
Mark WATKINS

Another 80-dimensional extremal lattice
Tome 24, no 1 (2012), p. 237-255.

<http://jtnb.cedram.org/item?id=JTNB_2012__24_1_237_0>

© Société Arithmétique de Bordeaux, 2012, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal/). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que l’utilisation à
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://jtnb.cedram.org/item?id=JTNB_2012__24_1_237_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Journal de Théorie des Nombres
de Bordeaux 24 (2012), 237-255

Another 80-dimensional extremal lattice

par Mark WATKINS

Résumé. Nous montrons que le réseau unimodulaire associé au
groupe de matrices quaternioniques SL2(F41)⊗ S̃3 ⊂ GL80(Z) de
rang 20 donne un quatrième exemple d’un réseau extrémal en di-
mension 80. Notre méthode utilise la positivié de la série Θ ainsi
que l’énumération des vecteurs de norme 10. L’utilisation du théo-
rème d’Aschbacher sur les sous-groupes de groupes finis classiques
(qui dépend de la classification des groupes finis simples) per-
met de démontrer que ce réseau est différent des trois précédents.
Une autre méthode est de calculer la distribution du produit sca-
laire des vecteurs minimaux. Cette dernière méthode nous permet
également de déterminer complètement le groupe des automor-
phismes de ces quatre réseaux. Comme cela a déjà été noté par
Nebe, ce quatrième réseau possède une 2-extension supplémentaire
de son groupe d’automorphismes.

Abstract. We show that the unimodular lattice associated to
the rank 20 quaternionic matrix group SL2(F41)⊗ S̃3 ⊂ GL80(Z)
is a fourth example of an 80-dimensional extremal lattice. Our
method is to use the positivity of the Θ-series in conjunction with
an enumeration of all the norm 10 vectors. The use of Aschbacher’s
theorem on subgroups of finite classical groups (reliant on the
classification of finite simple groups) provides one proof that this
lattice is distinct from the previous three, while computing the
inner product distribution of the minimal vectors is an alterna-
tive method. We give details of the latter, and this method also
enables us to find the full automorphism group for each of the
four lattices. As already noted by Nebe, this fourth lattice has an
additional 2-extension in its automorphism group.

1. Introduction
Extremal unimodular lattices are of interest because they often have

high packing densities and large kissing numbers. They can only exist in
dimensions divisible by 8, the first example being E8. Examples are known
in each dimension up through 80, where three such lattices were known. In
this dimension, being extremal means the smallest nonzero norm is 8.

Manuscrit reçu le 22 novembre 2010.
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The topic of constructing extremal lattices has seen a recent surge in
interest, in part due to Nebe’s demonstration [25] of such a lattice in di-
mension 72, answering a question that had been open for some time (and
indeed, various experts seemed to favour the opinion that such a lattice
could not exist [8, p. 129, Remark]). Bachoc and Nebe [3] had previously
constructed two extremal lattices in dimension 80, proving these were ex-
tremal using coding theory; and more recently Stehlé and the author [34]
used a more computationally intensive method to show that the lattice as-
sociated to the (binary) extended quadratic residue code of length 80 is a
third example in this dimension. We use techniques similar to those exposed
in [34] to prove the extremality of a fourth lattice in this dimension. This
lattice corresponds to the rank 20 quaternionic matrix group SL2(F41)⊗S̃3
as constructed by Nebe in [22, §3], and in [22, Lemma 4.3(i)] it is noted
that there is an additional 2-extension in the automorphism group.

1.1. Overview. Similar to the proof in [34], we show extremality by enu-
merating all the vectors of norm 10 and using the positivity of the Θ-series.
We indicate various improvements over the methods used in [34], in par-
ticular those which allowed us to work with an automorphism group that
does not have such a nice representation as with SL2(F79).

We can show our lattice is distinct from the other 3 extremal lattices in
two different ways. The first is group-theoretical and is an exercise in apply-
ing Aschbacher’s theorem [2]. On the advice of the referee we omit almost
all the details herein. The second method is computational, as we compute
the inner product distribution of the minimal vectors. We provide statistics
about such inner product distributions for all 4 known 80-dimensional ex-
tremal lattices. Finally, we comment on some dimension 64 examples, and
our failure to find any new extremal examples in dimension 48.

2. Our lattice
Our lattice L is given by Nebe [22, Remark 5.2] via a construction over

the quaternion algebra Q√41,∞,∞. There are two non-conjugate maximal
orders, and the one of interest for us contains the maximal order of Q∞,3,

Unwinding this notation, we find that it corresponds to writing one of
the (complex-conjugate) 20-dimensional representations of SL2(F41) over
a quaternion algebra, with the two possibilities being either the Hurwitz
quaternions Q∞,2, or our case of Q∞,3. In either case we augment the
automorphism group by the units of the quaternion ring, so S̃3 for us.

