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On the number of representations in the
Waring-Goldbach problem with a prime variable

in an arithmetic progression

par Maurizio LAPORTA

Résumé. Nous démontrons un théorème de type Bombieri-
Vinogradov sur le nombre de représentations d’un entier N sous
la forme N = pg

1 +pg
2 +· · ·+pg

s avec p1, p2, · · · , ps des nombres pre-
miers et p1 ≡ l (mod k), sous une hypothèse convenable s = s(g)
pour chaque entier g ≥ 2.

Abstract. We prove a Bombieri-Vinogradov type theorem for
the number of representations of an integer N in the form N =
pg

1 + pg
2 + . . . + pg

s with p1, p2, . . . , ps prime numbers such that
p1 ≡ l (mod k), under suitable hypothesis on s = s(g) for every
integer g ≥ 2.

1. Introduction

The problem of representing an integer N as the sum of gth powers of
primes p1, . . . , ps with the smallest possible number s = s(g) of variables
for any integer g ≥ 1, i.e.
(1.1) N = pg1 + pg2 + . . .+ pgs,

is known as the Waring-Goldbach problem. It is a hybrid of the famous
Goldbach conjecture (the case g = 1) and the Waring problem, which
concerns how gth powers of integers, whether prime or not, may generate
additively all integers with the least number of summands. An integer N
is admissible for (1.1), if it satisfies some sort of congruence condition,
which is certainly necessary. Indeed, for example every odd prime p satisfies
p2 ≡ 1 (mod 8), which implies that anyN 6≡ s (mod 8) cannot be the sum of
s squares of odd primes (for the general case see the statement of BVTWG
below). In [11], Ch. 8, we find the definition of H(g), the least integer s
such that every sufficiently large admissible N can be represented in the
form (1.1). The early investigations of Vinogradov [21],[22] and Hua [10]
have provided the basic specimens for the testing and development of the
Hardy-Littlewood method which yielded the following upper bound:
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H(g) ≤
{

2g + 1 if 1 ≤ g ≤ 10,
2g2(2 log g + log log g + 5/2) if g > 10.

Subsequently, several authors have studied the equation (1.1) under some
further restrictions on the prime variables such as

(1.2) pi ≡ li (mod ki), (ki, li) = 1, i ∈ {1, . . . , s},

where (k, l) = 1 means that k and l are relatively prime (here and in what
follows, (k1, . . . , kt) denotes the greatest common divisor of the integers
k1, . . . , kt). Particular attention has focused on the weighted number of
solutions of (1.1) under the restriction (1.2) given by

I(N,M, g, s,k, l) :=
∑

p
g
1+...+p

g
s =N

pi≡li (mod ki), pi≤M
i=1,...,s

s∏
i=1

log pi,

where the sum is over the s-dimensional vectors 〈p1, . . . , ps〉 satisfying the
assigned conditions and k := 〈k1, . . . , ks〉, l := 〈l1, . . . , ls〉.

Let us consider the following problems associated to the equation (1.1):

(1.2)∗, that is (1.1) under (1.2), where ki = k, ∀i ∈ {1, . . . , s};
(1.2)∗∗, that is (1.1) under (1.2), where k1 = k and ki = 1, ∀i ∈ {2, . . . , s};

(symbols followed by ∗ and ∗∗ will refer to (1.2)∗ and (1.2)∗∗, respectively).
As one could expect, the main efforts are devoted to solve such prob-

lems in the most famous and prototypal case g = 1. The early results
to be mentioned are those of Zulauf [26], [27] and Ayoub [1], who proved
independently Vinogradov’s three primes theorem (i.e. H(1) ≤ 3) under
(1.2)∗ for every sufficiently large N ≡ l1 + l2 + l3 (mod k) with (k, li) = 1,
(i = 1, 2, 3), and uniformly for all k ≤ LD, where L := logN and D > 0 is
a constant. In particular, Zulauf’s result yields an asymptotic formula for
every sufficiently large admissible N ,

