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The divisor problem for binary cubic forms

par Tim BROWNING

Résumé. Nous étudions l’ordre moyen du nombre de diviseurs
des valeurs de certaines formes binaires cubiques qui ne sont pas
irréductibles sur Q et discutons quelques applications.

Abstract. We investigate the average order of the divisor func-
tion at values of binary cubic forms that are reducible over Q and
discuss some applications.

1. Introduction

This paper is motivated by the well-known problem of studying the av-
erage order of the divisor function τ(n) =

∑
d|n 1, as it ranges over the

values taken by polynomials. Our focus is upon the case of binary forms
C ∈ Z[x1, x2] of degree 3, the treatment of degree 1 or 2 being trivial.

We wish to understand the behaviour of the sum

T (X;C) =
∑

x1,x26X

τ(C(x1, x2)),

as X →∞. The hardest case is when C is irreducible over Q with non-zero
discriminant, a situation first handled by Greaves [7]. He establishes the
existence of constants c0, c1 ∈ R, with c0 > 0, such that

T (X;C) = c0X
2 logX + c1X

2 +Oε,C(X2− 1
14 +ε),

for any ε > 0. Here, as throughout our work, any dependence in the implied
constant will be indicated explicitly by an appropriate subscript. This was
later improved by Daniel [4], who improved 2− 1

14 +ε to 2− 1
8 +ε. Daniel also

achieves asymptotic information about the sum associated to irreducible
binary forms of degree 4, which is at the limit of what is currently possible.

Our aim is to investigate the corresponding sums T (X) = T (X;L1L2L3)
when C is assumed to factorise as a product of linearly independent linear
forms L1, L2, L3 ∈ Z[x1, x2]. In doing so we will gain a respectable improve-
ment in the quality of the error term apparent in the work of Greaves and
Daniel. The following result will be established in §4.

Manuscrit reçu le 28 juin 2010.
Classification math. 11N37, 11D25.
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Theorem 1. For any ε > 0 there exist constants c0, . . . , c3 ∈ R, with
c0 > 0, such that

T (X) =
3∑
i=0

ciX
2(logX)3−i +Oε,L1,L2,L3(X2− 1

4 +ε).

Our proof draws heavily on a series of joint papers of the author with
la Bretèche [2, 3]. These involve an analysis of the more exacting situa-
tion wherein τ(L1L2L3) is replaced by r(L1L2L3L4) or τ(L1L2Q), for an
irreducible binary quadratic form Q.

One of the motivations for studying the divisor problem for binary forms
is the relative lack of progress for the divisor problem associated to poly-
nomials in a single variable. It follows from work of Ingham [8] that∑

n6X

τ(n)τ(n+ h) ∼ 6
π2σ−1(h)X(logX)2

as X → ∞, for given h ∈ N. Exploiting connections with Kloosterman
sums, Estermann [6] obtained a cleaner asymptotic expansion with a rea-
sonable degree of uniformity in h. Several authors have since revisited this
problem achieving asymptotic formulae with h in an increasingly large
range compared to X. The best results in the literature are due to Duke,
Friedlander and Iwaniec [5] and to Motohashi [9].

A successful analysis of the sum

Th(X) =
∑
n6X

τ(n− h)τ(n)τ(n+ h),

has not yet been forthcoming for a single positive integer h. It is conjectured
that Th(X) ∼ chX(logX)3 as X → ∞, for a suitable constant ch > 0.
A straightforward heuristic analysis based on the underlying Diophantine
equations suggests that one should take

(1.1) ch = 11
8 f(h)

∏
p

(
1− 1

p

)2(
1 + 2

p

)
,

where f is given multiplicatively by f(1) = 1 and

(1.2) f(pν) =


1+ 4

p
+ 1
p2
− 3ν+4
pν+1−

4
pν+2 + 3ν+2

pν+3

(1+ 2
p

)(1− 1
p

) , if p > 2,
52
11 −

41+15ν
11×2ν , if p = 2,

for ν > 1. In the following result we provide some support for this expec-
tation.

Theorem 2. Let ε > 0 and let H > X
3
4 +ε. Then we have∑

h6H

(
Th(X)− chX(logX)3) = o(HX(logX)3).
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This result will be established in §5, where we will see that HX(logX)3

represents the true order of magnitude of the two sums on the left hand
side. It would be interesting to reduce the lower bound for H assumed in
this result.

Throughout our work it will be convenient to reserve i, j for generic
distinct indices from the set {1, 2, 3}. For any h ∈ N3, we let

Λ(h) = {x ∈ Z2 : hi | Li(x)},(1.3)
%(h) = #

(
Λ(h) ∩ [0, h1h2h3)2).(1.4)

It is clear that Λ(h) defines an integer sublattice of rank 2. In what follows
let R always denote a compact subset of R2 whose boundary is a piecewise
continuously differentiable closed curve with length

∂(R)� sup
x∈R

max{|x1|, |x2|}.