2.1. A computation to realise L. Nebe gives one method for construct-
ing L, namely by constructing a representation of a metacyclic group, and
then solving norm equations in abelian fields (see [22, §3]). We chose to
construct the lattice via a different, perhaps more circuitous route, via
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the representation theory and G-module functionality in Magma [6]. In-
stead of starting from SL2(F41) as in [22], we worked directly with the
group G = SL2(F41) ⊗ S̃3, and considered the rational 80-dimensional
representations of it.1 In particular, we wrote SL2(F41) and S̃3 as per-
mutation groups, and took their direct product. We then computed the
rational characters of degree 80, and limited ourselves to those with a ker-
nel given by identifying the central −1 elements in the two groups. This
left two characters, and as is noted in [22, §5], the representation we seek
is reducible over the reals, so we reject the remaining irreducible character.
We computed a QG-module that affords this character using the GModule
command2 of Magma [6], and found that there is indeed a 2-dimensional
space of symmetric forms fixed by this matrix group. Writing f, g for a
basis of these, the determinant of fx+ gy is of the form q(x, y)40 for some
homogeneous quadratic polynomial q (depending on f, g), and so we solved
the conic q(x, y) = 1. With minimal effort we found a solution (x, y) which
made fx+ gy integral, and this gives a Gram matrix of our lattice L.

An alternative method to construct L would be: take the sum of the two
20-dimensional characters of SL2(F41), and write the resulting represen-
tation in degree 20 over Q3,∞ (one can take the “tensor product” of this
with the degree 1 quaternionic representation of the faithful irreducible de-
gree 2 character of S̃3, but this is just the action of the units). However,
it seems that the best way to do this is to first write the G-module in
dimension 80 over Z, and then find i, j in the endomorphism ring with
i2 = −1, j2 = −3, ij = −ji to realise the module over Q3,∞. In either case,
we get not only the relevant Gram matrix but also the action of G on it.

3. Proving L is extremal
We use the general method outlined in [34], which was adapted from an

idea in [1], and indeed is essentially already in [20]. We first note that an
even lattice has a Θ-series Θ(L) =

∑
~v q

~v·~v/2 that is a modular form, and
for a unimodular lattice L of dimension 80 this has weight 40 and level 1.
The space of such modular forms has dimension 4, and a basis is given by

f0 = 1 + 1250172000q4 + 7541401190400q5 +O(q6),
f1 = q + 19291168q4 + 37956369150q5 +O(q6),
f2 = q2 + 156024q4 + 57085952q5 +O(q6),
f3 = q3 + 168q4 − 12636q5 +O(q6).

1The additional 2-extension was not considered for two reasons: firstly, while the construction
of G is relatively straightforward, it was not clear to me how the additional extension could be
appended; and secondly, it was only belatedly that I found out about this 2-extension anyway.

2This took about 15 minutes, but this could vary as the underlying methods are in flux.
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The Θ-series of L is then given by Θ(L) = f0 + a1f1 + a2f2 + a3f3
for some integers ai ≥ 0. A lattice is said to be extremal when all the ai

are zero. Indeed, in this case the minimal norm is as large as possible, and
the Θ-series is given simply by the first element in the above basis. We
show that Θ(L) = f0 by first showing that a1 = a2 = 0 via a brute-force
search (relying on parallel enumeration code of Pujol [29]), which implies
Θ(L) = f0+a3f3 = 1+a3q

3+(· · · )q4+(7541401190400−12636a3)q5+O(q6).
We then proceed to search for 7541401190400 vectors of norm 10, and

upon finding this amount, will have shown extremality because positivity
then implies that a3 = 0. The capacity to find this many vectors depends
on a number of factors. We find one representative in each orbit under the
known automorphisms, but this still leaves about 18.6 million orbits to be
found in our case. By a coupon-collecting analysis, this implies that a bit
over 300 million “random” vectors of norm 10 will need to be found, and
below we give two methods that are able to achieve this. The reason why
we find vectors of norm 10 rather than search for norm 6 vectors directly is
that the latter would need to be exhaustive, and there is no apparent way
to exploit the automorphisms in such a search.

3.1. No vectors of norm 2 or 4. Unlike the case of [34, §5.1], we are
not able to relate our lattice to a coding theory construction so as to elim-
inate the possibility of vectors of norm 2 or 4. However, after finding a
sufficiently good basis for the lattice using block Korkine-Zolotareff (BKZ)
reduction [32] (with a dimension parameter of about 30 — this is usually
all that is useful, and takes less than 10 minutes), it only takes only a cou-
ple of cpu-months to do an exhaustive search, and parallel code for this is
now available from Pujol [29] (described in [10], and see also [9]). Using 12
cpus and Pujol’s code, it took about 4 days to show that our lattice has no
vectors of norm 2 or 4. We had to make a slight modification to the code
to allow an integral Gram matrix (rather than a basis) as the input.3

3.2. Vectors of norm 10 with nontrivial stabiliser. First we find all
the vectors of norm 10 that have a nontrivial stabiliser. To do this, we
compute the conjugacy classes of G, and then for each nontrivial conjugacy
class, take a representative g of it and search for vectors in the sublattice
fixed by g. We find that there are 140 nontrivial conjugacy classes, and the
largest sublattice fixed by any of these is of dimension 40. We are able to
find all vectors of norm up to 10 in such sublattices in about 15 minutes.
For the orbits of vectors of norm 10, we find:

• 34342 orbits with stabiliser of size 2,
• 260 orbits with stabiliser of size 3,

3This induces minor changes in the error analysis [30] of the floating point computations.
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• 56 orbits with stabiliser of size 6,
• 10 orbits with stabiliser of size 10.