I(N,N, 1, 3,k, l)∗ = I(N,N, 1, 3, k, 〈l1, l2, l3〉)∗ =MT + o(N2L−A),

which holds with the expected main term MT and for an arbitrary con-
stant A > 0 uniformly for all k ≤ LD. Such a rather severe range of
uniformity for the moduli k’s is essentially that of the prime number theo-
rem for arithmetic progressions, namely the Siegel-Walfisz theorem, which
plays a crucial role in the application of the Hardy-Littlewood method for
additive problems involving prime numbers. However, a well-known par-
tial extension of the Siegel-Walfisz formula is provided by the Bombieri-
Vinogradov theorem ([18], Theorem 15.1). In this direction, some authors
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([2],[5],[7],[8],[9],[14],[15],[16],[19],[25]) have established asymptotic formu-
lae for I(N,N, 1, 3,k, l), I(N,N, 1, 3, k, l)∗ or I(N,N, 1, 3, k, l)∗∗ going be-
yond Zulauf’s bound for k, though most of these formulae hold uniformly
for almost all moduli up to a certain power of N and sometimes at the cost
of possibly a few exceptions of classes l. Usually such results are obtained
via a so-called Bombieri-Vinogradov type theorem for the Waring-Goldbach
problem, which we state in a general form as:

BVTWG. Let g and s positive integers. If pθ|g and pθ+1 6 |g, we define

γ = γ(g, p) :=
{
θ + 2, if p = 2, 2|g,
θ + 1, otherwise, and η = η(g) :=

∏
(p−1)|g

pγ .

Assuming that N is a sufficiently large integer with N ≡ s (mod η), for
every constant A > 0 there exists B = B(A) > 0 such that∑

k
ki∈[1,Ki]

max
l∈B(N,k)

max
M≤N

∣∣∣I(N,M, g, s,k, l)−MT
∣∣∣� N s/g−1L−A,

where Ki ≤ N1/(2g)/LB (i = 1, . . . , s),MT is the expected main term and

B(N,k) = B(N,k, g, s) := {l :1≤ li ≤ki, (ki, li) = 1, (k1, . . . , ks)|N−
s∑
i=1

lgi }.

As far as we know, a few results are available in the literature for the
nonlinear case g ≥ 2. Among them we recall [23], where it is proved the
solvability of (1.2)∗ when g = 2, s = 5 for all the moduli k ≤ N δ with an ef-
fective constant δ > 0, though no asymptotic formula for I(N,N, 2, 5, k, l)∗
is provided.

In the present paper we consider the problem (1.2)∗∗ for any g ≥ 2 and
establish a BVTWG∗∗ for Ik(N) := I(N,N, g, s, k, l)∗∗ with k ≤ N1/2gL−B,
under suitable hypothesis on s = s(g). More precisely, let W (N, g, 2t) be
the number of solutions 〈x1, . . . , x2t〉 with 1 ≤ xi ≤ N1/g of the Diophantine
equation xg1 +xg2 + . . .+xgt = xgt+1 + . . .+xg2t. We have the following result.

Theorem. Let g, t ≥ 2 be integers and v = v(g, t)≥ 0 a real number such
that W (N, g, 2t) � N2t/g−1Lv for every sufficiently large N ≡ 2t + 1 :=
s (mod η). For every constant A > 0 there exists B = B(A) > 0 such that