This is in contrast to our earlier investigations [2, 3], where a hypothesis of
this sort is automatically satisfied by working with closed convex subsets
of R2. Let d,D ∈ N3 with di | Di. We shall procure Theorems 1 and 2
through an analysis of the auxiliary sum

(1.5) S(X; d,D) =
∑

x∈Λ(D)∩XR
τ
(L1(x)

d1

)
τ
(L2(x)

d2

)
τ
(L3(x)

d3

)
,

where XR = {Xx : x ∈ R}.We will also assume that Li(x) > 0 for x ∈ R.
Before revealing our estimate for S(X; d,D) we will first need to intro-

duce some more notation. We write
(1.6) L∞ = L∞(L1, L2, L3) = max{‖L1‖, ‖L2‖, ‖L3‖},
where ‖Li‖ denotes the maximum modulus of the coefficients of Li. We will
set

r∞ = r∞(R) = sup
x∈R

max{|x1|, |x2|},(1.7)

r′ = r′(L1, L2, L3,R) = max
16i63

sup
x∈R
|Li(x)|.(1.8)

These are positive real numbers. Furthermore, let D = D1D2D3 and let
δ(D) ∈ N denote the largest δ ∈ N for which Λ(D) ⊆ {x ∈ Z2 : δ | x}.
Bearing this notation in mind we will establish the following result in §2
and §3.

Theorem 3. Let ε > 0 and let θ ∈ (1
4 , 1). Assume that r′X1−θ > 1. Then

there exists a polynomial P ∈ R[x] of degree 3 such that
S(X; d,D) = vol(R)X2P (logX)

+Oε
(DεL2+ε

∞ rε∞
δ(D)

(
r∞r

′ 34 + r2
∞
)
X

7
4 +ε

)
,
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where the coefficients of P have size Oε(DεLε∞r
ε
∞(1 + r′−1)ε(det Λ(D))−1).

Moreover, the leading coefficient of P is C =
∏
p σp(d,D), with

(1.9) σp(d,D) =
(
1− 1

p

)3 ∑
ν∈Z3

>0

%(pN1 , pN2 , pN3)
p2N1+2N2+2N3

and Ni = max{vp(Di), νi + vp(di)}.

While the study of the above sums is interesting in its own right, it
turns out that there are useful connections to conjectures of Manin and
his collaborators [1] concerning the growth rate of rational points on Fano
varieties. Consider for example the bilinear hypersurface

Ws : x0y0 + · · ·+ xsys = 0

in Ps×Ps. This defines a flag variety and it can be embedded in Ps(s+2) via
the Segre embedding φ. Let Us ⊂Ws be the open subset on which xiyj 6= 0
for 0 6 i, j 6 n. If H : Ps(s+2)(Q) → R>0 is the usual exponential height
then we wish to analyse the counting function

N(B) = #{v ∈ Us(Q) : H(φ(v)) 6 B}

= 1
4#{(x,y) ∈ Zs+1

∗ × Zs+1
∗ : max |xiyj |s 6 B, x.y = 0},

asB →∞, where Zk∗ denotes the set of primitive vectors in Zk with non-zero
components. It follows from work of Robbiani [10] that there is a constant
cs > 0 such that N(B) ∼ csB logB, for s > 3, which thereby confirms
the Manin conjecture in this case. This is established using the Hardy–
Littlewood circle method. Spencer [11] has given a substantially shorter
treatment, which also handles s = 2. By casting the problem in terms of
a restricted divisor sum in §6, we will modify the proof of Theorem 3 to
provide an independent proof of Spencer’s result in the case s = 2.

Theorem 4. For s = 2 we have N(B) = cB logB +O(B), with

c = 12
ζ(2)2

∏
p

(
1 + 1

p

)−1(
1 + 1

p
+ 1
p2

)
.

2. Theorem 3: special case

Our proof follows the well-trodden paths of [2, §4] and [3, §§5,6]. We
will begin by establishing a version of Theorem 3 when di = Di = 1. Let
us write S(X) for the sum in this special case. In §3 we shall establish the
general case by reducing the situation to this case via a linear change of
variables.

Recall that the linear forms under consideration are not necessarily prim-
itive. We therefore fix integers `i such that L∗i is a primitive linear form,
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with

(2.1) Li = `iL
∗
i .

It will be convenient to define the least common multiple

(2.2) L∗ = [`1, `2, `3].

Let ε > 0 and assume that r′X1−ψ > 1 for some parameter ψ ∈ (0, 1).
Throughout our work we will follow common practice and allow the small
parameter ε > 0 to take different values at different parts of the argument,
so that xε log x�ε x

ε, for example. In this section we will show that there
exists a polynomial P ∈ R[x] of degree 3 such that

S(X) = vol(R)X2P (logX)

+Oε
(
Lε∞r

ε
∞r
′ 34 (r∞ + L

1
2∗ vol(R)

1
2
)
X

7
4 +ε,

(2.3)

where the leading coefficient of P is
∏
p σp, with

(2.4) σp =
(
1− 1

p

)3 ∑
ν∈Z3

>0

%(pν1 , pν2 , pν3)
p2ν1+2ν2+2ν3

.

Moreover, the coefficients of P have modulus Oε(Lε∞rε∞(1 + r′−1)ε).
As a first step we deduce from the trivial bound for the divisor function

the estimate

(2.5) S(X)�ε L
ε
∞r

2+ε
∞ X2+ε.

We will also need to record the inequalities

(2.6) r′

2L∞
6 r∞ 6 2r′L∞, vol(R) 6 4r2

∞.