See Section 3.4 for how to recognise orbits. Assuming the lattice is extremal,
this leaves 18230412 free orbits to be found.

3.3. Finding vectors via pruning. As described in [34], the idea of
pruning (perhaps first noted in [33, p. 195]) is to follow the standard enu-
meration technique of Kannan [16] or Fincke-Pohst [11], but to limit the
search region to areas which are considered more likely to possess short
vectors. Explicitly, using the standard notation for lattices (as found in
e.g. [34, §6]), rather than solve the series of inequalities

80∑
i=j

y2
i ‖~b?

i ‖2 ≤ 10 for all 1 ≤ j ≤ 80,

we introduce a pruning array Pj = 1− (j−1)
80 and solve

80∑
i=j

y2
i ‖~b?

i ‖2 ≤ 10 · Pj for all 1 ≤ j ≤ 80.

To describe this loosely, this ensures that any initial segment of the coor-
dinates does not take up more than its “fair share” of the available norm.

The first step in any lattice-searching method is to obtain a good ba-
sis. Here LLL [18] by itself is not completely satisfactory, but after ap-
plying BKZ [32] with a dimension parameter of 30, we have a reasonable
basis. We would run the pruned-enumeration code for 100 seconds on a
given basis, before making a perturbation of it as in [34]. With the above
choice of Pj we obtained about 400 norm 10 vectors per cpu-second using
the Magma implementation of Stehlé.

Recent work appearing in [12, Appendix D] has improved the tree tra-
versal process; while we do not have exact timings, a guess is that it would
be 30-40% faster at the cost of increasing the memory usage slightly.

3.3.1. An alternative method to find vectors of norm 10. As noted
in [1], an alternative method to try to find vectors of norm 10 is to take
random pairs of (known) norm 8 vectors, hoping that their inner product
is of size 3.

We do not have a complete analysis of this method, but can note that
the primary step will be the computation of an inner product. Done in
the most obvious manner, this would take about 802 multiply-and-adds;
but by (say) first diagonalising the Gram matrix over the reals, we are
able to reduce the calculation to 80 such operations. The distribution given
in Section 4 indicates that a random inner product between two vectors
of norm 8 will have about a 1-in-380 chance of having size 3. We can
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thus achieve about 10000 norm 10 vectors per cpu-second, which is notably
faster than the pruning techniques. However, see Section 6.2 below for some
difficulties with this method.

3.4. Recognising orbits. One difficulty in mimicking the strategy of [34]
for our lattice L is that it is not so clear how to find orbit representa-
tives as easily as with SL2(F79) (for which there is a doubly transitive
action of signed permutations on the coordinates). We overcome many of
the difficulties by noting that an orbit can be recognised via a baby-steps
giant-steps technique involving subgroups (or even subsets). Indeed, sup-
pose we have two vectors ~v and ~w in the same orbit, so that ~vg = ~w for
some element g ∈ G. We assume that we have G written as BA, where in
practise this decomposition will be exact with A a subgroup and B just
representatives of the cosets of A. Then we have ~vba = ~w for some ele-
ments a ∈ A, b ∈ B, and so by comparing ~vB with ~wA we will detect
whether ~v and ~w are in the same orbit.

In our case, we take A to be a subgroup of size 820 in G, and further mod
out by −1 ∈ A. This means that the set B is of size 504. For every vector ~v
we find, we compute ~vb for each b ∈ B and use a hash table to detect if it
is the same as any ~wa that was seen previously. If so, then we have already
counted this orbit. If not, we compute ~vA and store these vectors (we can
also compute the stabiliser of ~v at this step from ~vA and ~vB).

3.4.1. A minor generalisation. This method could be generalised to
handle the case of sets A,B such that BA−1 as a set covers G, and so even
in a case where there are no subgroups of useful size, one can still choose A
and B of size about

√
#G log #G if desired. We can note that the expected

time to find V vectors under an automorphism group G is thus roughly
proportional to V log V/

√
#G.

3.4.2. Computational data. We chose a subgroup A of size 820 in G
and so #B = 504, with −1 ∈ A reducing computations by a factor of 2.
For each vector ~v ∈ L that we find, the computation of the set ~vB will
take about 504 · 802 ∼ 3.22 · 106 multiply-and-add operations. We can stop
computing ~vB immediately when we run across a saved ~wA vector, and
this saves a factor of about two on average when an orbit is already known.

When we find a new orbit we compute ~vA, which again requires around
3 million multiply-and-add operations. We save each vector in ~vA as a
64-bit hash – in the worst case we could erroneously regard two distinct
orbits as equivalent (in which case we should just find this orbit later), but
this hash will never incorrectly claim that a previously seen orbit is new.

Even with this hashing, we still need a storage space of 18265080 · 410 · 8
bytes, or about 64 gigabytes. We chose A of the given size to push the
memory limits as much as we could, so that the time to compute the ~vB
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would be as small as possible. It turns out that we can process nearly
200 vectors per cpu-second, and so distinguishing the orbits of 305 million
vectors takes about 3 cpu-weeks.