(1.3)
∑

k≤N1/(2g)/LB

max
1≤l≤k
(l,k)=1

∣∣∣Ik(N)−M(N)Sk(N)ϕ(k)−1
∣∣∣� N s/g−1L−A,

where M(N) := g−s
∑

1≤m1,...,ms≤N
m1+...+ms=N

(m1 . . .ms)1/g−1, ϕ(k) :=
∑

1≤l≤k
(l,k)=1

1 and Sk(N) is

the singular series defined in (3.11).
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We remark that M(N) � N s/g−1 ([20], Theorem 2.3) and Sk(N) is
uniformly bounded in N (see (3.10), (3.11) below). The evaluation of
W (N, g, 2t) is a deep matter within the classical theory of the Waring prob-
lem. Hua’s Lemma ([11], Theorem 4) yields the inequality W (N, g, 2t) �
N2t/g−1Lv with a certain v > 0, whenever 2t ≥ 2g for every g ≥ 2. How-
ever, nowadays one can take lower values of t and v = 0 when g ≥ 6,
namely for 6 ≤ g ≤ 8 if 2t ≥ 2g−37 (see [4]) and for any g ≥ 9 if
2t ≥ g2(log g+ log log g+O(1)) (see [6]). Besides, Wooley [24] has recently
announced a further strong improvements on the estimate of W (N, g, 2t)
when g ≥ 7. Hence, at the moment our Theorem has the following imme-
diate consequence.

Corollary. For every constant A > 0 there exists B = B(A) > 0 such that
(1.3) holds for every sufficiently large integer N ≡ s (mod η) with

s ≥


2g + 1 if 2 ≤ g ≤ 5,
2g−37 + 1 if 6 ≤ g ≤ 8,
g2(log g + log log g +O(1)) if g ≥ 9.

The proof of the Theorem is an application of the Hardy-Littlewood circle
method, where we generalize the treatment of the major arcs terms, via
the Bombieri-Vinogradov theorem, applied in [12]. In order to evaluate the
minor arcs contribution we employ the strategy of Halupczok [7], because
the method of [12] allows to establish only a weaker result where l is required
to be a fixed integer (in an unpublished paper [13] we have considered (1.3)
without the maximum).

2. Notation and outline of the proof

Among the definitions already given in the previous section we recall
that (m,n) denotes the greatest common divisor of m and n. Since (x, y) is
also the open interval with real endpoints x, y, the meaning will be evident
from the context. On the other side, [m,n] will denote the least common
multiple of m and n. For simplicity we often write m ≡ n (k) instead of

m ≡ n (mod k) and set
q ∗∑

a=1
:=

q∑
a=1

(a,q)=1

, e(x) := exp(2πix). The number

of the divisors of n is d(n), µ denotes Möbius’ function and ∗ is the usual
convolution product of arithmetic functions. The letter p, with or without
subscript, is devoted to prime numbers. We will appeal to the well-known in-
equalities ϕ(n)� n(log log 10n)−1,

∑
n≤x

1/n� log x and
∑
n≤x

d(n)� x log x

without further references. Moreover, we will adopt the following conven-
tion concerning the positive real numbers ε and c. Whenever ε appears in a
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statement, either implicitly or explicitly, we assert that for each ε > 0, the
statement holds for sufficiently large values of the main parameter. Notice
that the "value" of ε may consequently change from statement to statement,
and hence also the dependence of implicit constants on ε. For example, by
adopting this convention for c as well, we write (log x) e−c

√
log x � e−c

√
log x.

The implicit constants in � and O symbols might depend only on g, t, A.
Let V, Y,K be real numbers such that V ≥ 5(A + 2t + v + 2) + 2, Y ≥

26g(V + 1) and 0 < K ≤P 1/2L−B with P := N1/g and B := A + 4Y + 6.
Then, we set Q := LY , τ := NQ−1,

E :=
∑
k≤K

max
1≤l≤k
(l,k)=1

∣∣∣Ik(N)−M(N)Sk(N)ϕ(k)−1
∣∣∣,

Sk(α) :=
∑
p≤P

p≡l (k)

e(αpg) log p, S(α) := S1(α) , M(α) := 1
g

N∑
m=1

m1/g−1e(αm).

