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Lower bounds of discrete moments of the
derivatives of the Riemann zeta-function on the

critical line

par Thomas CHRIST et Justas KALPOKAS

Résumé. Nous établissons des bornes inférieures incondition-
nelles pour certains moments discrets de la fonction zêta de Rie-
mann et de ses dérivées dans la bande critique. Nous utilisons ces
moments discrets pour donner des bornes inférieures incondition-
nelles pour les moments continus Ik,l(T ) =

∫ T

0 |ζ
(l)( 1

2 + it)|2kdt,
où l est un entier positif et k ≥ 1 un nombre rationnel. En parti-
culier, ces bornes inférieures sont de l’ordre de grandeur attendu
pour Ik,l(T ).

Abstract. We establish unconditional lower bounds for certain
discrete moments of the Riemann zeta-function and its deriva-
tives on the critical line. We use these discrete moments to give
unconditional lower bounds for the continuous moments Ik,l(T ) =∫ T

0 |ζ
(l)( 1

2 + it)|2kdt, where l is a non-negative integer and k ≥ 1
a rational number. In particular, these lower bounds are of the
expected order of magnitude for Ik,l(T ).

1. Introduction and statement of the main results
In this paper, we investigate the value-distribution of the Riemann zeta-

function ζ(s) on the critical line s = 1
2 + iR. Recall the functional equation

of the zeta-function,
(1.1) ζ(s) = ∆(s)ζ(1− s), where ∆(s) := 2sπs−1Γ(1− s) sin(πs2 ).

It follows immediately that ∆(s)∆(1− s) = 1; hence ∆(1
2 + it) lies on the

unit circle for real t. For a given angle φ ∈ [0, π), we denote by tn(φ), n ∈ N,
the positive roots of the equation

e2iφ = ∆(1
2 + it)

in ascending order. These roots correspond to intersections of the curve
t 7→ ζ(1

2 + it) with straight lines eiφR through the origin (see Kalpokas
and Steuding [10] for more details). In particular, the points tn(0) that
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are obtained by the special choice of φ = 0 correspond to intersections of
t 7→ ζ(1

2 + it) with the real axis and are called Gram points (named after
Gram [5] who observed that the first of these points seperate ordinates of
consecutive zeros on the critical line).

For fixed φ ∈ [0, π), the number Nφ(T ) of points tn(φ) which lie in the
intverval (0, T ] is asymptotically given by

Nφ(T ) = T

2πe log T

2πe +O(log T ).

For a proof we refer to Kalpokas and Steuding [10].
In the following, we investigate the growth behaviour of discrete moments

Sk,l(T, φ) :=
∑

0<tn(φ)6T

∣∣∣ζ(l)
(

1
2 + itn(φ)

)∣∣∣2k ,
of the zeta-function ζ(s), resp. its derivatives ζ(l)(s), on the critical line, as
T → ∞. Building on methods developed by Rudnick and Soundararajan
[17], resp. Milinovich and Ng [12], we shall establish an unconditional lower
bound for these discrete moments.

Theorem 1.1. For any rational k > 1 and any non-negative integer l,
uniformly for φ ∈ [0, π), as T →∞,

Sk,l(T, φ)�l,k T (log T )k2+2kl+1.

Theorem 1.1 generalizes a result of Kalpokas, Korolev and Steuding [11],
who obtained the lower bound for Sk,l(T, φ) in the case l = 0.

Under the assumption of the Riemann hypothesis, the authors proved in
[1] that for non-negative integers k and l, resp. non-negative real k if l = 0,
uniformly for φ ∈ [0, π), as T →∞,

Sk,l(T, φ)�l,k,ε T (log T )k2+2kl+1+ε

with any fixed ε > 0. Thus, T (log T )k2+2kl+1 seems to be the true order of
magnitude for the moments Sk,l(T, φ) as T →∞.

Essentially, the discrete moments Sk,l(T, φ) act, after some suitable nor-
malization, like a Riemann sum approximating the continuous moments

Ik,l(T ) :=
∫ T

1

∣∣∣ζ(l)
(

1
2 + it

)∣∣∣2k dt.
Thus, we can deduce from the estimate for the discrete moments in Theorem
1.1 the following estimate for the continuous ones.

Corollary 1.1. For any rational k > 1 and any non-negative integer l, as
T →∞,

Ik,l(T )�l,k T (log T )k2+2kl.
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For I1,l(T ) with a non-negative integer l and I2,0, there are classical
asymptotic extensions by Hardy & Littlewood [6] and Ingham [8] which are
in agreement with the estimates above. Furthermore, we must note that in
the case l = 0, the bounds of Corollary 1.1 were proved by Heath-Brown
[7] for any positive rational k and under the assumption of the Riemann
hypothesis by Ramachandra [16] for any positive real k.

Milinovich [13, Theorem 3.2] showed under the assumption of the Rie-
mann hypothesis that Ik,l(T ) �l,k,ε T (log T )k2+2kl+ε for non-negative
integers l and k and any ε > 0. This and Corollary 1.1 suggest that
T (log T )k2+2kl is the true order of magnitude for the moments Ik,l(T ).
Especially for l = 0, there are many works which give evidence for this
conjectured order of magnitude: e.g. Soundararajan [19], Heath-Brown [7]
and Radziwill [15].