We can check our proof in less time than it took in the first place, as we
only need run through 18.6 million vectors rather than 305 million. We pro-
vide code4 that can check that our list does indeed provide 7541401190400
distinct vectors of norm 10, but this still requires around 3 cpu-days (we
ran it on 10 cpus in 7 hours) and 64GB of memory.

4. Inner product distributions
We are able to analyse the inner product distribution of the minimal

vectors by weighting with respect to Gegenbauer polynomials (see [35],
or [4, §4-5]). Given an extremal 80-dimensional lattice, for any fixed ~w
with norm 8 and any d = 1, 2, 3 (and also d = 5, though it gives no new
information in dimension 80), we have that∑

‖~v‖=8
G2d

(
~v · ~w

8

)
= 0

where the G2d are related to the Gegenbauer polynomials. This is a special
case of the more general fact that for any fixed nonzero ~w and positive
integer d, the sum ∑

~v 6=0
G2d

(
~v · ~w√
‖~v‖ ‖~w‖

)
q~v·~v/2

is a modular form, and extremality forces some of the coefficients to vanish.5
Explicitly, in the case of dimension 80 we have 1

(1−2xt+t2)39 =
∑

k Gk(x)tk,
so that

G2(x) = 760x2 − 19, G4(x) = 117040x4 − 15960x2 + 190,

and G6(x) = 8614144x6 − 2691920x4 + 175560x2 − 1330.
Furthermore, the signs of the ~v · ~w are equi-distributed, and except for the
cases when ~v = ±~w, we have |~v · ~w| ≤ 4. We have 5 unknowns, namely the
number bi of vectors ~v with ~v · ~w = i for i = 0 . . . 4, and 4 linear equations,
given by the three above for d = 1, 2, 3 plus the accounting

b0 + 2(b1 + b2 + b3 + b4) = 1250172000− 2,
where this comes from noting that an extremal lattice in dimension 80
has 1250172000 vectors of norm 8. We solve these and get

b0 = 2(35y + 275885775), b1 = 301716800− 56y,

4This is available from http://magma.maths.usyd.edu.au/˜watkins/sl241dim80.tar.bz2
5There is a slight reworking of this for extremal lattices in dimensions 24k and 24k+16, where

in the first case we get vanishing for d = 1, 2, 3, 4, 5, 7, and in the latter case only for d = 1, 3.

http://magma.maths.usyd.edu.au/~watkins/sl241dim80.tar.bz2
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b2 = 28y + 45799776, b3 = 1683648− 8y, b4 = y,

for some integer y with 0 ≤ y ≤ 210456. We do not know if the parameter y
can be related to a type of “Nachbareffekt” as in [4, §5, Example 1]. Unlike
for the case of dimension 32, with extremal lattices of dimension 80 the
Siegel modular form given by

Θ2(L) =
∑
~v∈L

∑
~w∈L

q
~v·~v/2
1,1 · q~v·~w

1,2 · q
~w·~w/2
2,2

is not uniquely determined (see [27]), with the indeterminate factor being
a multiple of χ4

10.
Below we shall use the computation of the inner product distributions as

one of the methods to show that our lattice L is not isometric to any of the
previously known extremal lattices in dimension 80. None of the material
in this section is strictly necessary for that, but we provide it for context.

5. Computational results
5.1. Minimal vectors. The vectors of norm 8 in the lattice L split as
follows under the known automorphism group G = SL2(F41)⊗ S̃3:

• 2788 orbits with trivial stabiliser,
• 464 orbits with stabiliser of size 2,
• 8 orbits with stabiliser of size 3,
• 14 orbits with stabiliser of size 6.

As there are 3274 orbits and 1250172000/2 minimal vectors up to sign,
we need to compute about 2 trillion inner products to find the complete
distribution. Each inner product can be computed in 80 multiply-and-adds
upon switching the minimal vectors to a basis (over R) in which the Gram
matrix is diagonal. Our code ran in about 4 cpu-days.

Using the notation of the previous section, for each vector ~v we write y
for the number of vectors that have inner product 4 with it. This value is
preserved by automorphisms, and so is constant for all vectors in the same
orbit. We find that the smallest y-value is 8092 (obtained for 2 free orbits),
while the largest is 9220 (obtained for 4 orbits, all of stabiliser of size 6). The
average is slightly above 8574. Each y-value appears in our data an even
number of times; this is to be expected due to the 2-extension of G that is
noted in [22, Lemma 4.3(i)]. Via a slight modification of the methods given
in Section 5.3 below, we are able to determine the complete automorphism
group G+ ∼=

(
SL2(F41) ◦ S̃3

)
.2 with [G+ : G] = 2. The 80-dimensional

representation of G+ corresponding to L is absolutely irreducible. We can
also note that the matrix group G+ ⊂ SL80(Z) is uniform, that is, it fixes
a unique symmetric form (up to scalars), unlike G for which the space of
symmetric fixed forms has dimension 2 (see [22, §5]).
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5.2. Comparison to other lattices. We can make the same computa-
tion with the other known 80-dimensional extremal lattices. For the Bachoc-
Nebe lattice with automorphism group 2.M22.2 ⊗ 2.A7, there are 10 orbits,
and we compute the following data:

• an orbit with stabiliser of size 6 and y = 8728,
• an orbit with stabiliser of size 16 and y = 9400,
• an orbit with stabiliser of size 48 and y = 9688,
• an orbit with stabiliser of size 96 and y = 8728 (as above),
• an orbit with stabiliser of size 112 and y = 13336,
• an orbit with stabiliser of size 192 and y = 14872,
• an orbit with stabiliser of size 384 and y = 12184,
• an orbit with stabiliser of size 432 and y = 8248,
• an orbit with stabiliser of size 8064 and y = 24088,
• and an orbit with stabiliser of size 24192 and y = 15256.

