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Journal de Théorie des Nombres
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Algebraic independence of the generating
functions of Stern’s sequence and of its twist

par Peter BUNDSCHUH et Keijo VÄÄNÄNEN

Résumé. Très récemment, la fonction génératrice A(z) de la
suite (an)n≥0 de Stern, définie par a0 := 0, a1 := 1, et a2n :=
an, a2n+1 := an + an+1 pour tout entier n > 0, a été considérée
du point de vue arithmétique. Coons [8] a montré la transcen-
dance de A(α) pour tout α algébrique avec 0 < |α| < 1, et ce
résultat fut généralisé dans [6] de sorte que, pour les mêmes α,
les nombres A(α), A′(α), A′′(α), . . . sont algébriquement indépen-
dants. À peu près au même temps, Bacher [4] a étudié la version
tordue (bn) de la suite de Stern, définie par b0 := 0, b1 := 1, et
b2n := −bn, b2n+1 := −(bn + bn+1) pour tout n > 0.

Les objectifs principaux du présent travail sont d’établir les
analogues sur la fonction génératrice B(z) de (bn) des résultats
arithmétiques mentionnés plus haut concernant A(z), de démon-
trer l’indépendance algébrique de A(z), B(z) sur le corps C(z),
d’utiliser ce fait pour en déduire que, pour tout nombre com-
plexe α avec 0 < |α| < 1, le degré de transcendance du corps
Q(α,A(α), B(α)) sur Q est au moins 2, et de fournir des majora-
tions assez bonnes pour l’exposant d’irrationalité de A(r/s) et de
B(r/s), où r, s sont des entiers avec 0 < |r| < s et (log |r|)/(log s)
suffisamment petit.

Abstract. Very recently, the generating function A(z) of the
Stern sequence (an)n≥0, defined by a0 := 0, a1 := 1, and a2n :=
an, a2n+1 := an + an+1 for any integer n > 0, has been consid-
ered from the arithmetical point of view. Coons [8] proved the
transcendence of A(α) for every algebraic α with 0 < |α| < 1,
and this result was generalized in [6] to the effect that, for the
same α’s, all numbers A(α), A′(α), A′′(α), . . . are algebraically in-
dependent. At about the same time, Bacher [4] studied the twisted
version (bn) of Stern’s sequence, defined by b0 := 0, b1 := 1, and
b2n := −bn, b2n+1 := −(bn + bn+1) for any n > 0.

The aim of our paper is to show the analogs on the gener-
ating function B(z) of (bn) of the above-mentioned arithmetical
results on A(z), to prove the algebraic independence of A(z), B(z)
over the field C(z), to use this fact to conclude that, for any
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complex α with 0 < |α| < 1, the transcendence degree of the
field Q(α,A(α), B(α)) over Q is at least 2, and to provide rather
good upper bounds for the irrationality exponent of A(r/s) and
B(r/s) for integers r, s with 0 < |r| < s and sufficiently small
(log |r|)/(log s).

1. Introduction and results
Stern’s sequence has a long history and seemingly appeared first in print

in 1858 [15]. Recall that this sequence (an)n=0,1,... is defined by a0 :=
0, a1 := 1 and, for n ∈ N := {1, 2, ...}, by

a2n := an and a2n+1 := an + an+1.

In a recent paper, Coons [8] discussed arithmetic and related analytic ques-
tions concerning the generating function1

A(z) :=
∞∑
n=0

an+1z
n

of Stern’s sequence. More precisely, he proved that A(z) is transcendental
over the rational function field C(z) [8, Theorem 2.2] and used this to show
the transcendence (over Q) of A(α) at every α ∈ Q× ∩D [8, Theorem 2.4].
Here Q denotes the field of all complex algebraic numbers, and D := {z ∈
C : |z| < 1}.

In a very recent article, the first author [6] fairly generalized both of
these Coons’ results by proving the algebraic independence over Q of the
numbers A(α), A′(α), A′′(α), ... for every α as before. Analytically, the basic
ingredient of this proof is the fact that the function A(z) is hypertranscen-
dental. Remember that an analytic function is called hypertranscendental
if it satisfies no algebraic differential equation, that is, no finite collection
of derivatives of the function is algebraically dependent over C(z).