The paper is organized as follows: In the next section we provide some
preliminary results. In Section 3 we prove key Proposition 3.1 which leads
to Theorem 1.1. In Section 4 we prove Corollary 1.1. In Section 5 we give an
alternative proof for Corollary 1.1 and in Section 6 we close with a remark.

2. Preliminaries
Recall the function ∆(s) defined by (1.1). By Striling’s formula, we get

(2.1) ∆(σ + it) =
( |t|

2π

)1
2−σ−it

exp(i(t+ π
4 ))(1 +O(|t|−1)) for |t| > 1

uniformly for any σ from a bounded interval. Hence,

(2.2) 1
∆(s)− e2iφ = −e−2iφ

1− e−2iφ∆(s) = −e−2iφ
(

1 +
∞∑
k=1

e−2kiφ∆(s)k
)

holds for σ > 1
2 . Obviously, ∆(1

2 + it) is a complex number on the unit
circle for t ∈ R. Moreover, note that, for t large enough, ∆(σ + it) lies on
the unit circle only if σ = 1

2 (see Spira [18] and Dixon & Schoenfeld [2]).
Furthermore, ∆′(1

2 + it) is non-vanishing for sufficiently large t as follows
from the asymptotic formula

(2.3) ∆′

∆ (σ + it) = − log |t|2π +O(|t|−1),

which holds for |t| ≥ 1 uniformly for any σ from a bounded interval.
By (1.1), we can write

(2.4) ∆(1
2 + it) = e−2iθ(t),

where

(2.5) θ(t) = Im log
(

Γ
(1

4 + i
t

2

))
− t

2 log π,
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is the Riemann-Siegel theta function (see Edwards [3, page 119]) which is
asymptotically given by

(2.6) θ(t) ∼ t

2 log t

2πe −
π

8 + 1
48t + 7

5760t3 + ... for t ≥ 1.

The function θ(t) is differentiable and according to (2.6)

(2.7) θ′(t) = 1
2 log t

2πe + 1
2 +O(t−2)

holds for t ≥ 1. Hence,
1
2 log t

2πe < θ′(t) < 1
2 log t

2πe + 1

for t sufficiently large. This implies that θ(t) is monotonically increasing for
t large enough.

Due to (2.4), the solutions of ∆(1
2 + it) − eiφ = 0 correspond to the

solutions of
θ(t) ≡ φ mod π.

Next, we introduce certain Dirichlet polynomials

(2.8) X(s) =
∑
n6X

xn
ns
, Y (s) =

∑
m6Y

ym
ms

,

where X,Y 6 T . Moreover, we define the following quantities

X0 = max
n6X
|xn|, Y0 = max

m6Y
|ym|, X1 =

∑
n6X

|xn|
n
, Y1 =

∑
m6Y

|ym|
m

and set
X1(s) =

∑
n6X

xn
ns
, Y1(s) =

∑
m6Y

ym
ms

.

We shall use a variation of Lemma 5.1 from Ng [14]. For a proof we refer
to Kalpokas, Korolev and Steuding [11, Lemma 5].

Lemma 2.1. Suppose the series f(s) =
∑∞
n=1 αnn

−s converges absolutely
for Res > 1 and

∑∞
n=1 |αn|n−σ � (σ − 1)−γ for some γ ≥ 0 as σ → 1 + 0.

Next, let X(s) and Y (s) be Dirichlet polynomials as defined in (2.8). Then,
uniformly for a ∈ (1, 2] we have

J = 1
2πi

∫ a+iT

a+i
f(s)X(s)Y (1− s)∆′(s)

∆(s) ds

= − T

2π

(
log T

2πe

) ∑
m6X
mn6Y

αnxmymn
mn

+O

(
Y a(log T )2X0Y0

(a− 1)γ+1

)
,

where the implicit constant is absolute.

We proceed with a modified version of Lemma 6 of Gonek [4].
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Lemma 2.2. Let l be a non-negative integer and |t| ≥ 1. Then, uniformly
for σ from a bounded interval,

ζ(l)(1− s) = (−1)l
l∑

k=0

(
l

k

)
ζ(k)(s)∆(1− s)

(
log t

2π

)l−k
+O(t

σ
2−1+ε).

Proof. First, we note that the estimates

(2.9) ζ(l)(σ + it)�


|t|

1
2−σ+ε, if σ ≤ 0,

|t|
1
2 (1−σ)+ε, if 0 < σ ≤ 1,

|t|ε, if σ > 1,
hold for any ε > 0 as t→∞. The estimates for the case l = 0 can be found
in Titchmarsh [21, Chapter V]. The estimates for l ∈ N can be deduced
from the case l = 0 by applying Cauchy’s integral formula for derivatives of
analytic functions to the zeta-function in a small disc centered at s = σ+it.

Next, taking the l-th derivative of both sides of the functional equation
(1.1), we get according to Leibniz’s rule

(2.10) ζ(l)(1− s) =
l∑

k=0

(
l

k

)
(−1)kζ(k)(s)∆(l−k)(1− s).