As can be seen, the average of the y-value is a bit over 9247.
For the second Bachoc-Nebe lattice [3, Lemma 4.11], the known auto-

morphism group of size 2123452 yields 333 orbits. The smallest y-value
is 8268 (from a free orbit), and the largest is 24088 (the same as in the
above data), coming from three orbits whose stabilisers are of sizes 288,
384, and 576. The second largest y-value is 17944, from an orbit with sta-
biliser of size 96. We find that the average y-value is a little above 8855.
All of the y-values are divisible by 4.

Finally, for the lattice proven extremal in [34] with known automorphism
group SL2(F79), there are 2555 minimal orbits, with a minimal y-value
of 8048, a maximum of 9406, and an average of nearly 8537.

This gives one proof that the four lattices are all distinct up to isometry.
The complete data for the inner products are included in the download
from the address given in Footnote 4.

5.3. Maximality of automorphism groups. We can also use the above
y-value distributions to show in each case that the known automorphism
group is the full automorphism group. The idea is simple.6 We assume
that σ is an unknown automorphism and that we know the images of the
vectors ~vi ∈ S under σ. Then we use the fact that σ preserves inner prod-
ucts. We will either show that the set of images is inconsistent, or that σ
fixes all the vectors in S. In the latter case, when S is so large that it gen-
erates the lattice, we conclude that σ fixes every vector, and so must be
the identity.

The only difficulty is in getting a large enough set S of vectors for which
we know the image. Here is a probabilistic argument on what we might
expect. First we take an orbit whose y-value is unique, and choose a vector ~v

6It is also well-known — see [28] for improvements that can be applied in more difficult cases.
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in it. We know that σ must map this orbit to itself, and so ~vσ = ~w for
some ~w in the orbit. There is also some known g such that ~vg = ~w. Thus
by considering gσ−1, we can assume that ~v is fixed by a new automorphism.

This gives us one fixed vector ~v. We then use the rarity of vectors with
inner product 4 to break up the current orbit classes. For instance, in the
case of our lattice L, we can take y = 8048 and expect each of the 2528
free orbits to have maybe 3 or 4 vectors whose inner product with ~v is 4.
In particular, this should be true for orbits whose y-value is unique (in-
cluding y = 8048). Then we iterate through each of these possible image
vectors, seeing if it can preserve inner products. We have no control over
inner products except the first, but each additional member of S should
only give approximately a 1/4 chance of having a matching inner product.
Thus once S has more than just a few elements, there is little chance that
we will accidentally get the inner products to match.

5.3.1. Results for the four lattices. The automorphism group for the
first Bachoc-Nebe automorphism group was proven maximal in [3, Theo-
rem 3.2].

Their second lattice has 81 free orbits under the known automorphism
group, and 22 of them have unique y-values (y = 8268, 8292, . . . , 8852).
This is the toughest case for our procedure, as a given free orbit would
typically have about 30 vectors of inner product 4 with our initial fixed
vector. However, we can exploit the classes with unique y-value and non-
trivial stabiliser in this case. In particular, if the stabiliser is of size about 30,
there is a decent chance of obtaining a unique vector of inner product 4.
For instance, given a vector ~v with y = 8268, there is a unique vector
with each y ∈ {9808, 9976, 16152} whose inner product with ~v is 4. The
stabilisers here are respectively of sizes 36, 24, and 32. This then gives us 4
fixed vectors, and the process is fairly mechanical after that. For instance,
the vectors with y = 8272 (stabiliser of size 6) which have inner product 4
with ~v then split, giving us 7 new fixed vectors, then y = 8292 gives 56
more, and so on. We conclude that the group listed by Bachoc and Nebe is
indeed the full automorphism group.

The extremal lattice associated to the length 80 extended quadratic
residue code has 2528 free orbits of which 51 have a unique y-value. Fixing a
vector with y = 8048, there is a unique vector with inner product 4 in each
of the y = 8120, 8126, 8130 classes (and indeed with some other classes).
These four vectors then yield three more with y = 8154, and in this manner
we quickly generate the whole lattice. Thus we conclude that SL2(F79) is
the full automorphism group.

As noted above, for the new extremal lattice L we first need to find
the 2-extension G+. This is expedited by taking a y-value with exactly 2
orbits under G, and (as above) composing with a known automorphism to
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get that a specific vector ~v in one of them maps to a specific vector ~w in the
other. Then we proceed as above, enlarging the set S until we have definite
images for a set S that generates L; this then gives us an automorphism of
the lattice that was not previously known. Upon finding this 2-extension,
we then prove it is the full automorphism group in the same manner as
above. For instance, a fixed vector in the y = 8092 class yields a unique
vector with inner product 4 in both the y = 8098 and y = 8138 classes,
which then split the four such vectors with y = 8180, etc.