It should be pointed out that two more proofs of Coons’ result on the
transcendence of A(α) are included in [6]: The first one, in Remark 3, de-
pends, as Coons’, on Mahler’s classical result, Theorem 2.1 below, whereas
the second one, in Sec. 5, is based on a consequence of Schmidt’s Subspace
Theorem (see Corvaja and Zannier [9, Corollary 1]).

Let us finally notice that A(z) satisfies the Mahler-type functional equa-
tion2

(1.1) A(z) = p(z)A(z2) with p(z) := 1 + z + z2

1The usual definition of a generating function differs from this by a factor z on the right-hand
side. But this is unimportant for the arithmetical questions to be considered here.

2In [6], from p. 365 on, the following p(z) was denoted by P (z).
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which plays a central role in all proofs in Secs. 2, 3, and 5 of [6]. It is easily
deduced from the above recursive definition of the sequence (an), and makes
evident the product representation

(1.2) A(z) =
∞∏
k=0

p(z2k),

whence A(z) does not vanish on D.
In a recent preprint, Bacher [4] (see also Allouche [2]) introduced the

twisted version of Stern’s sequence by putting b0 := 0, b1 := 1 and, for
n ∈ N,

(1.3) b2n := −bn and b2n+1 := −(bn + bn+1).

This definition shows bn ∈ Z for any n ∈ N0 := N ∪ {0}, b2k = (−1)k for
any k ∈ N0, and |bn| ≤ n for every n ∈ N0. On denoting the generating
function of the sequence (bn) by

(1.4) B(z) :=
∞∑
n=0

bn+1z
n,

this is a non-terminating power series with integral coefficients having con-
vergence radius 1. Thus, by a result of Carlson [7], B(z) either defines a
rational function or cannot be analytically continued beyond the unit circle
(hence is transcendental).

At the beginning of Sec. 2 below, we will prove that B(z) satisfies the
following Mahler-type functional equation

(1.5) B(z) = 2− p(z)B(z2)

with p(z) as in (1.1). This fact not only will enable us to rule out the before-
mentioned first alternative but also to prove the following analogue of the
transcendence of A(α), again using Mahler’s Theorem 2.1.

Theorem 1.1. For every α ∈ Q× ∩D, the number B(α) is transcendental.

Remark. It would be interesting to see a proof of this statement via
Schmidt’s Subspace Theorem along similar lines as used in Sec. 5 of [6].

Our next result is the B-analogue of Theorems 1 and 2 from [6].

Theorem 1.2. The function B(z) is hypertranscendental. Moreover, for
every α ∈ Q× ∩ D, the numbers B(α), B′(α), B′′(α), ... are algebraically
independent.

Our main concern in Secs. 3 and 4 will be to study the algebraic indepen-
dence of A and B, first from the ‘functional’, and then from the ‘numerical’
point of view. More precisely, we will be able to first establish the following.



46 Peter Bundschuh, Keijo Väänänen

Theorem 1.3. The functions A(z) and B(z) are algebraically independent
over C(z).

This result for which we will give an elementary proof is the main ana-
lytic ingredient in showing the subsequent common strengthening of Coons’
Theorem 2.4 and of our preceding Theorem 1.1.

Theorem 1.4. For any non-zero α ∈ D, the transcendence degree of
Q(α,A(α), B(α)) over Q is at least 2. In particular, for every α ∈ Q× ∩D,
the numbers A(α) and B(α) are algebraically independent.

Remark. In view of Theorem 1.2, its A-analogue [6, Theorem 2] and of
Theorem 1.4 one may ask for the algebraic independence of all numbers
A(α), B(α), A′(α), B′(α), ... at non-zero algebraic points α in the unit disk.

Sec. 5 will be devoted to some quantitative questions in the present realm.
We first give an algebraic independence measure of A(α) and B(α) with
algebraic α.

Theorem 1.5. Let α ∈ Q× ∩ D. For any H, s ∈ N and for any polyno-
mial P ∈ Z[x1, x2] \ {0} whose total degree does not exceed s and whose
coefficients are not greater than H in absolute value, the inequality

|P (A(α), B(α))| > exp(−µs2(logH + s2 log(s+ 1))),
holds, where µ is a positive constant depending only on α and the functions
A and B.