The lower bounds for r∞ and 4r2
∞ are trivial. To see the remaining bound

we suppose that Li(x) = aix1 + bix2. Let ∆i,j = aibj − ajbi denote the
resultant of Li, Lj . By hypothesis ∆i,j is a non-zero integer. We have

x1 = bjLi(x)− biLj(x)
∆i,j

, x2 = aiLj(x)− ajLi(x)
∆i,j

,

for any i, j. It therefore follows that r∞ 6 2r′L∞, as required for (2.6).
The technical tool underpinning the proof of (2.3) is an appropriate “level

of distribution” result. Recall the definitions (1.3) and (1.4). The following
is a trivial modification of the proofs of [2, Lemma 3] and [4, Lemma 3.2].
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Lemma 2.1. Let ε > 0. Let X > 1, Qi > 2 and Q = Q1Q2Q3. Then there
exists an absolute constant A > 0 such that∑

d∈N3
di6Qi

∣∣∣#(Λ(d) ∩XRd
)
− vol(XRd)%(d)

(d1d2d3)2

∣∣∣
�ε L

ε
∞(MX(

√
Q+ maxQi) +Q)(logQ)A,

where Rd ⊆ R is any compact set depending on d whose boundary is a
piecewise continuously differentiable closed curve of length at most M .

Recall the definition of r′ from (1.8). In what follows it will be convenient
to set

X ′ = r′X.

For any 1 6 i 6 3 and x ∈ XR we have
τ(Li(x)) =

∑
d|Li(x)
d6
√
X′

1 +
∑

d|Li(x)
d>
√
X′

1

=
∑

d|Li(x)
d6
√
X′

1 +
∑

e|Li(x)
e
√
X′<Li(x)

1

= τ+(Li(x)) + τ−(Li(x)),

(2.7)

say. In this way we may produce a decomposition into 8 subsums
(2.8) S(X) =

∑
S±,±,±(X),

where
S±,±,±(X) =

∑
x∈Z2∩XR

τ±(L1(x))τ±(L2(x))τ±(L3(x)).

Each sum S±,±,±(X) is handled in the same way. Let us treat the sum
S+,+,−(X), which is typical.

On noting that Li(x) 6 X ′ for any x ∈ XR we deduce that

S+,+,−(X) =
∑

d1,d2,d36
√
X′

#(Λ(d) ∩ Sd),

where Sd is the set of x ∈ XR for which d3
√
X ′ < L3(x). To estimate this

sum we apply Lemma 2.1 with Q1 = Q2 = Q3 =
√
X ′. This gives

S+,+,−(X)−
∑

d1,d2,d36
√
X′

%(d) vol(Sd)
(d1d2d3)2

�ε L
ε
∞r

ε
∞
(
r∞r

′ 34X
7
4 +ε + r′

3
2X

3
2 +ε),

since ∂(R) � r∞. If r′
3
4 6 r∞X

1
4 then this error term is satisfactory for

(2.3). Alternatively, if r′
3
4 > r∞X

1
4 , then the conclusion follows from (2.5)
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instead. It remains to analyse the main term, the starting point for which
is an analysis of the sum

(2.9) M(T) =
∑
di6Ti

%(d)
(d1d2d3)2 ,

for T1, T2, T3 > 1. We will establish the following result.

Lemma 2.2. Let ε > 0 and T = T1T2T3. Then there exist c, ci,j , ck, c0 ∈ R,
with modulus Oε(Lε∞), such that

M(T) = c
3∏
i=1

log Ti +
∑

16i<j63
ci,j(log Ti)(log Tj) +

∑
16k63

ck log Tk + c0

+Oε(Lε∞L
1
2∗ min{T1, T2, T3}−

1
2T ε),

where L∗ is given by (2.2) and

(2.10) c =
∏
p

σp.

Before proving this result we first show how it leads to (2.3). For ease
of notation we write d3 = z and f(z) = vol(Sd). Let Q =

√
X ′. Since

f(Q) = 0, it follows from partial summation that

∑
d1,d2,d36Q

%(d) vol(Sd)
(d1d2d3)2 = −

∫ Q

1
f ′(z)M(Q,Q, z)dz,

in the notation of (2.9). An application of Lemma 2.2 reveals that there
exist constants c, a1, . . . , a5 �ε L

ε
∞ such that

M(Q,Q, z) = c(logQ)2(log z) + a1(logQ)2 + a2(logQ)(log z)

+ a3 logQ+ a4 log z + a5 +Oε(Lε∞L
1
2∗ z
− 1

2Qε),

with c given by (2.10). However we claim that

f ′(z)� vol(R)
1
2QX.

To see this we suppose that L3(x) = a3x1 + b3x2 with |a3| > |b3| > 0. Then

−f ′(z) = lim
∆→0

∆−1 vol{x ∈ XR : zQ < L3(x) 6 (z + ∆)Q}

= lim
∆→0

∆−1 vol
{(

y1,
y2 + zQ− a3y1

b3

)
∈ XR : 0 < y2 6 ∆Q

}
� Q vol(XR)

1
2 ,
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on making the change of variables y1 = x1 and y2 = L3(x) − zQ. This
therefore establishes the claim and we see that the error term contributes

�ε L
ε
∞L

1
2∗Q

ε
∫ Q

1
|f ′(z)|z−

1
2 dz

�ε L
ε
∞L

1
2∗ vol(R)

1
2Q

3
2 +εX

�ε L
ε
∞r

ε
∞L

1
2∗ vol(R)

1
2 r′

3
4X

7
4 +ε.