Initially, we will show by induction that for every non-negative integer ν

(2.11) ∆(ν)(1− s) = ∆(1− s)
(
− log t

2π

)ν
+O(tσ−

3
2 (log t)ν−1)

holds uniformly for σ from a bounded interval: The case ν = 0 is obviously
true. Now, suppose that the assertion (2.11) is proved for ν = 0, ..., µ − 1.
Differentiating the identity

∆′(1− s) = ∆(1− s)∆′

∆ (1− s)

yields that

∆(µ)(1− s) =
µ−1∑
ν=0

(
µ− 1
ν

)
∆(ν)(1− s)

(∆′

∆

)(µ−ν−1)
(1− s).

By (2.3) and Cauchy’s estimate for the derivatives of analytic functions
applied to a small square centered at 1− s, we find that(∆′

∆

)(ν)
(1− s)� |t|−1, for ν ≥ 1.

By the estimate above, (2.1) and (2.3), we can conclude that the assertion
(2.11) holds for ν = µ; and thus, inductively, for all non-negative integers ν.
The assertion of the Lemma follows now immediatelly by combining (2.9),
(2.10) and (2.11). �
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In the next four Lemmas, we will gather several properties of the gen-
eralized κ-th divisor function (see Heath-Brown [7, Section 2]): Let κ be a
positive real number. The generalized κ-th divisor function dκ : N → R is
defined by the coefficients dκ(n) of

ζ(s)κ =
∞∑
n=1

dκ(n)n−s, σ > 1.

The function dκ(n) is multiplicative and on prime powers given by

dκ(pj) = Γ(κ+ j)
Γ(κ)j! .

If κ is a positive integer the definition above coincides with the definition
of the divisor function

dκ(n) =
∑

n1,...,nκ∈N
n1···nκ=n

1.

The generalized κ-th divisor function satisfies the following properties:

Lemma 2.3. Let κ be a positive real number and n a positive integer.
(1) For κ ≥ 0 and n ≥ 1 ,we have dκ(n) ≥ 0.
(2) For fixed n, dκ(n) increases with respect to κ.
(3) For fixed κ ≥ 0 and ε > 0, we have dκ(n)� nε.
(4) If j is an integer, then

dκj(n) =
∑

n=n1n2...nj

dκ(n1)dκ(n2) . . . dκ(nj).

For a proof, we refer to Heath-Brown [7, Lemma 1].

Lemma 2.4. Let λ, µ be fixed positive real numbers. Then,∑
n≤x

dλ(n)dµ(n) �λ,µ x(log x)λµ−1

and, thus, ∑
n≤x

dλ(n)dµ(n)n−1 �λ,µ (log x)λµ.

The first assertion of Lemma 2.4 can be established by the Selberg-
Delange method (see Tenenbaum [20, Chapter II.5]) based on Perron’s for-
mula and contour integration. The second assertion then follows by Abel’s
summation.

Let ϕ(m) denote Euler’s totient function that is defined by

ϕ(m) =
∑
n≤m

(n,m)=1

1.

Then, we have the following.
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Lemma 2.5. Let λ, µ be fixed positive real numbers. Then,∑
m≤x

dλ(m)dµ(m)
(
ϕ(m)
m

)µ
�λ,µ x(log x)λµ−1

and, thus, ∑
m≤x

dλ(m)dµ(m)
(
ϕ(m)
m

)µ
m−1 �λ,µ (log x)λµ.

As in Lemma 2.4, the first assertion of Lemma 2.5 can be established
by the Selberg-Delange method (see Tenenbaum [20, Chapter II.5]) based
on Perron’s formula and contour integration. The second assertion then
follows by Abel’s summation.

Lemma 2.6. For any rational k = p
q ≥ 0, m ≤ x

1
2p and x sufficiently

large, we have ∑
n≤x

(m,n)=1

dk(n)
n
≥
(1
p

φ(m)
m

log x
)k

.

Proof. Let k = p
q be a non-negative rational number. We consider the sum

W :=
∑
n≤ξ

(m,n)=1

d 1
q
(n)

n
.

Taking the q-th power, we get

W q =
∑
n≤ξq

(m,n)=1

d1(n, ξ)
n

,

where the coefficients d1(n, ξ) are given by

d1(n, ξ) =
∑

n1n2···nq=n
n1,n2,...,nq≤ξ

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(nq).

As q is an integer, we have, according to property (4) of Lemma 2.3,∑
n1n2···nq=n

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(nq) = d 1

j
·j(n) = d1(n) ≡ 1

for all positve integers n. Hence, we can deduce that
d1(n, ξ) = d1(n) = 1 if n ≤ ξ

and
d1(n, ξ) ≤ d1(n) = 1 if n > ξ.
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Thus, we get ∑
n≤ξ

(m,n)=1

1
n
≤W q ≤

∑
n≤ξq

(m,n)=1

1
n
≤ 2qφ(m)

m
log ξ.

Using the inequality
φ(m)
m

log ξ ≤
∑
n≤ξ

(m,n)=1

1
n
≤ 2φ(m)

m
log ξ,

which is valid for m ≤ ξ
1
2 and ξ sufficiently large and can be established by

standard techniques, we get
φ(m)
m

log ξ ≤W q ≤ 2qφ(m)
m

log ξ

for m ≤ ξ
1
2 . Therefore,

(2.12)
(
φ(m)
m

log ξ
) 1
q

≤W ≤
(

2qφ(m)
m

log ξ
) 1
q

for m ≤ ξ
1
2 . Taking the p-th power of W yields that

W p =
∑
n≤ξp

(m,n)=1

d p
q
(n, ξ)
n

with coefficients

d p
q
(n, ξ) =

∑
n1n2···np=n
n1,n2,...,np≤ξ

d 1
q
(n1)d 1

q
(n2) · · · d 1

q
(np).