This theorem immediately implies that the irrationality exponent of A(α)
or B(α) with real algebraic α and 0 < |α| < 1, is finite. Recall here that
the irrationality exponent µ(ξ) of a real irrational number ξ is defined to
be the infimum of the real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ ≤ q−µ
has only finitely many solutions (p, q) ∈ Z×N. For certain rational α’s, we
can get a more precise and rather sharp result by using the ideas of the
works [1] and [5]. Namely the following result holds.

Theorem 1.6. If r, s ∈ Z \ {0}, s ≥ 2 and γ := (log |r|)/(log s) < 1, then
the estimates

µ(A(r/s)) ≤ 375(1− γ)
32(4− 9γ) , if γ <

4
9 ,

µ(B(r/s)) ≤ 32(1− γ)
3(3− 7γ) , if γ <

3
7 ,

hold. In particular, one has µ(A(1/s)) ≤ 375
128 = 2, 929 . . ., and µ(B(1/s)) ≤

32
9 = 3, 555 . . ..
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2. Functional equation, non-continuability, and proof of
Theorems 1.1 and 1.2

To prove equation (1.5), we start from (1.4) and use (1.3).

B(z)− 1 =
∞∑
j=1

b2jz
2j−1 +

∞∑
j=1

b2j+1z
2j

= −
∞∑
j=1

bjz
2j−1 −

∞∑
j=1

(bj + bj+1)z2j

= −z
∞∑
j=1

bjz
2(j−1) − z2

∞∑
j=1

bjz
2(j−1) −

( ∞∑
j=1

bjz
2(j−1) − 1

)
.

By (1.4), the last three sums equal B(z2), and this leads to (1.5).
Next we assume that B is a rational function which means that there

are coprime u, v ∈ C[z] \ {0} such that B(z) = u(z)/v(z). Then (1.5) can
be equivalently written as

u(z)v(z2) = 2v(z)v(z2)− p(z)u(z2)v(z)
implying the divisibility condition
(2.1) v(z2) | (1 + z + z2)v(z) (in C[z])
since u(z2), v(z2) are also coprime. Now (2.1) implies deg v ≤ 2, where
deg v = 0 can be immediately excluded since, by (1.5), B cannot be a
polynomial. Next, in the case deg v = 1, hence v(z) = z + c (w.l.o.g.) with
some c ∈ C×, (2.1) would read as

(1 + z + z2)(z + c)
z2 + c

= z + 1.

This implies c 6= −1, and inserting z = 1 leads to a contradiction. In the
remaining case deg v = 2, degree considerations show
(2.2) (1 + z + z2)v(z) = d v(z2)
with some d ∈ C×, in fact with d = 1. But then, by (2.2), v(1) = 0, v(ζ) =
v(ζ) = 0 for ζ := e2πi/3, and these are too many distinct zeros for a degree 2
polynomial.

Proof of Theorem 1.1. To directly prepare this proof, we next quote the
one-dimensional version of a transcendence criterion going back to Mahler
[11] (see also [14, Theorem 1.2]). Let K be an algebraic number field and
OK its ring of integers. Assume that f ∈ K[[z]] has convergence radius
r > 0 and satisfies a functional equation

(2.3) f(zt) = g0(z) + ...+ gm(z)f(z)m

h0(z) + ...+ hm(z)f(z)m
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with t ∈ N\{1},m ∈ {1, ..., t−1}, gµ, hµ ∈ OK [z] (µ = 0, ...,m), (gm, hm) 6=
(0, 0). If ∆(z) denotes the resultant of the two polynomials

g0(z) + ...+ gm(z)Xm and h0(z) + ...+ hm(z)Xm

with respect to the indeterminate X, then the following holds.
Theorem 2.1 (Mahler’s theorem). Assume that K, f,∆ are as before, and
that f is transcendental over K(z). If α ∈ Q× satisfies |α| < min(1, r) and
∆(αtj ) 6= 0 for any j ∈ N0, then f(α) is transcendental.

To finish the proof of Theorem 1.1, we apply Theorem 2.1 to f = B
which has been recognized as transcendental over C(z). We may take K =
Q, r = 1, and, since (2.3) reads here

(2.4) B(z2) = 2−B(z)
p(z) ,

t = 2,m = 1, g0(z) = 2, g1(z) = −1, h0(z) = p(z), h1(z) = 0, and therefore

∆(z) = det
(
−1 2
0 p(z)

)
= −p(z).