If one defines the union of the major arcs as

E1 :=
⋃
q≤Q

q−1⋃
a=0

(a,q)=1

(a
q
− 1
qτ

,
a

q
+ 1
qτ

)
and the minor arcs as

E2 :=
(
− 1
τ
, 1− 1

τ

)
\ E1, then one has

Ik(N) =
∫ 1−1/τ

−1/τ
Sk(α)Ss−1(α) e(−Nα) dα := I

(1)
k (N) + I

(2)
k (N),

where I(i)
k (N) :=

∫
Ei

Sk(α)Ss−1(α) e(−Nα) dα , i = 1, 2.

Since E ≤ E1 + E2 with
E1 = E1(g) :=

∑
k≤K

max
1≤l≤k
(l,k)=1

∣∣∣I(1)
k (N)−M(N)Sk(N)ϕ(k)−1

∣∣∣,
E2 = E2(g) :=

∑
k≤K

max
1≤l≤k
(l,k)=1

∣∣∣I(2)
k (N)

∣∣∣,
the Theorem will follow from the inequalities
(2.1) E1 � P s−gL−A,

(2.2) E2 � P s−gL−A.

3. Major arcs: the estimate of E1

In this section we prove (2.1) by finding an asymptotic formula with an
error term which is small on average for

(3.1) I
(1)
k (N) =

∑
q≤Q

q ∗∑
a=1

Ik(a, q),
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where

(3.2) Ik(a, q) :=
∫ 1/qτ

−1/qτ
Sk
(a
q

+ α
)
S
(a
q

+ α
)s−1

e
(
−N

(a
q

+ α
))

dα,

with integers a, q and real numbers α satisfying
(3.3) q ≤ Q, (a, q) = 1, |α| ≤ (qτ)−1 = (qN)−1Q = q−1P−gQ.

Thus, we write

(3.4) Sk
(a
q

+ α
)

=
q ∗∑

m=1
m≡l mod (k,q)

e
(amg

q

)
T (α) + O(log q)

with T (α) :=
∑
p≤P

p≡l (k)
p≡m (q)

e(αpg) log p =
∑
p≤P

p≡f ([k,q])

e(αpg) log p, where the integer f =

f(l, k,m, q) is such that (f, [k, q]) = 1 and the congruence x ≡ f mod [k, q] is
equivalent to the system x ≡ l (k), x ≡ m (q). Indeed, fromm ≡ l mod (k, q)
it follows that m − l = t(k, q) = tw1k + tw2q for some integers t, w1, w2.
This reveals that f := m − tw2q = l + tw1k is the unique simultaneous
solution mod [k, q] of x ≡ l (k) and x ≡ m (q). Further, (k, l) = (m, q) = 1
implies (f, [k, q]) = 1. Now let us denote

(3.5) ∆(z, h) := max
y≤z

max
l

(l,h)=1

∣∣∣ ∑
p≤y

p≡l (h)

log p− y

ϕ(h)

∣∣∣
and apply partial summation to get

T (α) = −
∫ P

0

d

dy
e(αyg)

∑
p≤y

p≡f ([k,q])

log p dy + e(αN)
∑
p≤P

p≡f ([k,q])

log p

= −
∫ P

0

( y

ϕ[k, q] +O
(
∆(P, [k, q])

)) d
dy
e(αyg) dy

+
( P

ϕ[k, q] +O
(
∆(P, [k, q])

))
e(αN)

= 1
ϕ[k, q]

(
P e(αN)−

∫ P

0
y
( d
dy
e(αyg)

)
dy
)

+O
( ∫ P

0
∆(P, [k, q]) |α|yg−1dy

)
+O(∆(P, [k, q])).