Moreover, we have∫ Q

1
f ′(z)dz = −f(1) = −X2 vol(R) +O(r∞QX),

and ∫ Q

1
(log z)f ′(z)dz = −

∫ Q

1

f(z)
z

dz

= −
∫

x∈XR

∫
1<z<Q−1L3(x)

dzdx
z

= −
∫

x∈XR

(
logL3(x)− logQ

)
dx

= −X2 vol(R) logQ+ bX2,

for a constant b �ε L
ε
∞r

ε
∞ vol(R)(1 + r′−1)ε. Putting everything together

we conclude∑
d1,d2,d36Q

%(d) vol(Sd)
(d1d2d3)2 = 2−3 vol(R)X2P (logX)

+Oε
(
Lε∞r∞r

′ 12X
3
2 +ε)

+Oε
(
Lε∞r

ε
∞L

1
2∗ vol(R)

1
2 r′

3
4X

7
4 +ε),

for a suitable polynomial P ∈ R[x] of degree 3 with leading coefficient
∏
p σp

and all coefficients having modulus Oε(Lε∞rε∞(1 + r′−1)ε). The error terms
in this expression are satisfactory for (2.3). Once taken in conjunction with
the analogous estimates for the remaining 7 sums in (2.8), this therefore
completes the proof of (2.3).

We may now turn to the proof of Lemma 2.2, which rests upon an ex-
plicit investigation of the function %(d). Now it follows from the Chinese
remainder theorem that there is a multiplicativity property

%(g1h1, g2h2, g3h3) = %(g1, g2, g3)%(h1, h2, h3),
whenever gcd(g1g2g3, h1h2h3) = 1. Recall that ∆i,j is used to denote the
resultant of Li, Lj and set

∆ = |∆1,2∆1,3∆2,3| 6= 0.
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Recall the definition of `i and L∗i from (2.1). The following result collects
together some information about the behaviour of %(d) at prime powers.

Lemma 2.3. Let p be a prime. Suppose that min{ei, νp(`i)} = 0. Then we
have

%(pe1 , 1, 1) = pe1 , %(1, pe2 , 1) = pe2 , %(1, 1, pe3) = pe3 .

Next suppose that 0 6 ei 6 ej 6 ek for a permutation {i, j, k} of {1, 2, 3}.
Then we have

%(pe1 , pe2 , pe3)
{

= p2ei+ej+ek , if p - ∆,
6 p2ei+ej+ek+min{ej ,vp(∆)}+min{ek,vp(`k)}, if p | ∆.

Proof. The first part of the lemma is obvious. To see the second part we
suppose without loss of generality that e1 6 e2 6 e3.

When p - ∆ the conditions pei | Li(x) in %(pe1 , pe2 , pe3) are equivalent to
pe2 | x and pe3 | L3(x). Thus we conclude that

%(pe1 , pe2 , pe3) = #{x (mod pe1+e3) : pe3−e2 | L3(x)} = p2e1+e2+e3 ,

as required.
Turning to the case p | ∆, we begin with the inequalities

%(pe1 , pe2 , pe3) 6 p2e1%(1, pe2 , pe3)
6 p2e1#{x (mod pe2+e3) : pe2 | ∆2,3x, pe3 | L3(x)}.

Let us write δ = vp(∆2,3) and λ = vp(`3) for short. In particular it is clear
that δ > λ. In this way we deduce that %(pe1 , pe2 , pe3) is at most

p2e1#{x (mod pe2+e3) : pmax{e2−δ,0} | x, pmax{e3−λ,0} | L∗3(x)}.

Suppose first that e2 > δ. Then 0 6 e2 − δ 6 e3 − λ and it follows that

%(pe1 , pe2 , pe3) 6 p2e1#{x (mod pe3+δ) : pe3−λ | pe2−δL∗3(x)}
= p2e1 · pe3+δ · pe2+λ

= p2e1+e2+e3+δ+λ,

since L∗3 is primitive. Alternatively, if e2 < δ, we deduce that

%(pe1 , pe2 , pe3) 6 p2e1#{x (mod pe2+e3) : pmax{e3−λ,0} | L∗3(x)}

= p2e1+2e2+e3+min{e3,λ}.

Taking together these two estimates completes the proof of the lemma. �

We now have the tools with which to tackle the proof of Lemma 2.2. We
will argue using Dirichlet convolution, as in [3, Lemma 4]. Let

f(d) = %(d)
d1d2d3
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and let h : N3 → N be chosen so that f(d) = (1 ∗h)(d), where 1(d) = 1 for
all d ∈ N3. We then have

h(d) = (µ ∗ f)(d),
where µ(d) = µ(d1)µ(d2)µ(d3). The following result is the key technical
estimate in our analysis of M(T).

Lemma 2.4. For any ε > 0 and any δ1, δ2, δ3 > 0 such that δ1+δ2+δ3 < 1,
we have ∑

k∈N3

|h(k)|
k1−δ1

1 k1−δ2
2 k1−δ3

3
�δ1,δ2,δ3,ε L

ε
∞L

δ1+δ2+δ3
∗ ,

where L∗ is given by (2.2).

Proof. On noting that kδ11 k
δ2
2 k

δ3
3 6 k

δΣ
1 + kδΣ2 + kδΣ3 , with δΣ = δ1 + δ2 + δ3,

it clearly suffices to establish the lemma in the special case δ2 = δ3 = 0 and
0 6 δ1 < 1.

Using the multiplicativity of h, our task is to estimate the Euler product

P =
∏
p

(
1 +

∑
νi>0
ν 6=0

|h(pν1 , pν2 , pν3)|pν1δ1

pν1+ν2+ν3

)
=
∏
p

Pp,

say. Now for any prime p, we deduce that
(2.11) |h(pν1 , pν2 , pν3)| = |(µ ∗ f)(pν1 , pν2 , pν3)| 6 (1 ∗ f)(pν1 , pν2 , pν3),
whence

Pp 6 1 +
∑

αi,βi>0
α+β 6=0

pα1δ1

pα1+α2+α3
· f(pβ1 , pβ2 , pβ3)pβ1δ1

pβ1+β2+β3
.