Since 0 /∈ p(D), our proof is complete. �

Proof of Theorem 1.2. The proof of the hypertranscendence of B(z) is es-
sentially based on Theorem 3 from Nishioka’s paper [12] which is deduced
from a necessary condition for the existence of differentially algebraic solu-
tions of certain types of functional equations.
Theorem 2.2 ([12, Theorem 3]). Let C be a field of characteristic 0, and
suppose that f ∈ C[[z]] has the following two properties:
(i) For suitable m ∈ N0, the series f,Df, . . . ,Dmf are algebraically de-

pendent over C(z), where D denotes the differential operator z d
dz .

(ii) For suitable t ∈ N \ {1}, f satisfies the functional equation
(2.5) f(zt) = u(z)f(z) + v(z),

where u, v ∈ C(z), u 6= 0. If u(z) = sMz
M + ... with M ∈ Z, sM ∈ C×

define Q := [M/(t− 1)].
Then there exists some w ∈ C(z) satisfying

w(zt) = u(z)w(z) + v(z)
or

w(zt) = u(z)w(z) + v(z)− γ u1(z)zQt

u2(z) ,

where u1(z) = u(z)/(sMzM ), u2 ∈ C(z) \ {0} fulfils the condition u2(zt) =
u2(z)/u1(z), and γ ∈ C is the constant term in the z-expansion of the
quotient v(z)u2(z)/(u1(z)zQt) in case sM = 1 and M = Q(t−1), but γ = 0
otherwise.
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Towards a contradiction to the first statement of our Theorem 1.2, we
assume that there is an m ∈ N0 such that the functions B,B′, ..., B(m) are
algebraically dependent over C(z). As it is easily seen by induction, the
equation

DµB =
µ∑
λ=1

cλµz
λB(λ)

holds for any µ ∈ N with explicit c1µ, ..., cµµ ∈ N, cµµ = 1. Therefore, our
above assumption on the derivatives of B is equivalent to the algebraic
dependence of B,DB, ...,DmB over C(z), whence condition (i) of Theorem
2.2 is satisfied.

By (2.4), condition (2.5) is satisfied for f = B if we take t = 2, u(z) =
−1/p(z), v(z) = 2/p(z). Since our u(z) = −1 + z + ... near the origin, we
have M = 0, sM = −1, Q = 0, and thus γ = 0 in Theorem 2.2. Therefore
there is a w ∈ C(z) satisfying w(z2) = (2−w(z))/p(z), and this contradicts
what we have proved at the beginning of the present section.

The proof of the second, i.e., the arithmetic part of Theorem 1.2, de-
pends essentially on the following inhomogeneous generalization of Nish-
ioka’s original result in [13, Corollary 2] quoted in [6].

Theorem 2.3 ([14, Theorem 4.2.1]). Let K denote an algebraic number
field, and let t ∈ N \ {1}. Suppose that f1, ..., fm ∈ K[[z]] converge in
some disk U ⊂ D about the origin, where they satisfy the matrix functional
equation

τ (f1(zt), ..., fm(zt)) = A(z) · τ (f1(z), ..., fm(z)) + τ (b1(z), ..., bm(z))
with A ∈ Matm×m(K(z)), τ indicating the matrix transpose, and b1, ..., bm ∈
K(z). If α ∈ Q× ∩ U is such that none of the αtj (j ∈ N0) is a pole of
b1, ..., bm and the entries of A, then the following inequality holds

trdegQQ(f1(α), ..., fm(α)) ≥ trdegK(z)K(z)(f1(z), ..., fm(z)).

With this tool, the proof of Theorem 1.2 can be easily completed, very
much parallel to the one of Theorem 2 in [6]. Therefore we leave the details
to the reader. �

3. Proof of Theorem 1.3
To establish this result, we first recall that, by (1.1) and (1.5), the func-

tions A and B satisfy the following system of functional equations

(3.1) A(z2) = A(z)
p(z) , B(z2) = 2−B(z)

p(z) .

Assume now that A(z) and B(z) are algebraically dependent over C(z).
Then there exists some P ∈ C[z, x, y] \ {0} depending on x and on y (re-
member that both of A(z) and B(z) are transcendental over C(z)) such
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that

(3.2) P (z,A(z), B(z)) = 0

holds identically in D. Assuming further that k := degy P ∈ N is minimal,
we write

(3.3) P (z, x, y) =
k∑
j=0

Pj(z, x)yj (with Pk(z, x) 6= 0).