5.4. Another proof that L is not isometric to the known lattices.
We could give a second proof of the non-isometry of L with the previously
known lattices via the Classification of Finite Simple Groups by imitating
and expanding/correcting the appendix of [34], As the above argument
from inner-product distributions suffices, on the advice of the referee we
omit almost all of the details herein. The problem is that we need to rule
out the possibility of a finite matrix group M in GL80(Z) that contains
both a copy of G and a copy of one of the other groups.

We take a suitable prime p = 101 and by Minkowski’s theorem [21] in-
ject M into GL80(Fp). The use of Aschbacher’s theorem on maximal sub-
groups [2, 17] of finite classical groups gives an iterative framework for inclu-
sions ofM . For instance, a class 3 reduction gives thatM ⊆ ΓL40(Fp2), and
a consideration of normal subgroups allows one to remove the semi-linear
part and iteratively consider maximal subgroups of GL40(Fp2). To exclude
possible class 9 inclusions M ⊂ K ⊂ GLd(Fpr ) with K quasi-simple, we
note that SL2(F41) ⊂ G ⊂ M , and that SL2(F41) has an absolutely irre-
ducible 20-dimensional representation. This implies 20|d and d|80, whence
we can apply the tables in [15] and [19].

The end result is that every subgroup of GL80(Fp) that contains both
a copy of G and of one of the other groups must itself be a classical
group; ergo, p = 101 divides the order, and this contradicts the Minkowski
bound [21] for the image of a finite matrix group of degree 80.

6. Extremal lattices in dimension 64
We were able to construct a new extremal lattice of dimension 64 as

follows. Writing K = Q(
√
−11) and letting w = −1+

√
−11

2 , we used the uni-

modular matrix M2 =
(

2 w
w̄ 2

)
and took the tensor product (over K) of

it with each of Hentschel’s six ϑ-lattices [14] of rank 8 over Q(
√
−11).

Upon expanding to a basis over Q, four of these six yielded extremal
lattices of dimension 32. We then took a few “random” neighbours of
these 16-dimensional lattices over K, and again tensored these with M2.
One of these, namely a (5 + 4w)-neighbour of M2 ⊗ H3 where H3 is the
third of Hentschel’s ϑ-lattices, upon expanding the basis to Q yielded a
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64-dimensional lattice with minimum 6. It took only about 40 cpu-minutes
for an exhaustive search (after a suitable BKZ reduction) to show that the
lattice had no vectors of minimum 4. The Hermitian automorphism group
of the 32-dimensional K-lattice is isomorphic to the dihedral group D6 on
six symbols (which is already that for M2).

Remark 6.0.1. In some metric, this is the “best possible” case for doing
such tensor products, as extremal lattices are thought to be more common
in dimensions (24k + 16) than in dimension 24k. The fact that the lattice
has minimal automorphisms is perhaps uninteresting from the standpoint
of group theory, but does show that the behaviour is “generic” in a suitable
sense. Also, the rank 16 lattice over K we first constructed is computation-
ally tricky to handle. For instance, it takes a couple of hours to compute
the automorphism group. As already noted in [28], computing isometries in
dimension 32 is somewhat difficult, due to the large number of extremal
lattices (and a lack of easily computed invariants for isometry).

6.1. Comparison to known extremal lattices in dimension 64. The
first known extremal lattice in dimension 64 was constructed by Quebbe-
mann [31]. As noted in [7, §8], the construction can be modified in various
ways, and it not exactly clear how many non-isometric lattices can be pro-
duced. We have chosen to ignore these lattices for our discussion here.

A second extremal lattice T64 in dimension 64 was constructed from cod-
ing theory by Ozeki [26] (see also [13]). Finally, using an anti-identification
of two maximal orders of associated quaternionic endomorphism rings,
Nebe [22, Remark 5.2] constructed a (unimodular) lattice N64 with auto-
morphism group containing

(
SL2(F17) ◦ SL2(F5)

)
.22, where the factors in

the central product correspond respectively to quaternionic representations
of degree 8 and 2. This was later proven to be extremal in [24].

In order to show the lattice constructed here differs from N64 and T64,
we can proceed by computing inner product distributions. As in Section 4,
we can compute that for a given vector ~v of norm 6, there is some integer t
with 0 ≤ t ≤ 17826 such that the distribution of inner products is:

• 2(26t+ 680792) vectors ~w with ~v · ~w = 0,
• −33t+ 588288 vectors ~w with ~v · ~w = 1,
• 6t+ 36519 vectors ~w with ~v · ~w = 2,
• t vectors ~w with ~v · ~w = 3,
• 1 vector ~w with ~v · ~w = 6.