By the same reasoning as above, we obtain that
∑
n≤ξ

(m,n)=1

d p
q
(n)
n
≤W p ≤

∑
n≤ξp

(m,n)=1

d p
q
(n)
n

Using the upper bound for W p from the above inequality and the lower
bound for W from (2.12), we get

∑
n≤ξp

(m,n)=1

dk(n)
n

=
∑
n≤ξp

(m,n)=1

d p
q
(n)
n
≥W p ≥

(
φ(m)
m

log ξ
) p
q

.

for m ≤ ξ
1
2 . Setting x = ξp yields the assertion of the Lemma for m ≤

x
1

2p �
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Lemma 2.7. Let l be a non-negative integer, r and k non-negative rational
numbers. Then∑

m6x
mn6x

(logm)ldr(m)dk(mn)
mn

�l,k,r (log x)l+kr+k.

Proof. Let k = p
q ≥ 0 be a rational number. We consider the sum

W :=
∑
m6x
mn6x

(logm)ldr(m)dk(mn)
mn

=
∑
m≤x

(logm)ldr(m)
m

∑
n6 x

m

dk(mn)
n

.

Certainly, the following estimates hold

W ≥
∑
m≤x

(logm)ldr(m)dk(m)
m

∑
n6 x

m
(m,n)=1

dk(n)
n

≥
∑

x
1

3p+1≤m≤x
1

2p+1

(logm)ldr(m)dk(m)
m

∑
n6x

2p
2p+1

(m,n)=1

dk(n)
n

.

Now, Lemma 2.6 yields

W ≥ (3p+ 1)−l
(
p+ 1

2

)−k
(log x)l+k

∑
x

1
3p+1≤m≤x

1
2+1

dr(m)dk(m)
m

(
φ(m)
m

)k
.

By Lemma 2.5, we get

W �k,l,r (log x)l+kr+k

and the Lemma is proved.
�

3. Proof of Theorem 1.1
In order to prove Theorem 1.1 we consider the discrete moments

(3.1)
S1(T, φ) =

∑
0<tn(φ)6T

ζ(l)
(

1
2 − itn(φ)

)
X
(

1
2 + itn(φ)

)
Y
(

1
2 − itn(φ)

)
and

(3.2) S2(T, φ) =
∑

0<tn(φ)6T

∣∣∣X (
1
2 + itn(φ)

)∣∣∣2 .
with Dirichlet polynomials X(s) and Y (s) defined in (2.8). Our first aim is
to prove the following.
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Proposition 3.1. Let X(s) and Y (s) be Dirichlet polynomials as defined
in (2.8). Then uniformly for φ ∈ [0, π), as T →∞,

S1(T, φ) =e−2iφ
l∑

k=0
(−1)l+k

(
l

k

) ∑
m6X
mn6Y

(logn)kxmymn
mn

T

2πPl−k+1

(
log T

2π

)(3.3)

+ (−1)l T2π

(
log T

2πe

) ∑
m6Y
mn6X

(logm)l ymxmn
mn

+O(R1),

where Pn(x) is a polynomial of degree n and

R1 = (X + Y )(T
1
2 +εX1Y1 + T εX0Y0) +X

1
2Y

1
2T

1
6 +εX0Y0 + T εX0Y1;

moreover, uniformly for φ ∈ [0, π) as T →∞,

(3.4) S2(T, φ) = T

2π

(
log T

2πe

) ∑
n6X

|xn|2

n
+O(R2),

where

R2 = X
√
T (log T )2 ∑

n6X

|xn|2

n
+X(log T )3X 2

0 .

Proof of Proposition 3.1. A proof of statement (3.4) can be found in [11,
Proposition 9, equation (10)]. Thus, it only remains to prove (3.3).

We begin with the estimates∣∣ζ(l)(1
2 + it

)∣∣� t1/6+ε,∣∣X(1
2 + it

)∣∣ ≤ ∑
n6X

|xn|√
n

=
∑
n6X

√
n
|xn|
n
≤
√
XX1,(3.5)

∣∣Y (1
2 + it

)∣∣ ≤ √Y Y1;

the first one follows from a well-known bound for the zeta-function on the
critical line (see Titchmarsh [21, Chapter V]) in combination with Cauchy’s
integral formula for the derivatives of an analytic function applied to a small
disc centered at s, whereas the second and third assertion are straightfor-
ward. Hence, in order to prove (3.3), it is sufficient to consider the sum over
c < tn(φ) 6 T , where c > 32π is a large absolute constant.