From this we obtain, by (3.1) and (3.2),

0 = P (z2, A(z2), B(z2)) =
k∑
j=0

Pj
(
z2,

A(z)
p(z)

)(2−B(z)
p(z)

)j

=
k∑
i=0

(−B(z))i
k∑
j=i

(
j

i

)
2j−iPj

(
z2,

A(z)
p(z)

)
p(z)−j .

Multiplying this equation by p(z)k+`, where ` := max0≤j≤k degx Pj(z, x),
the last double sum becomes a polynomial in z,A(z), B(z) suggesting us to
define

Q(z, x, y) :=
k∑
j=0

Qj(z, x)yj ,

Qj(z, x) := (−1)j
k∑
i=j

(
i

j

)
2i−jp(z)k+`−iPi

(
z2,

x

p(z)
)

whence Qk(z, x) = (−1)kp(z)`Pk
(
z2, x/p(z)

)
6= 0 and Q(z,A(z), B(z)) = 0

identically in D, by our construction. Thus

R(z, x, y) := Pk(z, x)Q(z, x, y)−Qk(z, x)P (z, x, y)

=
k−1∑
j=0

(
Pk(z, x)Qj(z, x)− Pj(z, x)Qk(z, x)

)
yj ∈ C[z, x, y]

has degy R < k and satisfies R(z,A(z), B(z)) = 0 in D. By our above
minimality condition on k, the coefficients of all yj (j = 0, ..., k − 1) in R
must vanish, in particular, the one of yk−1. This leads after some minor
computation to
(3.4)
Pk−1(z, x)Pk

(
z2,

x

p(z)
)

+Pk(z, x)
(
p(z)Pk−1

(
z2,

x

p(z)
)

+2kPk
(
z2,

x

p(z)
))

=0.

Note that (3.4) implies Pk−1 6= 0 (since Pk 6= 0). Denoting sj := degx Pj
for j ∈ {k − 1, k} we infer from (3.4) that sk > sk−1 cannot hold. To rule
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out the possibility sk < sk−1 (⇔ sk−1 − 1− sk ≥ 0), we write for the same
j’s

(3.5) Pj(z, x) =
sj∑
σ=0

pj, σ(z)xσ

and consider on the left-hand side of (3.4) the factor of xsk−1+sk , namely

pk−1, sk−1(z)pk, sk
(z2)p(z)−sk + pk, sk

(z)pk−1, sk−1(z2)p(z)1−sk−1

which has to vanish. This condition is equivalent to
(3.6) p(z)sk−1−1−skpk−1, sk−1(z)pk, sk

(z2) + pk, sk
(z)pk−1, sk−1(z2) = 0.

Denoting by λj (6= 0) the leading coefficient of pj, sj (z) for j ∈ {k−1, k}, the
leading coefficient of the polynomial on the left-hand side of (3.6) equals
κλkλk−1 with κ ∈ {1, 2}, whence equation (3.6) cannot hold. Thus sk−1 =
sk =: s must be valid.

We next insert (3.5) in the left-hand side of (3.4) and determine the
coefficient of x2s which equals
(3.7) pk−1, s(z)pk, s(z2) + p(z)pk, s(z)pk−1, s(z2) + 2kpk, s(z)pk, s(z2),
and this expression must vanish identically in z. Writing dj := degz pj, s for
j ∈ {k − 1, k} the degrees of the three summands in (3.7) are
(3.8) dk−1 + 2dk, 2 + 2dk−1 + dk, 3dk,
respectively. It is easily checked that these degrees are distinct if and only
if dk − dk−1 /∈ {0, 1, 2}. If dk − dk−1 is 0 or 2, then precisely the middle or
the last term in (3.8), resp., is the largest one. Thus, there remains only one
case to be excluded, namely dk−dk−1 = 1, where the second and third term
in (3.8) are equal, whereas the first one is smaller. With d := dk = dk−1 + 1
we write
(3.9)
pk, s(z) = a1z

d + a2z
d−1 + ..., pk−1, s(z) = b1z

d−1 + ... (with a1b1 6= 0).
Inserting this in (3.7), this polynomial expansion starts with

a1(b1 + 2ka1)z3d +
(
2a1b1 + a2(b1 + 2ka1)

)
z3d−1 + ...

implying b1 + 2ka1 = 0 (since a1 6= 0) and then 2a1b1 = 0. This contradicts
the condition a1b1 6= 0 in (3.9). Hence our initial assumption on A,B was
incorrect and Theorem 3 is proved.