6.1.1. Nebe’s lattice. With Nebe’s lattice N64, there are 8 orbits of the
2611200 minimal vectors (under the automorphism group of order 1175040),
divided as:

• an orbit with stabiliser of size 2 and t = 254,
• an orbit with stabiliser of size 2 and t = 284,
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• an orbit with stabiliser of size 2 and t = 318,
• an orbit with stabiliser of size 4 and t = 336,
• an orbit with stabiliser of size 4 and t = 344,
• an orbit with stabiliser of size 12 and t = 272,
• an orbit with stabiliser of size 12 and t = 452,
• and an orbit with stabiliser of size 18 and t = 218.

As can be seen, the average t-value is 301 7
10 .

6.1.2. Ozeki’s lattice. In order to find the minimal vectors for Ozeki’s
lattice T64, we used the method for the generic lattice given in Section 6.2
below, as it was not completely obvious whether there would be nontriv-
ial automorphisms.7 However, it turns out that the automorphism group
for T64 is isomorphic to the 2-extension of SL2(F31) that is given by 2 ·
Aut

(
PSL2(F31)

)
; this can be computed in a few minutes with the Magma

command AutomorphismGroup (due to W. R. Unger) once the minimal
vectors are known.

There are 41 free orbits, six with a stabiliser of size 3, three with a
stabiliser of size 5, four with a stabiliser of size 15, and two with a stabiliser
of size 465. There are 36 distinct t-values, ranging from 158 to 308 with an
average around 222.6 and a most common value of 206. See Table 6.1 for
more complete data, which gives orbit counts weighted by automorphisms.

Table 6.1. t-distribution for Ozeki’s lattice T64

158 1
3 198 1 214 1 228 3 244 1+1

5 258 1
174 1

5 200 2+1
3 216 1 230 1

3 246 2 272 1
184 1 206 5 218 3 234 1 248 2

15+
2

465 278 1
15

188 1
3 208 3 220 2 236 1 252 1 280 1

190 1 210 1 222 1 240 1 254 1 294 1
5

194 1 212 1 224 2+1
3 242 1

3 256 1 308 1
15

6.1.3. The new lattice. The new lattice H64 has 217600 orbits (each
with trivial stabiliser), and to show its distinctness we can simply note
that it has (say) a minimal vector with t = 124. Indeed, we found all the
minimal vectors via the search strategy given in Sections 3.3 and 3.3.1,
and computed the complete inner product distribution. All the t-values
are even, the minimum is 124, the maximum is 304, the average is just
over 214, and the most common value (8530 orbits) is 210. See Table 6.2
for the complete distribution.

7For instance, the F3 reduction of the original Z6 code has C4 as its automorphism group.
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Table 6.2. t-distribution for Hermitian H64

124 2 162 274 192 4991 222 7691 252 1469 282 46
126 1 164 375 194 5315 224 7348 254 1276 284 30
136 3 166 461 196 5871 226 6937 256 1095 286 28
138 2 168 626 198 6460 228 6559 258 884 288 17
140 2 170 787 200 6980 230 6074 260 730 290 19
142 4 172 969 202 7452 232 5675 262 590 292 7
144 21 174 1234 204 7694 234 5125 264 505 294 12
146 13 176 1445 206 8087 236 4737 266 376 296 8
148 26 178 1760 208 8332 238 4235 268 271 298 7
150 42 180 2121 210 8530 240 3583 270 217 300 3
152 48 182 2486 212 8476 242 3214 272 165 302 1
154 85 184 2920 214 8513 244 2765 274 123
156 110 186 3363 216 8494 246 2398 276 110
158 171 188 3898 218 8245 248 2106 278 90
160 210 190 4289 220 7964 250 1857 280 65

6.2. Another extremal lattice in dimension 64. We were also able to
find a generic (with only the trivial automorphisms) extremal lattice G64
in dimension 64 via more neighbouring. We started with the new extremal
lattice of above, and then took random neighbours (over Q). After some
effort, this succeeded. One difficulty is that many of the obtained lattices
had a vector of norm 4, but this was only detected near the end of the
search, after taking over an hour in some instances. However, it still took
less than 10 cpu-hours to find one which turned out to be extremal.

We then turned to the listing of minimal vectors. As there are no known
nontrivial automorphisms, we need to find 1305600 vectors of norm 6. The
method of Section 3.3.1 above showed a few problems for this lattice. The
idea is to start with a collection of norm 6 vectors, and then expand this
collection via looking for pairs in it that have an inner product of size 3.
From the above analysis, there is presumably around a 1/6000 chance of
this happening for a random pair. At the outset, we thus need a sufficiently
large “seeding” set. For instance, 1000 vectors is probably not enough, as
they would only produce about

(1000
2
)
/6000 ≈ 80 new vectors of norm 6,

and we would quickly reach a state where no new norm 6 vectors could
be obtained from the current set. We used a pruning-based method as in
Section 3.3 in order to start with enough vectors so as to circumvent this.

However, we can still run into problems later on. In our actual run,
we hit a wall at 686824 vectors, and so returned to the device of making
various perturbations of the basis, followed by reduction and pruning-based
enumeration. Note that such a difficulty is much less likely to occur in a
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case where automorphisms are extant, as applying them to known vectors
is an alternative method to generate additional vectors of norm 6.