We may conclude that the contribution to the above sum from α,β such
that β = 0 is O(p−1+δ1).

Suppose now that β 6= 0, with βi 6 βj 6 βk for some permutation
{i, j, k} of {1, 2, 3} such that βk > 1. Then Lemma 2.3 implies that

f(pβ1 , pβ2 , pβ3)pβ1δ1

pβ1+β2+β3
6 pβ1δ1 · p

min{βj ,vp(∆)}+min{βk,λk}

pβj+βk
,

where we have written λk = vp(`k) for short. Summing this contribution
over β 6= 0 we therefore arrive at the contribution

6
∑

16k63

∑
max{β1,β2,β3}=βk>1

pβ1δ1 · pmin{βk,λk}−βk

�
∑

16k63

∑
βk>1

pβk(δ1−1)+min{βk,λk}

� pmax{λ1,λ2,λ3}δ1 .
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It now follows that∏
p|∆

Pp 6
∏
p|∆

(
1 +O(p−1+δ1) +O(pmax{λ1,λ2,λ3}δ1)

)
�ε L

ε
∞L

δ1
∗ ,

where L∗ is given by (2.2). This is satisfactory for the lemma.
Turning to the contribution from p - ∆, it is a simple matter to conclude

that
%(pν1 , pν2 , pν3 ;L1, L2, L3) = %(pν1 , pν2 , pν3 ;L∗1, L∗2, L∗3).

Hence Lemma 2.3 yields h(pν , 1, 1) = h(1, pν , 1) = h(1, 1, pν) = 0 if ν > 1
and p - ∆, since then f(pν , 1, 1) = f(1, pν , 1) = f(1, 1, pν) = 1. Moreover,
we deduce from Lemma 2.3 and (2.11) that for p - ∆ we have

|h(pν1 , pν2 , pν3)| 6 (1 + ν1)(1 + ν2)(1 + ν3)
∑

06ni6νi
f(pn1 , pn2 , pn3)

6 (1 + ν1)2(1 + ν2)2(1 + ν3)2 max
06ni6νi

f(pn1 , pn2 , pn3)

= (1 + ν1)2(1 + ν2)2(1 + ν3)2pmin{ν1,ν2,ν3}.

Thus ∏
p-∆

Pp =
∏
p-∆

(
1 +

∑
ν

(1 + ν1)2(1 + ν2)2(1 + ν3)2pmin{ν1,ν2,ν3}

pν1(1−δ1)+ν2+ν3

)
,

where the sum over ν is over all ν ∈ Z3
>0 such that ν1 + ν2 + ν3 > 2, with

at least two of the variables being non-zero. The overall contribution to the
sum arising from precisely two variables being non-zero is clearly O(p−2).
Likewise, we see that the contribution from all three variables being non-
zero is O(p−2+δ1). It therefore follows that∏

p-∆
Pp =

∏
p-∆

(
1 +O(p−2+δ1)

)
�δ1,ε L

ε
∞,

since δ1 < 1. This completes the proof of the lemma. �

We are now ready to complete the proof of Lemma 2.2. On recalling the
definition (2.9), we see that

M(T) =
∑
di6Ti

f(d)
d1d2d3

=
∑
di6Ti

(1 ∗ h)(d)
d1d2d3

=
∑
ki6Ti

h(k)
k1k2k3

∑
ei6

Ti
ki

1
e1e2e3

.

Now the inner sum is estimated as
3∏
i=1

(
log Ti − log ki + γ +O(k

1
2
i T
− 1

2
i )

)
.
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The main term in this estimate is equal to
3∏
i=1

log Ti +R(log T1, log T2, log T3),

for quadratic R ∈ R[x, y, z] with coefficients bounded by �ε (k1k2k3)ε
and no non-zero coefficients of x2, y2 or z2. The error term is seen to be
�ε T

ε max{kiT−1
i }

1
2 , with T = T1T2T3.Wemay therefore apply Lemma 2.4

to obtain an overall error of

(2.12) �ε L
ε
∞L

1
2∗ min{Ti}−

1
2T ε,

where L∗ is given by (2.2).
Our next step is to show that the sums involving k can be extended to

infinity with negligible error. If a�ε (k1k2k3)ε is any of the coefficients in
our cubic polynomial main term, then for j ∈ {1, 2, 3} Rankin’s trick yields

∑
k∈N3
kj>Tj

|h(k)||a|
k1k2k3

�ε

∑
k∈N3
kj>Tj

|h(k)|
(k1k2k3)1−ε <

1

T
1
2
j

∑
k∈N3

|h(k)|k
1
2
j

(k1k2k3)1−ε ,

which Lemma 2.4 reveals is bounded by (2.12). We have therefore arrived
at the asymptotic formula for M(T) in Lemma 2.2, with coefficients of size
Oε(Lε∞), as follows from Lemma 2.4. Moreover, the leading coefficient takes
the shape ∑

k∈N3

h(k)
k1k2k3

=
∑

k∈N3

(µ ∗ f)(k)
k1k2k3

=
∏
p

σp,

in the notation of (2.4). This therefore concludes the proof of Lemma 2.2.