Integration by parts and the well-known formula (see [20], Ch.2)∫ P

0
e(αyg) dy = M(α) +O(1 +N |α|) together with (3.3) lead to

T (α) = M(α)
ϕ[k, q] +O

((
1 + N

qτ

)
∆(P, [k, q])

)
.
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Now we substitute the latter in (3.4) and note that (3.3) implies

(3.6) Sk
(a
q

+ α
)

= ck(a, q)
ϕ[k, q] M(α) +O(Q∆(P, [k, q])),

where ck(a, q) :=
q ∗∑

m=1
m≡l mod (k,q)

e
(amg

q

)
. For c(a, q) := c1(a, q) one might follow

the proof of Lemma 7.15 in [11] to obtain

(3.7) S
(a
q

+ α
)

= c(a, q)
ϕ(q) M(α) +O

(
Pe−c

√
L
)
.

Formulae (3.3), (3.6), (3.7) and the trivial bound Sk(β)� PLk−1 imply

Sk
(a
q

+ α
)
S
(a
q

+ α
)s−1

e
(
−N

(a
q

+ α
))

= c(a, q)s−1

ϕ(q)s−1
ck(a, q)
ϕ[k, q] e

(
−N a

q

)
M(α)s e(−Nα)

+O
(
P sk−1 e−c

√
L
)

+O(P s−1Q∆(P, [k, q])).

Therefore, (3.2) becomes

Ik(a, q) = c(a, q)s−1

ϕ(q)s−1
ck(a, q)
ϕ[k, q] e

(
−N a

q

) ∫ 1/qτ

−1/qτ
M(α)s e(−Nα) dα

+O
(
P s−gk−1 e−c

√
L
)

+ O(q−1P s−g−1Q2 ∆(P, [k, q])).

Consequently, if we set bk(q) :=
q ∗∑

a=1
ck(a, q)c(a, q)s−1 e(−Na/q), one has

q ∗∑
a=1

Ik(a, q) = bk(q)
ϕ[k, q]ϕ(q)s−1

∫ 1/qτ

−1/qτ
M(α)s e(−Nα) dα(3.8)

+O(P s−gk−1e−c
√
L) +O(P s−g−1Q2∆(P, [k, q])).

Since it is well-known that (see [20], Ch.2)

∫ 1/qτ

−1/qτ
M(α)s e(−Nα) dα =M(N) +O((qτ)s/g−1),
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then (3.8) makes (3.1) into

I
(1)
k (N) =M(N)

∑
q≤Q

bk(q)
ϕ[k, q]ϕ(q)s−1 +O(P s−gk−1 e−c

√
L)(3.9)

+O
(
τ s/g−1 ∑

q≤Q

|bk(q)|qs/g−1

ϕ[k, q]ϕ(q)s−1

)
+O(P s−g−1Q2 ∑

q≤Q
∆(P, [k, q])).

At the end of the section it will be shown that

(3.10) bk(q)� qs/2+1+ε.

This allows to deduce the absolute convergence of the singular series

(3.11) Sk(N) :=
+∞∑
q=1

bk(q)ϕ(k, q)
ϕ(q)s .

Moreover, by writing ϕ[k, q] = ϕ(k)ϕ(q)/ϕ(k, q) in (3.9), since P s−g �
M(N)� P s−g ([20], Theorem 2.3), from (3.10) we get

I
(1)
k (N) =M(N)Sk(N)

ϕ(k) +O
(
L
P s−g

k

∑
q>Q

q−
s
2 +1+ε(k, q)

)

+O
(P s−g

k
e−c
√
L
)

+O
(τ s/g−1L

k

∑
q≤Q

q
−s g−2

2g
+ε(k, q)

)
+O(P s−g−1Q2 ∑

q≤Q
∆(P, [k, q])).