Next, without loss of generality, we can assume that T = 1
2(tν(φ) +

tν+1(φ)) for some ν ∈ N since, by (3.5), for any T0 > T with T0 − T � 1
we have∑
T<tn(φ)≤T0

ζ(l)(1
2 − itn(φ))X(1

2 + itn(φ))Y (1
2 − itn(φ))� X

1
2Y

1
2T

1
6 +εX0Y0.
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Since the points s = 1
2 + itn(φ) are the roots of the function ∆(s) − e2iφ,

the sum in question can be rewritten as a contour integral:∑
c<tn(φ)6T

ζ(l)(1
2 − itn(φ))X(1

2 + itn(φ))Y (1
2 − itn(φ))

= 1
2πi

∫
�
ζ(l)(1− s)X(s)Y (1− s) ∆′(s)

∆(s)− e2iφds;

here � stands for the counterclockwise oriented rectangular contour with
vertices a + ic, a + iT, 1 − a + iT, 1 − a + ic, where a = 1 + (log T )−1.
Let I1 and I3 be integrals over right and left sides of contour, and I2 and
I4 be the integrals over the top and bottom edges of the contour. We may
assume the constant c so large that the relations

|∆(a+ it)| =
(
t

2π

)1/2−a(
1 +O(t−1)

)
≤ 2

(
t

2π

)−1/2
<

1
2

hold for any t > c.
Moreover, we observe that for s = a+ it we have

|X(a+ it)| ≤
∑
n6X

|xn|
na
6 X1,

|Y (1− a− it)| ≤
∑
m6Y

ma|ym|
m

� Y Y1,(3.6)

∣∣∣∣ ∞∑
k=1

e−2ikφ∆(a+ it)k
∣∣∣∣ ≤ 2

(
t

2π

)−1/2 ∞∑
k=0

1
2k � t−1/2.

In view of (2.2) and Lemma 2.2 we have

I1 = e−2iφ(−1)l+1
l∑

k=0

(
l

k

)∫ T

c

(
log τ

2π

)l−k

× d
(

1
2π

∫ a+iτ

a+ic
ζ(k)(s)X(s)Y (1− s)∆′

∆ (s)
(

1 +
∞∑
k=1

e−2ikφ∆(s)k
)
ds

)

+O(Y T
1
2 +εX1Y1),

where the error term comes from the application of (2.2), (3.6), and the
error term of Lemma 2.2, i.e.

1
2π

∫ a+iT

a+ic
O(t−

1
2 +ε)X(s)Y (1− s)∆′

∆ (s)
(

1 +
∞∑
k=1

e−2ikφ∆(s)k
)
ds

� Y T
1
2 +εX1Y1.



296 Thomas Christ, Justas Kalpokas

In order to evaluate I1, we first consider j1 + j2 where

j1 = 1
2πi

∫ a+iτ

a+ic
ζ(k)(s)X(s)Y (1− s)∆′

∆ (s)ds

and

j2 = 1
2πi

∫ a+iτ

a+ic
ζ(k)(s)X(s)Y (1− s)∆′

∆ (s)
∞∑
k=1

e−2ikφ∆(s)kds.

By (3.6) we have

|j2| � ζ(k)(a)Y X1Y1

∫ τ

c

log tdt√
t
� Y τ

1
2 +εX1Y1.

Applying Lemma 2.1 to j1, we get

j1 = (−1)k+1 τ

2π

(
log τ

2πe

) ∑
m6X
mn6Y

(logn)kxmymn
mn

+O (Y τ εX0Y0) .

Hence,

I1 =e−2iφ
l∑

k=0
(−1)l+k

(
l

k

) ∑
m6X
mn6Y

(logn)kxmymn
mn

T

2πPl−k+1

(
log T

2π

)

+O(Y T
1
2 +εX1Y1 + Y T εX0Y0 + T εX1Y0),

where
T

2πPl−k+1

(
log T

2π

)
+O(1) =

∫ T

c

(
log τ

2π

)l−k
d

(
τ

2π

(
log τ

2πe

))
and Pn(x) is a polynomial of degree n. The additional error term for I1
comes from the bound∣∣∣∣∣∣∣∣e

−2iφ
l∑

k=0
(−1)l+k

(
l

k

) ∑
m6X
mn6Y

(logn)kxmymn
mn

∣∣∣∣∣∣∣∣� T εX1Y0.

In a similar way we may compute I3. We observe that

I3 = − 1
2π

∫ T

c
ζ(l)(a− it)X(1− a+ it)Y (a− it) ∆′(1− a+ it)

∆(1− a+ it)− e2iφdt.

This yields in combination with X(s) = X1(s), Y (s) = Y1(s) (see (2.8))

I3 = − 1
2πi

∫ a+iT

a+ic
ζ(l)(s)X1(1− s)Y1(s) ∆′(1− s)

∆(1− s)− e−2iφds.
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In view of (2.2) we find that

I3 =− 1
2πi

∫ a+iT

a+ic
ζ(l)(s)X1(1− s)Y1(s)∆′

∆ (s)
(

1 +
∞∑
k=1

e−2ikφ∆(s)k
)
ds

=− (j3 + j4),

where

j3 = 1
2πi

∫ a+iT

a+ic
ζ(l)(s)X1(1− s)Y1(s)∆′

∆ (s)ds

and

j4 = 1
2πi

∫ a+iT

a+ic
ζ(l)(s)X1(1− s)Y1(s)∆′

∆ (s)
∞∑
k=1

e−2ikφ∆(s)kds.

By (3.6) we get
|j4| � XT

1
2 +εX1Y1.

Using Lemma 2.1, we find that

I3 = (−1)l T2π

(
log T

2πe

) ∑
m6Y
mn6X

(logm)l ym xmn
mn

+O
(
XT

1
2 +εX1Y1 +XT εX0Y0

)
.