3. Theorem 3: general case

Let d,D ∈ N3, with di | Di, and assume that r′X1−θ > 1 for θ ∈ (1
4 , 1).

In estimating S(X; d,D), our goal is to replace the summation over Λ(D)
by a summation over Z2, in order to relate it to the sum S(X) that we
studied in the previous section. We begin by recording the upper bound

(3.1) S(X; d,D)�ε L
ε
∞r

ε
∞

(vol(R)X2+ε

det Λ(D) + r∞X
1+ε
)
.

This follows immediately on taking the trivial estimate for the divisor func-
tion and applying standard lattice point counting results.

Given any basis e1, e2 for Λ(D), let Mi(v) be the linear form obtained
from d−1

i Li(x) via the change of variables x 7→ v1e1 + v2e2. By choosing
e1, e2 to be a minimal basis, we may further assume that

(3.2) 1 6 |e1| 6 |e2|, |e1||e2| � det Λ(D),



The divisor problem for binary cubic forms 591

where |z| = max |zi| for z ∈ R2. Write M for the matrix formed from e1, e2.
Carrying out this change of variables, we obtain

S(X; d,D) =
∑

v∈Z2∩XRM

τ(M1(v))τ(M2(v))τ(M3(v)),

where RM = {M−1z : z ∈ R}. Note that Mi(v) > 0 for every v in the
summation. Moreover, the Mi will be linearly independent linear forms
defined over Z and ∂(RM) � r∞(RM) in the notation of (1.7), where
∂(RM) is the length of the boundary of RM.

We now wish to estimate this quantity. In view of (3.2) and the fact that
det Λ(D) = [Z2 : Λ(D)] divides D = D1D2D3, it is clear that

L∞(M1,M2,M3) 6 DL∞(L1, L2, L3) = DL∞,

in the notation of (1.6). In a similar fashion, recalling the definitions (1.7)
and (1.8), we observe that

r∞(RM)� |e1||e2|
|det M|

r∞(R)� r∞(R) = r∞

and r′(M1,M2,M3,RM) 6 min{d1, d2, d3}−1r′(L1, L2, L3,R) 6 r′.
Note that r∞X 6 r∞r′

3
4X

7
4 , by our hypothesis on r′. Moreover, since

det Λ(D) = D2

%(D) ,

Lemma 2.3 yields det Λ(D)� dk gcd(dk, `k)−1 for any 1 6 k 6 3. Suppose
for the moment that dk = max{di} > X

1
4 . Then an application of (2.6)

and (3.1) easily reveals that

S(X; d,D)�ε L
ε
∞r

ε
∞

(r2
∞X

2+ε gcd(dk, `k)
dk

+ r∞X
1+ε
)

�ε L
ε
∞r

ε
∞(r∞r′

3
4 + L

1
2∞L

1
2∗ r

2
∞)X

7
4 +ε,

(3.3)

where `k is defined in (2.1) and L∗ by (2.2). Alternatively, if max{di} 6 X
1
4

then for any ψ > 0 we have

r′(M1,M2,M3,RM)X1−ψ > r′X
3
4−ψ > r′X1−θ > 1,

provided that ψ 6 θ − 1
4 . Taking ψ = θ − 1

4 ∈ (0, 3
4) all the hypotheses are

therefore met for an application of (2.3).
To facilitate this application we note that vol(RM) = |det M|−1 vol(R).

Moreover, if mi denotes the greatest common divisor of the coefficients of
Mi then mi | `i det Λ(D). Hence we have

L∗(M1,M2,M3) = [m1,m2,m3] 6 [`1, `2, `3] det Λ(D) = L∗ det Λ(D),
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from which it is clear that

L∗(M1,M2,M3)
1
2 vol(RM)

1
2 6 L

1
2∗ vol(R)

1
2 6 2L

1
2∗ r∞,

by (2.6). Finally we recall that r′(M1,M2,M3,RM) > (max{di})−1r′. Col-
lecting all of this together, it now follows from (2.3) and (3.3) that

S(X; d,D) = vol(R)
det Λ(D)X

2P (logX) +Oε
(
E
)
,

where the leading coefficient of P is
∏
p σ
∗
p and σ∗p is defined as for σp in

(2.4), but with %(h;L1, L2, L3) replaced by %(h;M1,M2,M3), and

E = DεLε∞r
ε
∞
(
L

1
2∗ r∞r

′ 34 + L
1
2∞L

1
2∗ r

2
∞
)
X

7
4 +ε.

Furthermore, the coefficients of P are all Oε(DεLε∞r
ε
∞(1+r′−1)ε) in modu-

lus, so that the coefficients of the polynomial appearing in Theorem 3 have
the size claimed there. Following the calculations in [2, §6] one finds that

1
det Λ(D)

∏
p

σ∗p =
∏
p

σp(d,D),

in the notation of (1.9).
Let us write S(X; d,D) = S(X; d,D;L1, L2, L3,R) in (1.5) in order to

stress the various dependencies. Recall the notation δ = δ(D) that was
introduced prior to the statement of Theorem 3. In order to obtain the
factor δ−1 in the error term E we simply observe that

S(X; d,D;L1, L2, L3,R) = S(X; d,D; δL1, δL2, δL3, δ
−1R).

According to (1.7) and (1.8), the value of r′ is left unchanged and r∞ should
be divided by δ. However, L∞ is replaced by δL∞ and L∗ becomes δL∗. On
noting that L∗ 6 `1`2`3 6 L3

∞, we easily conclude that the new error term
is as in Theorem 3. Finally the constants obtained as factors of X2(logX)i
in the main term must be the same since they are independent of X. This
therefore concludes the proof of Theorem 3.