Since g ≥ 2 and s ≥ 5, then

(3.12) E1 � P s−gL Σ1 + τ s/g−1 LΣ2 + P s−g−1Q2 Σ3 + P s−g e−c
√
L,

with

Σ1 :=
∑
k≤K

∑
q>Q

(k, q)
kq3/2−ε , Σ2 :=

∑
k≤K

∑
q≤Q

(k, q)
k

qε,

Σ3 :=
∑
k≤K

∑
q≤Q

∆(P, [k, q]).
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Let us estimate Σ1. We have

Σ1 =
∑
d≤Q

d
∑
k≤K

∑
q>Q

(k,q)=d

1
kq3/2−ε +

∑
Q<d≤K

d
∑
k≤K

∑
q>Q

(k,q)=d

1
kq3/2−ε

(3.13)

�
∑
d≤Q

dε

d3/2

∑
k≤K/d

1
k

∑
q>Q/d

qε

q3/2 +
∑

Q<d≤K

dε

d3/2

∑
k≤K/d

1
k

∞∑
q=1

qε

q3/2

� L
∑
d≤Q

1
d3/2−ε

∑
q>Q/d

1
q3/2−ε + L

∑
Q<d

1
d3/2−ε �

L2

Q1/2−ε .

While for the sum Σ2 we get

Σ2 �
∑
d≤Q

d
∑
k≤K

1
k

∑
q≤Q

(k,q)=d

qε �
∑
d≤Q

dε
∑

k≤K/d

1
k

∑
q≤Q/d

qε(3.14)

� Q1+εL
∑
d≤Q

1
d
� Q1+εL2.

Finally, we estimate Σ3 by writing

(3.15) Σ3 =
∑

h≤QK
ω(h) ∆(P, h) with ω(h) :=

∑
k≤K

∑
q≤Q

[k,q]=h

1.

Since ω(h) =
∑
d≤Q

∑
q≤Q

∑
k≤K

[k,q]=h, (k,q)=d

1 =
∑
d≤Q

∑
q≤Q/d

∑
k≤K/d
kqd=h

1 ≤
∑
d≤Q

∑
q≤Q/d

1� QL,

by applying the Bombieri-Vinogradov theorem ([18], Theorem 15.1), from
(3.5), (3.15) and the definitions of K and Q, one gets

(3.16) Σ3 � PQ2L6−B.

Hence, the inequality (2.1) follows from (3.12), (3.13), (3.14), (3.16) and
the definitions of B,Q and τ .

It remains to prove (3.10). First let us show that bk(q) = bk(q, g, l, N) is a
multiplicative function of q. At this aim, we write q = q1q2 with (q1, q2) = 1
and define ki := (k, qi) for every k ≤ K and i = 1, 2. Consequently, one has
(k, q) = (k, q1q2) = k1k2 and there exist integers a1, a2,m1,m2, n1, n2 such
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that a = a2q1 + a1q2, m = m2q1 +m1q2 and n = n2q1 + n1q2. Thus,

bk(q) =
q ∗∑

a=1
e
(
−aN
q

) q ∗∑
m=1

m≡l mod (k,q)

e
(amg

q

)( q ∗∑
n=1

e
(ang
q

))s−1

=
q ∗∑

a=1

q ∗∑
a=1

ς(a1, a2,−N)
qq ∗∑

m=1
m≡l (kk)

ς(a1, a2,m
g)
( qq ∗∑
n=1

ς(a1, a2, n
g)
)s−1

,

where we denote ς(a1, a2, h) := e
(

(a2q1+a1q2)h
q1q2

)
for every integer h.

Note that mg ≡ mg
2q
g
1 +mg

1q
g
2 , n

g ≡ ng2q
g
1 +ng1q

g
2 mod (q1q2). Moreover, it

is easy to see that (k, l) = 1 implies the equivalence ofm2q1+m1q2 ≡ l (k1k2)
with the congruences m1q2 ≡ l (k1), m2q1 ≡ l (k2). Hence, one has

qq ∗∑
m=1

m≡l (kk)

ς(a1, a2,m
g) =

qq ∗∑
m=1

m≡l (kk)

e
((a2q1 + a1q2)mg

q1q2

)

=
q ∗∑

m=1

mq+mq≡l (kk)

q ∗∑
m=1

e
(a1m

g
1q
g
2

q1

)
e
(a2m

g
2q
g
1

q2

)

=
q ∗∑

m=1
mq≡l (k)

e
(a1m

g
1q
g
2

q1

) q ∗∑
m=1

mq≡l (k)

e
(a2m

g
2q
g
1

q2

)

=
q ∗∑

m=1
m≡l (k)

e
(a1m

g
1

q1

) q ∗∑
m=1

m≡l (k)

e
(a2m

g
2

q2

)
.