In order to estimate I2 we first note that the following inequalities hold
along the line segment of the integration:

|ζ(l)(1− s)| � T
1
2 +ε, |X(s)| ≤

∑
n6X

|xn|
n
n1−σ � X1−σX1,

|Y (1− s)| ≤
∑
n6Y

|yn|
n
nσ � Y σY1,

and, finally,

|ζ(l)(1− s)X(s)Y (1− s)| � T
1
2 +εX1Y1X

(
Y

X

)σ
� XT

1
2 +εX1Y1

{(
Y

X

)1−a
+
(
Y

X

)a}
� (X + Y )T

1
2 +εX1Y1.

Next, by (2.3) we get

∆′(s)
∆(s)− e2iφ = ∆′(s)

∆(s)

(
1 + e2iφ

∆(s)− e2iφ

)
� (log T )

(
1 + 1
|∆(s)− e2iφ|

)
.
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The second term in the brackets is bounded by an absolute constant. Indeed,
in the case σ > 1

2 + 1
3
(
log T

2π
)−1 we have by (2.1) for sufficiently large T

|∆(σ + iT )| =
(
T

2π

)1/2−σ(
1 +O(T−1)

)
≤ e−1/3(1 +O(T−1)

)
<

1
2 ,

and hence |∆(s) − e2iφ| > 1 − |∆(s)| > 1
2 . Similarly, in the case σ 6

1
2 −

1
3
(
log T

2π
)−1 we get for sufficiently large T

|∆(σ + iT )| ≥ e1/3(1 +O(T−1)
)
>

4
3 , |∆(s)− e2iφ| > 4

3 − 1 = 1
3 .

Finally, let
1
2 −

1
3

(
log T

2π

)−1
< σ <

1
2 + 1

3

(
log T

2π

)−1
.

Then, using the relations
∆
(1

2 + iT
)

= e−2iϑ(T ), ∆(σ + iT ) = τe−2iϑ(T )(1 +O(T−1)
)
,

where τ =
(
T/(2π)

)1/2−σ and ϑ = ϑ(T ) denotes the increment of any fixed
continuous branch of the argument of π−s/2Γ

(
s/2

)
along the line segment

with end-points s = 1
2 and s = 1

2 + iT , we have e−1/3 6 τ 6 e1/3 and

∆(σ + iT )− e2iφ =
(
∆(σ + iT )−∆

(1
2 + iT

))
+
(
∆
(1

2 + iT
)
− e2iφ)

= (τ − 1)e−2iϑ − 2iei(φ−ϑ) sin (φ+ ϑ) +O(T−1)
= e−iϑ

(
(τ − 1) cosϑ+ 2 sin (ϑ+ φ) sinφ−

− i((τ − 1) sinϑ+ 2 sin (ϑ+ φ) cosφ)
)

+O(T−1).
Thus, we obtain that∣∣∆(σ + iT )− e2iφ∣∣2 = (τ − 1)2 + 4τ sin2 (ϑ+ φ) +O(T−1)

> 4τ sin2(ϑ+ φ) +O(T−1).

Using the fact that T = 1
2(tν(φ) + tν+1(φ)) for some ν, we finally get

sin2(ϑ+ φ) = sin2
(
πν + π

2 +O(T−1)
)
≥ sin2 π

3 = 3
4

for sufficiently large T , and hence,

|∆(σ + iT )− e2iφ|2 ≥ 4 · 3
4e
−1/3 +O(T−1) > 2.

Thus, |∆(s)− e2iφ| > 1
3 for any s under consideration. Hence

I2 � (X + Y )T
1
2 +εX1Y1.

The integral I4 can be estimated in a similar way and, thus, relation (3.3)
is proved. �
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Now we can proceed to proof Theorem 1.1.

Proof of Theorem 1.1. Suppose that k = p
q is a rational number with p >

q > 1 and (p, q) = 1. Let l be a non-negative integer. We set r := p − q
and choose ξ := T 1/(4p). First, we define fixed coefficients for the Dirichlet
polynomials X(s) and Y (s) in (2.8) via

X(s) =
(∑
n6ξ

d 1
q
(n)

ns

)p
=
∑
n6ξp

d p
q
(n; ξ)
ns

,

Y (s) =
(∑
n6ξ

d 1
q
(n)

ns

)r
=
∑
n6ξr

d r
q
(n; ξ)
ns

,

where dm
q

(n; ξ) is given by

dm
q

(n; ξ) =
∑

n=n1···nm
n1,...,nm6ξ

d 1
q
(n1) . . . d 1

q
(nm)

for m = p, r. From property (5) of Lemma 2.3 we can easily deduce that
dm
q

(n; ξ) = dm
q

(n) for m 6 ξ and 0 6 dm
q

(n, ξ) 6 dm
q

(n) for m > ξ.
Now, let S1(T, ϕ) and S2(T, ϕ) be the moments given by (3.1), resp.

(3.2), with respect to the above chosen Dirichlet polynomials X(s) and
Y (s). Hölder’s inequality assures that

|S1(T, φ)| ≤
( ∑

0<tn(φ)6T

∣∣ζ(l)(1
2 + itn(φ)

)∣∣2k)1/(2k)
×

×
( ∑

0<tn(φ)6T

∣∣X(1
2 + itn(φ)

)∣∣2k/(2k−1)·

·
∣∣Y (1

2 + itn(φ)
)∣∣2k/(2k−1)

)1−1/(2k)

=
( ∑

0<tn(φ)6T

∣∣ζ(l)(1
2 + itn(φ)

)∣∣2k)1/(2k)(
S2(T, φ)

)1−1/(2k)
.