Remark. Whereas we presented above an elementary and self-contained
proof, it should be noticed that our Theorem 3 could also be deduced from
Proposition 3 in Kubota’s very general paper [10] dealing with solutions of
systems of multidimensional Mahler-type functional equations fairly gen-
eralizing our system (3.1). For the convenience of the reader, we briefly
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indicate the necessary specializations: For L,M and Ω, take C(z), the quo-
tient field of C[[z]], and (2) ∈ Mat1×1(N0), respectively; as system (22) in
[10], take our (3.1), whence f1 = B, f2 = A hence m = 2, k = 1.

4. Proof of Theorem 1.4
To this purpose, we want to apply Theorem 2.3 to f1 = A, f2 = B; hence

we may take K = Q, t = 2, U = D. By (3.1), the column vector τ (A,B)
satisfies a matrix functional equation as supposed in Theorem 2.3 with

A(z) = 1
p(z) ·

(
1 0
0 −1

)
, b1(z) = 0, b2(z) = 2

p(z) .

Notice next that

trdegQ(z)Q(z)(A(z), B(z)) = trdegC(z)C(z)(A(z), B(z)) = 2,

the second equality holding by our Theorem 1.3; the first comes from a
standard argument in transcendence theory (compare, e.g., the remarks
in [14, pp. 6, 89]) taking A,B ∈ Q[[z]] into account. Thus, according to
Theorem 2.3, we have trdegQQ(A(α), B(α)) ≥ 2, in fact = 2, for any α ∈
Q× ∩ D. So far, the algebraic points α in Theorem 1.4.

The case of transcendental points α ∈ D was considered by Amou [3].
We first note that his Theorem 1 with m-dimensional matrix functional
equation for τ (f1, ..., fm) similar to the one in Theorem 2.3 is not enough
to conclude. But his Theorem 3 to be quoted below will work. Note that
therein the hypotheses are much stronger compared to those in Theo-
rem 2.3: Namely, the matrix A(z) must be diagonal, A(z)−1 and A(z)−1 ·
τ (b1(z), ..., bm(z)) must have polynomial entries, and m must be equal to
2. More precisely, Amou’s result can be quoted as follows.

Theorem 4.1 ([3, Theorem 3]). Let K denote an algebraic number field,
and let t ∈ N \ {1}. Suppose that f1, f2 ∈ K[[z]] converge in D, are alge-
braically independent over K(z), and satisfy the functional equations

(4.1) fµ(z) = aµ(z)fµ(zt) + bµ(z) (µ = 1, 2),

where aµ, bµ ∈ K[z]. Then, for any transcendental α ∈ D, the following
inequality holds

trdegQQ(α, f1(α), f2(α)) ≥ 2.

Applying Theorem 4.1 as before to f1 = A, f2 = B we note that (3.1)
can be equivalently written as

A(z) = p(z)A(z2), B(z) = −p(z)B(z2) + 2

and this is of type (4.1), completing our proof.
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5. Proof of Theorems 1.5 and 1.6
First we note that the proof of Theorem 1.5 follows immediately from

the following special case of [14, Theorem 4.4.2].

Theorem 5.1. Assume that the functions f1, f2 satisfy the assumptions
of Theorem 4.1 and that α ∈ Q× ∩ D has the property a1(αtk)a2(αtk) 6= 0
for any k ∈ N0 Then, for any H, s ∈ N and for any polynomial P ∈
Z[x1, x2] \ {0} whose total degree does not exceed s and whose coefficients
are not greater than H in absolute value, the inequality

|P (f1(α), f2(α))| > exp(−µs2(logH + s2 log(s+ 1))),
holds, where µ is a positive constant depending only on α and the functions
f1 and f2.

To prove Theorem 1.6, we use Padé approximations of A and B similarly
to the procedure in [1] and [5] for the generating function of the Thue-Morse
sequence. In our case, we do not have an analogous non-vanishing result
but we compute several low degree Padé approximants and iterate these by
the functional equation of A or B. This leads to a rather dense sequence of
good rational approximations for A(r/s) and B(r/s). These approximations
together with the following approximation lemma from [1] can finally be
used to prove Theorem 1.6.

