interesting case to go further is that of K = Q(

√
2 ) for p = 13,∏

v | 13 U
1
v = U1

13 = 1 + 13 (Z13⊕Z13
√

2 ), and log(U1
13) = 13 (Z13⊕Z13

√
2).

In this case, T13 = T 1
13 is cyclic of order 13 since ε = 1 +

√
2 is such that

−ε14 ≡ 1 + 132 a
√

2 (mod 133) with a rational a 6≡ 0 (mod 13), giving
log(ε) ≡ 132 a

√
2 (mod 133), hence the result using Lemma 3.1.

With such similar numerical data for a real quadratic field Q(
√
m ) (i.e.,

p 6= 2, 3, p - m, C̀ (p) = 1, ±εp+1 (p inert) or ±εp−1 (p split) is, modulo p3,
of the form 1 + p2 a

√
m with a rational a 6≡ 0 (mod p)), we get the same

conclusion and the following diagram:

K

L(p)

Hta
(p)

L(p)H
ta

(p)

K̂(p)

Hpra
(p)

K̂(p)H
ta

(p)

M(p) Kab
(p)

∏
v - p F

×
v,(p)'

(∏
n≥1 Z/nZ

)
(p)

p

Zp

∏
v | p U

1
v

tor(
∏
U1
v/〈ε〉⊗Zp)

〈ε〉⊗Zp

For K = Q(
√

2 ), p = 13, we have no more information likely to give a
result on the structure of the profinite group Gal

(
Kab

(13)/K̂(13)
)
containing a

subgroup, of index 13, isomorphic to
∏
m≥0

(
Z/13m Z

)N.
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Despite the previous class field theory study, it remains possible that AK
be always non-canonically isomorphic to Ẑr2+1×

∏
n≥1

(
(Z/2Z)δ × Z/wnZ

)
,

independently of additional arithmetic considerations about the unknown
group

∏
p T 1

p . If not (more probable), a description of the profinite group
AK may be very tricky. Any information will be welcome.
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