Thus, we have

∑
0<tn(φ)6T

∣∣ζ(1
2 + itn(φ)

)∣∣2k ≥ (
S1(T, φ)

)2k(
S2(T, φ)

)2k−1 .
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We proceed with bounding S1(T, ϕ) from below: by statement (3.3) in
Proposition 3.1, we have

S1(T, φ) =
l∑

j=0
(−1)l+j

(
l

j

)
T

2πPl−j+1

(
log T

2π

)
Σ1

+ T

2π

(
log T

2πe

)
Σ2 +O(R1).

By Lemma 2.4,

Σ1 =
∑

m6ξp,mn6ξr

(logn)jd p
q
(m; ξ)d r

q
(mn; ξ)

mn

≤ (log ξr)j
∑
n≤ξr

d r
q
(n)
n

∑
l|n
d p
q
(l)

= (log ξr)j
∑
n6ξr

d r
q
(n)d p

q
+1(n)

n

� (log T )( p
q

)2−1+j
,

and by Lemma 2.7,

Σ2 =
∑

m6ξr,mn6ξp

(logm)ld r
q
(m; ξ)d p

q
(mn; ξ)

mn

≥
∑
m6ξ

(logm)ld r
q
(m)d p

q
(mn)

mn

� (log ξ)( p
q

)2+l
.

The error term of S1(T, φ) is bounded by

R1 � (ξp + ξr)T
1
2 +ε ∑

n6ξp

d p
q
(n; ξ)
n

∑
m6ξr

d r
q
(m; ξ)
m

+ ξpξrT
1
6 +ε

� T 3/4+ε � T 4/5.

Thus, we obtain that

|S1(T, φ)| � T (log T )k2+l+1.
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Moreover, for S2(T, φ) we have by statement (3.4) of Proposition 3.1 and
Corollary 2.4 that

|S2(T, φ)| = T

2π

(
log T

2πe

) ∑
n6ξp

d2
p
q
(n; ξ)

n
+O

(
ξp
√
T (log T )k2+1)

� T (log T )k2+1.

Altogether, we get∑
0<tn(φ)6T

∣∣ζ(1
2 + itn(φ)

)∣∣2k ≥ (
S1(T, φ)

)2k(
S2(T, φ)

)2k−1 � T (log T )k2+2kl+1

and Theorem 1.1 is proved. �

4. Proof of Corollary 1.1
In order to prove Corollary 1.1 we will use the following proposition

which allows us to express the continuous moments Ik,l(T ) in terms of the
discrete moments Sk,l(T, φ).

Proposition 4.1. Let k be any non-negative real number and l any non-
negative integer. Then, for T large enough,∫ 2T

T

∣∣∣ζ(l)
(

1
2 + it

)∣∣∣2k θ′(t)dt =
∫ π

0

∑
T≤tn(φ)≤2T

∣∣∣ζ(l)
(

1
2 + itn(φ)

)∣∣∣2k dφ.
Proof. We set g(t) :=

∣∣∣ζ(l)(1
2 + it)

∣∣∣2k and choose a constant c > 0 such that
the Riemann-Siegel theta function θ(t) is monotonically increasing for t > c.
Let T > c and Ti := tM+i(0) with i = 0, ..., N denote the Gram points that
lie in the interval [T, 2T ]. We define a smooth function [c/π,∞) 3 x 7→ tx
via

θ(tx) = π · x.
Then, tn+φ/π = tn(φ) for every positive integer n and every φ ∈ [0, π).
Hence, we get∫ tn+1

tn
g(t)θ′(t)dt =

∫ tn+1

tn
g(t)dθ(t) =

∫ 1

0
g(tn+u)dθ(tn+u)(4.1)

=
∫ 1

0
g(tn+u)d(π(n+ u)) =

∫ 1

0
g(tn+u)πdu

=
∫ π

0
g(tn+φ/π)πd(φ/π) =

∫ π

0
g(tn(φ))dφ.

Therefore,∫ TN

T1
g(t)θ′(t)dt =

∫ TN

T1
g(t)dθ(t) =

∑
M≤n≤M+N

∫ tn+1

tn
g(t)dθ(t) =
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=
∫ π

0

 ∑
M≤n≤M+N

g(tn(φ))

 dφ =
∫ π

0

 ∑
T1≤tn(φ)≤TN

g(tn(φ))

 dφ.
Noting that the segments [T, T1] and [TN , 2T ] can be treated in a way
analogue to (4.1), the assertion of the Proposition follows. �

We are now ready to prove Corollary 1.1.

Proof of Corollary 1.1. Using the asymptotic extension (2.7) for θ′(t),
Proposition 4.1 yields for any rational k ≥ 1 and any non-negative inte-
ger l∫ 2T

T

∣∣∣ζ(l)
(

1
2 + it

)∣∣∣2k dt � 1
log T

∫ π

0

∑
T≤tn(φ)≤2T

∣∣∣ζ(l)
(

1
2 + itn(φ)

)∣∣∣2k dφ.
Combining this with Theorem 1.1, we get for any rational k ≥ 1 and any
non-negative integer l∫ T

1
|ζ(l)(1

2 + it)|2kdt ≥
∞∑
j=0

∫ T/2j

T/2j+1
|ζ(l)(1

2 + it)|2kdt

�
∞∑
j=0

1
log T

∫ π

0

∑
T

2j+1≤tn(φ)≤ T

2j

|ζ(l)(1
2 + itn(φ))|2kdφ

� T (log T )k2+2kl.