4. Treatment of T (X)

In this section we establish Theorem 1. For convenience we will assume
that the coefficients of L1, L2, L3 are all positive so that Li(x) > 0 for all
x ∈ [0, 1]2. The general case is readily handled by breaking the sum over x
into regions on which the sign of each Li(x) is fixed. In order to transfigure
T (X) into the sort of sum defined in (1.5), we will follow the opening steps
of the argument in [3, §7]. This hinges upon the formula

τ(n1n2n3) =
∑

e∈N3

eiej |nk

µ(e1e2)µ(e3)
2ω(gcd(e1,n1))+ω(gcd(e2,n2)) τ

( n1
e2e3

)
τ
( n2
e1e3

)
τ
( n3
e1e2

)
,
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which is established in [3, Lemma 10] and is valid for any n ∈ N3. In this
way we deduce that

T (X) =
∑

e∈N3

µ(e1e2)µ(e3)
∑

k=(k1,k2,k′1,k
′
2)∈N4

kik
′
i|ei

µ(k′1)µ(k′2)
2ω(k1)+ω(k2)Te,k(X),

with

Te,k(X) =
∑

x∈Λ∩[0,X]2
τ
(L1(x)
e2e3

)
τ
(L2(x)
e1e3

)
τ
(L3(x)
e1e2

)
and Λ = Λ([e2e3, k1k

′
1], [e1e3, k2k

′
2], e1e2) given by (1.3). Under the condi-

tions kik′i | ei and |µ(e1e2)| = |µ(e3)| = 1, we clearly have

Λ = Λ([e2e3, k], [e1e3, k], e1e2),

with k = k1k
′
1k2k

′
2. Thus Te,k(X) depends only on k | e1e2. Noting that

Te,k(X) = 0 unless |e| 6 X, and∑
k=(k1,k2,k′1,k

′
2)∈N4

kik
′
i=gcd(k,ei)

µ(k′1)µ(k′2)
2ω(k1)+ω(k2) = µ(gcd(k, e1))µ(gcd(k, e2))

2ω(gcd(k,e1))+ω(gcd(k,e2)) = µ(k)
2ω(k) ,

we may therefore write

(4.1) T (X) =
∑
|e|6X

µ(e1e2)µ(e3)
∑
k|e1e2

µ(k)
2ω(k)Te,k(X),

with Te,k(X) = S(X,d,D) in the notation of (1.5) and

d = (e2e3, e1e3, e1e2), D = ([e2e3, k], [e1e3, k], e1e2).

For the rest of this section we will allow all of our implied constants to
depend upon ε and L1, L2, L3. In particular we may clearly assume that
r∞ = 1, L∞ � 1 and 1 6 r′ � 1. Now let δ = δ(D) be the quantity defined
in the buildup to Theorem 3. A little thought reveals that

δ > [e′1, e′2, e′3, k′]� [e1e2, e3],

since e1e2 is square-free, where e′i = ei
gcd(ei,∆j,k) and k′ = k

gcd(k,∆1,2) and we
recall that ∆j,k is the resultant of Lj , Lk.

In view of the inequality |e| 6 X, we conclude from Theorem 3 that

Te,k(X) = X2P (logX) +O
(
[e1e2, e3]−1X

7
4 +ε),

for a cubic polynomial P with coefficients of size � (e1e2e3)ε[e1e2, e3]−2,
since we have det Λ(D) > δ2. The overall contribution from the error term,
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once inserted into (4.1), is

� X
7
4 +ε ∑

|e|6X

|µ(e1e2)µ(e3)|
[e1e2, e3]

6 X
7
4 +ε ∑

|e|6X

gcd(e1e2, e3)
e1e2e3

= X
7
4 +ε ∑

e1,e26X

1
e1e2

∑
h|e1e2

h
∑
e36X
h|e3

1
e3

� X
7
4 +ε.

This is clearly satisfactory from the point of view of Theorem 1. Similarly
we deduce that the overall error produced by extending the summation over
e to infinity is

� X2+ε ∑
|e|>X

|µ(e1e2)µ(e3)|(e1e2e3)ε

[e1e2, e3]2

� X
7
4 +ε ∑

e∈N3

gcd(e1e2, e3)2|e|
1
4

(e1e2e3)2

� X
7
4 +ε.

This therefore concludes the proof of Theorem 1.

5. Divisor problem on average

In this section we prove Theorem 2. We begin by writing∑
h6H

(
Th(X)− chX(logX)3) = Σ1 − Σ2,

say, where ch is given by (1.1). The following result deals with the second
term.

Lemma 5.1. Let H > 1. Then we have

Σ2 = cXH(logX)3 +O
(
XH

1
2 (logX)3),

where

(5.1) c = 4
3
∏
p>2

(
1 + 1

p

)−1(
1 + 1

p
+ 1
p2

)
.