Finally, it not altogether clear that the method of Section 3.3.1 is really
faster for our 64-dimensional lattices, as we could often find more norm 6
vectors per second using the pruning method when a sufficiently sharp
choice for the pruning function was used (the exact yield also depends
upon the goodness of the BKZ-basis).

After obtaining all the minimal vectors, we then computed the inner
product distribution, which is given in Table 6.3. As can be seen, the average
t-value is slightly less than 212. When comparing to the previous table,
recall that the numbers in Table 6.2 should be multiplied by 6 to account
for the known automorphisms.

Table 6.3. t-distribution for generic G64

124 1 158 757 190 28683 222 47073 254 4668 286 47
128 1 160 986 192 32565 224 44255 256 3866 288 24
130 1 162 1436 194 35707 226 40988 258 2997 290 14
132 3 164 1833 196 39516 228 37526 260 2306 292 13
134 6 166 2617 198 42830 230 33999 262 1796 294 9
136 4 168 3273 200 46093 232 30787 264 1415 296 6
138 14 170 4313 202 49257 234 27068 266 1118 298 2
140 21 172 5569 204 51197 236 24176 268 769 300 2
142 33 174 6981 206 53101 238 20569 270 594 302 2
144 46 176 8730 208 54441 240 17922 272 466 304 3
146 82 178 10804 210 55288 242 15290 274 311 306 1
148 112 180 13023 212 55679 244 13229 276 243 308 1
150 175 182 15729 214 54915 246 10955 278 174
152 263 184 18774 216 53687 248 8858 280 121
154 382 186 21722 218 52355 250 7340 282 89
156 474 188 25170 220 49973 252 5825 284 61

For each of these lattices we are able to show that the known auto-
morphism group is complete using the method of Section 5.3.

6.3. Tensor products from quaternionic 32-dimensional lattices.
The list given by Nebe [23, Theorem 18.1] contains two 32-dimensional lat-
tices that have a quaternionic structure into which we can embed Q(

√
−11).

The first one is L32 = [21+8
− .O−8 (2)]8, and upon tensoring with M2, the re-

sulting Q-lattice splits into two copies of the Q-expansion of L32. The
other compatible quaternionic lattice is [SL2(17).2]8, which when tensored
with M2 gives Nebe’s lattice N64.
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7. Sundry
7.1. No new extremal lattices of dimension 48. We were unable to
find any new extremal lattices of dimension 48 via such methods. One at-
tempt was made via p3-neighbour computations starting with a rank 12
Hermitian matrix over Q(

√
−2). It is difficult to tell how many lattices we

stepped through, as we did not check isometry but at best merely counted
the number of norm 4 vectors upon tensoring with the unimodular ma-

trix M ′2 =
(

2 1 +
√
−2

1−
√
−2 2

)
and expanding to a Q-basis, though it

seems that we looked at hundreds or even thousands of such examples. The
“typical” resulting 48-dimensional lattice had approximately 3000 pairs of
vectors of norm 4.

The only 48-dimensional extremal lattice that was found was a lattice
whose Hermitian automorphism group was SL2(F13), presumably inherited
from a quaternionic structure over Q(

√
13) ramified at the two infinite

places; given that M ′2 has GL2(F3) as its automorphism group, it seems
likely that our lattice is isometric to the one already found by Nebe [22].
The arrangement is similar over Q(

√
−11).

Additionally, in each case, any other quaternionic structure on the Leech
lattice Λ24 which descends to the imaginary quadratic field will yield two
copies of Λ24 upon tensoring with M ′2 and expanding to a Q-basis. It is
notable that while our “random neighbouring” on Hermitian lattices would
produce lattices with typically around 3000 pairs of vectors of norm 4,
the quaternionic structures induced the extremes: namely, 196560 pairs of
norm 4 vectors when it splits as Λ24 ⊕ Λ24; or zero when the lattice is
extremal. The second largest number of pairs of norm 4 vectors we found
was 30672 (and indeed comes from a neighbour of the quaternionic basis
that induces Λ24 ⊕ Λ24).

7.2. Further directions. It seems possible to compute the inner product
distribution of the minimal vectors for Nebe’s extremal lattice [25] of di-
mension 72, though we have not done so. There are about 5 times as many
minimal vectors as with an extremal lattice of dimension 80, but the known
automorphism group has more than 10 times as many elements as G does.
Via this, we could presumably show that

(
PSL2(F7)×SL2(F25)

)
: 2 is the

full automorphism group.
The use of neighbouring to find extremal lattices in dimension 56 could

also be investigated. We could either start with an arbitrary even unimod-
ular lattice in this dimension,8 or we could take a (possibly decomposable)

8There is no particular reason to start with an extremal lattice; four are known (to me) in
this dimension, namely B

(4)
56,1 in [5], T56 from [26], and L56,2(M) and L56,2(M̃) in [22, Table I],

though I do not know if anyone has verified these are all distinct.
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rank 28 ϑ-lattice over some imaginary quadratic field, and do neighbouring
in this field.

Finally, there are two lattices in dimension 80 given at the end of [5]
which remain candidates for extremality, namely B(4)

80,1 and B
(5)
80,1. As the

automorphism group (of either lattice) presumably only has 6560 elements,
the methods used here do not seem to be readily applicable.
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