Thus, Corollary 1.1 follows. �

5. Alternative proof of Corollary 1.1
Using a method of Rudnick and Soundararajan [17], the assertion of

Corollary 1.1 can be proved in a direct way without relying on the discrete
moments Sk,l(T, φ) and Theorem 1.1. We will demonstrate this proof for
the case l = 0:

By Cauchy’s residue theorem we have

1
2πi

(∫ a+iT

a+i
+
∫ 1

2 +iT

a+iT
+
∫ 1

2 +i

1
2 +iT

+
∫ a+i

1
2 +i

)
ζ(s)X(s)Y (1− s)ds = 0,

where X(s) and Y (s) are defined by (2.8) and a = 1 + (log T )−1. We can
conclude that

1
2πi

∫ 1
2 +iT

1
2 +i

ζ(s)X(s)Y (1− s)ds

= 1
2πi

(∫ a+iT

a+i
+
∫ 1

2 +iT

a+iT
+
∫ a+i

1
2 +i

)
ζ(s)X(s)Y (1− s)ds.
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The second and the third integral on the right hand side are bounded by
� (X + Y )T

1
2 +εX1Y1, (see the proof of (3.3)). Thus, we get∫ T

1
ζ(1

2 + it)X(1
2 + it)Y (1

2 − it)dt

= 1
i

∫ a+iT

a+i
ζ(s)X(s)Y (1− s)ds+O((X + Y )T

1
2 +εX1Y1).

The integral on the right hand side can be evaluated as
∞∑
n=1

1
na

∑
m≤X

xm
ma

∑
k≤Y

yk
k1−a

1
2π

∫ T

1

(
k

mn

)it
dt

= T
∑
m≤X
mn≤Y

xmymn
mn

+O(Y (log T )4X0Y0),

where the error term comes from the off-diagonal terms (see the proof of
Lemma 5 in Kalpokas, Korolev and Steuding [11]). In a similar way we can
show that ∫ T

1
|X(1

2 + it)|2dt = T
∑
n6X

|xn|2

n
+O(R2),

where R2 is the same as in (3.4).
Now, we follow the proof of Theorem 1.1, where k, p, q, r,X, Y, ξ are the

same. We set

A(s) :=
∑
n6ξ

d 1
q
(n)

ns
,

X(s) :=
(∑
n6ξ

d 1
q
(n)

ns

)r
=
∑
n6ξr

d r
q
(n; ξ)
ns

,

Y (s) :=
(∑
n6ξ

d 1
q
(n)

ns

)p
=
∑
n6ξp

d p
q
(n; ξ)
ns

.

Hence,
A(s)k−1 = X(s) and A(s)k = Y (s).

By Hölder’s inequality we get∣∣∣∣∣
∫ T

1
ζ(1

2 + it)A(1
2 + it)k−1A(1

2 − it)
kdt

∣∣∣∣∣
≤
(∫ T

1
|ζ(1

2 + it)|2kdt
) 1

2k
(∫ T

1
|A(1

2 + it)k−1A(1
2 − it)

k|
2k

2k−1dt

) 2k−1
2k

.
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Thus, we have

∫ T

1
|ζ(1

2 + it)|2kdt ≥

∣∣∣∫ T1 ζ(1
2 + it)A(1

2 + it)k−1A(1
2 − it)

kdt
∣∣∣2k(∫ T

1 |A(1
2 + it)|2kdt

)2k−1 =: |S1|2k

S2k−1
2

.

First, we bound |S1| from below. We have

|S1| � T
∑
m≤X
mn≤Y

d r
q
(m; ξ)d p

q
(mn; ξ)

mn
� T (log T )( p

q
)2
,

since the sum in |S1| is the same as Σ2 in the proof of Theorem 1.1.
Next, we bound S2 from above. In the same manner as for |S2(T, φ)| in

the proof of Theorem 1.1 we obtain that

S2 � T (log T )( p
q

)2
.

Altogether it follows that∫ T

1
|ζ(1

2 + it)|2kdt� T (log T )k2

holds for any rational number k ≥ 1.

6. Remark
As a consequence of Proposition 4.1 we have for any non-negative integer

l and any non-negative real k

max
φ∈[0,π)

∑
T≤tn(φ)≤2T

∣∣∣ζ(l)
(

1
2 + itn(φ)

)∣∣∣2k � log T
∫ 2T

T

∣∣∣ζ(l)
(

1
2 + it

)∣∣∣2k dt.
Now, using the unconditional lower bound for Ik,0(T ) by Heath-Brown [7],
resp. the conditional one by Ramachandra [16], we can deduce that

max
φ∈[0,π)

∑
T≤tn(φ)≤2T

∣∣∣ζ (1
2 + it

)∣∣∣2k � T (log T )k2+1.

holds for any rational k ≥ 0, resp. under the assumption of the Riemann
hypothesis for any real k ≥ 0.
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