Lemma 5.1. Let ξ, δ, ρ and θ be real numbers such that 0 < δ ≤ ρ and
θ ≥ 1. Assume that there exist a sequence (pn/qn)n≥1 of rational numbers
and some positive constants C0, C1 and C2 such that the inequalities

qn < qn+1 ≤ C0q
θ
n and

C1

q1+ρ
n

≤
∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ C2

q1+δ
n

.

hold. Then the estimate
µ(ξ) ≤ (1 + ρ)θ/δ.

is valid. If, moreover, pn and qn are coprime for all sufficiently large n,
then one has θ ≥ δ and

µ(ξ) ≤ max(1 + ρ, 1 + θ/δ).

Proof of Theorem 1.6. To consider A(r/s), we start by computing, simply
by solving systems of linear homogeneous equations, Padé approximants3
[3/5]A, [4/6]A, [5/7]A and [6/8]A, which are given by the equations
(5.1) Qi,0(z)A(z)− Pi,0(z) = Ri,0(z), i = 1, 2, 3, 4,
with the polynomials

Q1,0(z) = 2− z − z2 − z3 − 2z4 + 4z5, P1,0(z) = 2 + z + 2z2 − 2z3,

3For this usual notation, compare, e.g. [5].
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Q2,0(z) = 3−2z+z2 +z3−5z4 +2z5−z6, P2,0(z) = 3+z+5z2 +z3 +5z4,

Q3,0(z)=1+z−z2+z3−z4−2z5+z6−z7, P3,0(z)=1+2z+2z2+3z3+2z4+3z5,

Q4,0(z)=1−2z−z2+2z3−3z4+2z5+2z6−2z7+2z8,

P4,0(z)=1− z − z2 − 2z3 − 2z4 − 2z5 − 4z6,

and the corresponding remainder terms
R1,0(z) = 6z9 + O(z10), R2,0(z) = 2z11 + O(z12),

R3,0(z) = −2z13 + O(z14), R4,0(z) = 4z15 + O(z16).
We now apply the functional equation (1.1) of A(z) to (5.1) and obtain

a sequence of approximations. Namely, assuming
(5.2) Qi,n(z)A(z)− Pi,n(z) = Ri,n(z),
we get

Qi,n(z2)p(z)A(z2)− p(z)Pi,n(z2) = p(z)Ri,n(z2)
or

Qi,n+1(z)A(z)− Pi,n+1(z) = Ri,n+1(z),
where
Qi,n+1(z) = Qi,n(z2), Pi,n+1(z) = p(z)Pi,n(z2), Ri,n+1(z) = p(z)Ri,n(z2).
Starting from (5.1) and making this step repeatedly we get a sequence of
equations (5.2) with

Qi,n(z) = Qi,0(z2n), Pi,n(z) = Pi,0(z2n)
n−1∏
k=0

p(z2k),

Ri,n(z) = Ri,0(z2n)
n−1∏
k=0

p(z2k).

Here deg Qi,n = (4 + i)2n, deg Pi,n ≤ (4 + i)2n − 2, and ord0Ri,n =
(7 + 2i)2n. Therefore we do not have Padé approximants if n ≥ 1, because
the vanishing orders at the origin are not sufficiently large. However, also
these approximations are useful.

We now have
1
2 < Qi,n(r/s) < 4

for all n ≥ c0, where c0 (as c1, c2, . . . later) is an effectively computable
positive constant independent of n. By denoting

qi,n = s(4+i)2n
Qi,n(r/s),

we obtain four sequences of positive integers qi,n such that

(5.3) c1s
(4+i)2n ≤ qi,n ≤ c2s

(4+i)2n
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for all n ≥ c3. Further, by (5.2),

A(r/s)− pi,n
qi,n

= ri,n

where

pi,n = s(4+i)2n
Pi,n(r/s), ri,n = s(4+i)2n

qi,n
Ri,n(r/s).