Analogously,
qq ∗∑
n=1

ς(a1, a2, n
g) =

q ∗∑
n=1

e
(a1n

g
1

q1

) q ∗∑
n=1

e
(a2n

g
2

q2

)
.

Thus, bk(q) = bk(q1)bk(q2), i.e. bk(q) is a multiplicative function of q.
Now, let us suppose that every prime divisor of q2 divides g, while

(q1, g) = 1. Since by Lemma 8.3 of [11] and by the multiplicativity of
bk(q) one has bk(q) = 0 unless q2 � 1 and q1 is squarefree, then (3.10) is
proved whenever one shows that

bk(p) =
p ∗∑

a=1
ck(a, p)c(a, p)s−1e(−Na/p)� ps/2+1

for each prime p. At this aim, note that |ck(a, p)| = 1 if p|k, and ck(a, p) =
c(a, p) otherwise. Since Lemma 4.3 of [20] implies c(a, p) � p1/2, then we
conclude that bk(p)� (p− 1)ps/2 ≤ ps/2+1, as required.
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We remark that in [12] for g = 2 and s = 5 the stronger bound bk(q)�
q3+ε is proved.

4. Minor arcs: the estimate of E2

By following the method in [7] we write

E2 ≤
D∑
r=1

∑
Kr<k≤2Kr

max
l

(l,k)=1

|I(2)
k (N)| ≤L

D∑
r=1

∑
Kr<k≤2Kr

max
l

(l,k)=1

∑
p≤P

p≡l (k)

|J(N − pg)|,

where D := [log2K]� L, Kr := K/2r and

J(m) = J(m, s,E2) :=
∫
E2
S(α)s−1e(−mα) dα.

Since by hypothesis one has s− 1 = 2t and∫ 1

0
|
∑
m≤P

e(αmg)|2tdα = W (N, g, 2t)� P 2t−gLv,

then we will apply the bound,

(4.1) J(m) ≤
∫ 1

0
|S(α)|2t dα ≤ L2tW (N, g, 2t)� L2t+vP 2t−g.

Therefore, we get∑
p≤P

p≡l (k)

|J(N − pg)| � L2t+vP 2t−gX(P ; k, l) + L−A−2P 2t−gπ(P ; k, l),

where X(P ; k, l) := #{p ≤ P : p ≡ l (k), |J(N − pg)| > P 2t−g/LA+2} and
π(P ; k, l) := #{p ≤ P : p ≡ l (k)} as usual.

The Cauchy-Schwarz inequality and the trivial bound π(P ; k, l) � P/k
imply

E2,r :=
∑

Kr<k≤2Kr

max
l

(l,k)=1

∑
p≤P

p≡l (k)

|J(N − pg)|(4.2)

� L2t+vP 2t−g
(
Kr

∑
Kr<k≤2Kr

max
l

(l,k)=1

X(P ; k, l)2
)1/2

+ L−A−2P 2t−g+1.

Since E2 ≤ L
D∑
r=1
E2,r, then (2.2) follows whenever one proves that even the

first summand on the right hand side of (4.2) is � L−A−2P 2t−g+1.
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Considering the term in brackets, the contribution of the k’s such that
d(k) > LC with C := 2A+ 4t+ 2v + 5 fits this request because it is

≤ Kr

∑
Kr<k≤2Kr

d(k)>LC

max
l

(l,k)=1

π(P ; k, l)2 � P 2

Kr

∑
Kr<k≤2Kr

d(k)>LC

1 < P 2

KrLC

∑
k≤2Kr

d(k)� P 2

LC−1 .