Note here that all pi,n are integers. Further, since an ≤ n, the values of
the terms O(z(8+4i)2n) in Ri,0(z2n) at the point z = r/s are bounded by
c4|r/s|(8+2i)2n and

c5 ≤
∣∣∣ n−1∏
k=0

p((r/s)2k)
∣∣∣ ≤ c6

for all n ≥ c7. This implies (recall |r| = sγ with 0 ≤ γ < 1) that

(5.4) c8

q
(8+2i−1)(1−γ)/(4+i)
i,n

≤ |ri,n| ≤
c9

q
(8+2i−1)(1−γ)/(4+i)
i,n

for all n ≥ c10. Starting from n ≥ c10 we now build a sequence of positive
integers q1,n, q2,n, q3,n, q4,n, q1,n+1, q2,n+1, . . ., and denote it by (qn). Let (pn)
be the corresponding sequence of pi,n. By (5.3) and (5.4) we then have, for
all n ≥ c11,

(5.5) qn < qn+1 ≤ c12q
5/4
n ,

c13

q
15(1−γ)/8
n

≤
∣∣∣∣A(r/s)− pn

qn

∣∣∣∣ ≤ c14

q
9(1−γ)/5
n

.

We can now apply Lemma 5.1 and get immediately the proof of the claim
on A(r/s).

To begin our consideration of B(r/s), we give [2/2]B, [7/5]B and
[10/10]B, namely
(5.6) Qi,0(z)B(z)− Pi,0(z) = Ri,0(z), i = 1, 2, 3,
where now the polynomials read

Q1,0(z) = 1− z + z2, P1,0(z) = 1− 2z + 2z2,

Q2,0(z) = 1+z−z2−z3 +z4 +z5, P2,0(z) = 1−2z2 +z3 +4z4−4z6−2z7,

Q3,0(z) = 1−z+z3−2z4−z5 +3z6−z8−z9 +z10,

P3,0(z) = 1− 2z+ z2 + 2z3− 3z4 + 4z6− 4z7− 5z8 + 2z9 + 6z10,

and the remainder terms
R1,0(z) = −2z8+O(z10), R2,0(z) = 2z16+O(z17), R3,0(z) = −4z21+O(z22).
Analogously to the above consideration, we now apply the functional equa-
tion (1.5) of B and get the approximations
(5.7) Qi,n(z)B(z)− Pi,n(z) = Ri,n(z)
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where
Qi,n(z) = Qi,0(z2n),

Pi,n(z) = (−1)nPi,0(z2n)
n−1∏
k=0

p(z2k) + 2Qi,0(z2n)
n−1∑
k=0

(−1)k
k−1∏
j=0

p(z2j ),

Ri,n(z) = (−1)nRi,0(z2n)
n−1∏
k=0

p(z2k).

Here degQ1,n = 2 · 2n,degP1,n ≤ 4 · 2n − 2, ord0R1,n = 8 · 2n,degQ2,n =
5 · 2n,degP2,n ≤ 9 · 2n − 2, ord0R2,n = 16 · 2n, degQ3,n = 10 · 2n,degP3,n ≤
12 · 2n − 2 and ord0R3,n = 21 · 2n. Thus only the cases i = 1, 2 give Padé
approximants for all n ≥ 0, because the vanishing order in the case i = 3
is not sufficiently large for n ≥ 1.

By these approximants, we then get sequences

qi,n = sdi·2n−2Qi,n(r/s), pi,n = sdi·2n−2Pi,n(r/s), ri,n = sdi·2n−2

qi,n
Ri,n(r/s),

where d1 = 4, d2 = 9, d3 = 12. Here qi,n and pi,n are integers satisfying,
for all n ≥ c15,

c16s
di·2n ≤ qi,n ≤ c17s

di·2n
,

c18

q
fi(1−γ)
i,n

≤
∣∣∣∣∣B(r/s)− pi,n

qi,n

∣∣∣∣∣ ≤ c19

q
fi(1−γ)
i,n

where f1 = 2, f2 = 16/9, f3 = 7/4. Now the sequence q1,n+1, q2,n, q3,n,
q1,n+2, q2,n+1, q3,n+1, . . ., to be denoted again by (qn), satisfies the conditions

0 < qn < qn+1 ≤ c20q
4/3
n ,

c21

q
2(1−γ)
n

≤
∣∣∣∣B(r/s)− pn

qn

∣∣∣∣ ≤ c22

q
7(1−γ)/4
n

for all n ≥ c23. Here the integers pn are the corresponding pi,n. Therefore we
can again apply Lemma 5.1 to get the proof of our theorem for B(r/s). �
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