Let us prove that the same estimate holds for the remaining k’s, i.e.

D1/2
r :=

(
Kr

∑
Kr<k≤2Kr

d(k)≤LC

max
l

(l,k)=1

X(P ; k, l)2
)1/2

� PL−A−2t−v−2.

At this aim, we consider the arithmetic function ξl(k) := kX(P ; k, l) with
its Möbius inverse fl := µ ∗ ξl and write

Dr <
∑

Kr<k≤2Kr
d(k)≤LC

1
k

max
l

(l,k)=1

ξl(k)2 =
∑

Kr<k≤2Kr
d(k)≤LC

1
k

max
l

(l,k)=1

(
∑
d|k

fl(d))2.

Again by the Cauchy-Schwarz inequality we have

Dr <
∑

Kr<k≤2Kr
d(k)≤LC

d(k)
k

∑
d|k

max
l

(l,k)=1

fl(d)2 ≤ LC
∑

Kr<k≤2Kr

1
k

∑
d|k

max
l

(l,k)=1

fl(d)2.

Since X(P ; k, l + r) = X(P ; k, l) for any r ≡ 0 (k), then fl(d) is d-periodic
with respect to l for every d|k. Consequently, max

0≤l<k
(l,k)=1

fl(d)2 = max
0≤l<d
(l,d)=1

fl(d)2.

Moreover, one may easily verify that (see also [17], equation 10)

∑
0≤l<d

fl(d)2 = d
∑

0≤l<d
(l,d)=1

∣∣∣ ∑
m≤P

c(m)e(αm)
∣∣∣2 := d

∑
0≤l<d
(l,d)=1

|C(α)|2, say,

where c(m) is the characteristic function of the set X of prime numbers
p ≤ P such that |J(N − pg)| > P 2t−g/LA+2. Thus, we obtain

Dr < LC
∑

Kr<k≤2Kr

1
k

∑
d|k

∑
0≤l<d

fl(d)2

≤ LC
∑

d≤2Kr

∑
0≤l<d
(l,d)=1

|C(α)|2
∑

Kr<k≤2Kr
k≡0 (d)

d

k

= LC
∑

d≤2Kr

∑
0≤l<d
(l,d)=1

|C(α)|2
∑

Kr/d<k/d≤2Kr/d

1
k/d

� LC+1 ∑
d≤2Kr

∑
0≤l<d
(l,d)=1

|C(α)|2.
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The large sieve inequality (see [18]) and the hypothesis on K imply

Dr � LC+1(P +K2
r )
∑
m≤P

|c(m)|2 ≤ LC+1P#X for every r ≤ D.

Now we observe that

#X <
LA+2

P 2t−g

∑
p≤P
|J(N − pg)| = LA+2

P 2t−g

∫
E2
S(α)s−1S̃(α)e(−Nα) dα,

where S̃(α) :=
∑
p≤P

(aplog p)e(pgα) for some unimodular numbers ap.

By considering the underlying Diophantine equation and recalling that
s− 1 = 2t, plainly the integral on the right is

� sup
α∈E2

|S(α)|
∫ 1

0
|S(α)s−2S̃(α)| dα� L2tW (N, g, 2t) sup

α∈E2

|S(α)|.

Thus, Vinogradov’s estimate, sup
α∈E2

|S(α)| � PL−V , together with the def-

initions of V,Q, τ, E2 (see [11], Theorem 10) and (4.1) imply that

#X <
P g−2t+1

LV−A−2t−2W (N, g, 2t)� P

LV−A−2t−v−2 ≤
P

L4A+8t+4v+10 .

Since C := 2A+ 4t+ 2v + 5, then we conclude
D1/2
r � PLC/2−2A−4t−2v−9/2 = PL−A−2t−v−2,

as it is required. The Theorem is completely proved.
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