Proof. We have Σ2 = c1X(logX)3S(H), where c1 is given by taking h = 1
in (1.1), and S(H) =

∑
h6H f(h), with f given multiplicatively by (1.2).
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Using the equality f = (f ∗ µ) ∗ 1 and the trivial estimate [x] = x+O(x
1
2 ),

we see that

S(H) =
∞∑
d=1

(f ∗ µ)(d)
[H
d

]
= H

∞∑
d=1

(f ∗ µ)(d)
d

+O
(
H

1
2

∞∑
d=1

|(f ∗ µ)(d)|
d

1
2

)
,

provided that the error term is convergent.
For k > 1 we have (f ∗ µ)(pk) = f(pk)− f(pk−1). Hence we calculate

(f ∗ µ)(pk) =


1
pk
·

1+3k− 3k
p
− 3+3k

p2
+ 3k+2

p3

(1+ 2
p

)(1− 1
p

)2 , if p > 2,
1
2k · (1 + 15k

11 ), if p = 2,
for k > 2, and

(f ∗ µ)(p) =

1
p ·

4+ 5
p

1+ 2
p

, if p > 2,
13
11 , if p = 2.

In particular it is clear that |(f ∗ µ)(pk)| � kp−k, whence
∞∑
d=1

|(f ∗ µ)(d)|
d

1
2

�ε

∞∑
d=1

d−
3
2 +ε � 1,

for ε < 1
2 . It follows that S(H) = c′1H +O(H

1
2 ), where

c′1 =
∏
p

∑
k>0

(f ∗ µ)(pk)
pk

= 64
33
∏
p>2

(
1 + 2

p

)−1(
1− 1

p

)−2(
1 + 1

p

)−1(
1 + 1

p
+ 1
p2

)
.

We conclude the proof of the lemma by noting that c1c
′
1 = c. �

It would be easy to replace the exponent 1
2 of H by any positive number,

but this would not yield an overall improvement of Theorem 2. We now
proceed to an analysis of the sum

Σ1 =
∑
h6H

Th(X) =
∑
h6H
n6X

τ(n− h)τ(n)τ(n+ h),

in which we follow the convention that τ(−n) = τ(n). This corresponds to
a sum of the type considered in (1.5), with di = Di = 1 and

L1(x) = x1 − x2, L2(x) = x1, L3(x) = x1 + x2.

The difference is that we are now summing over a lopsided region.

Lemma 5.2. Let H > 1 and let ε > 0. Then we have
Σ1 = cXH(logX)3 +Oε

(
XH(logX)2 +X

1
2 +εH +X

7
4 +ε),

where c is given by (5.1).
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Proof. Tracing through the proof of (2.3) one is led to consider 8 sums

Σ±,±,±1 =
∑
h6H
n6X

τ±(n− h)τ±(n)τ±(n+ h),

withX ′ = 2X in the construction (2.7) of τ±. Arguing as before we examine
a typical sum

Σ+,+,−
1 =

∑
d1,d2,d36

√
2X

#(Λ(d) ∩Rd(X,H)),

where Rd(X,H) = {x ∈ (0, X] × (0, H] : d3
√

2X < L3(x)}. An entirely
analogous version of Lemma 2.1 for our lopsided region readily leads to the
conclusion that

Σ+,+,−
1 =

∑
d1,d2,d36

√
2X

%(d) vol(Rd(X,H))
(d1d2d3)2 +Oε

(
X

1
2 +εH +X

7
4 +ε).

Combining Lemma 2.2 with partial summation, as previously, we conclude
that ∑

d1,d2,d36
√

2X

%(d) vol(Rd(X,H))
(d1d2d3)2 = XH(logX)3∏

p

σp

+Oε(XH(logX)2 +X
7
4 +ε),

with σp given by (2.4). This gives the lemma with c =
∏
p σp.

It remains to show that c matches up with (5.1). For any a ∈ Z3
>0 let

m(a) = maxi 6=j{ai + aj}. For z ∈ C such that |z| < 1 we claim that

(5.2) S(z) =
∑

ν1,ν2,ν3>0
zm(ν) = 1 + z + z2

(1− z)2(1− z2) .

But this follows easily from the observation

S(z) = 1 + 3
∑

ν1=ν2=0
ν3>1

zν3 + 3
∑
ν1=0
ν2,ν3>1

zν2+ν3 + z2S(z).

The linear forms arising in our analysis have resultants ∆1,2 = 1,∆1,3 = 2
and ∆2,3 = 1. Moreover, `1 = `2 = `3 = 1 in the notation of (2.1). Suppose
that p > 2 and write z = 1

p . Then it follows from Lemma 2.3 that

∑
ν∈Z3

>0

%(pν1 , pν2 , pν3)
p2ν1+2ν2+2ν3

= S(z) = 1 + z + z2

(1− z)2(1− z2) .

If p = 2, it will be necessary to revisit the proof of Lemma 2.3. To begin
with it is clear that %(2ν1 , 2ν2 , 2ν3) = 2ν1+ν2+ν3+min{νi} if min{ν1, ν3} 6 ν2.
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If ν2 < νi 6 νj for some permutation {i, j} of {1, 3} then
%(2ν1 , 2ν2 , 2ν3) = #{x (mod 2ν1+ν2+ν3) : 2νi | ∆1,3x, 2νj | Lj(x)}

= 2ν1+2ν2+ν3+1.

Writing z = 1
2 we obtain∑

ν∈Z3
>0

%(2ν1 , 2ν2 , 2ν3)
22ν1+2ν2+2ν3

=
∑
ν∈Z3

>0
min{ν1,ν3}6ν2

zm(ν) +
∑
ν∈Z3

>0
min{ν1,ν3}>ν2

zm(ν)−1

= S(z) +
∑
ν∈Z3

>0
min{ν1,ν3}>ν2

zν1+ν3−1(1− z)

= 1 + z + z2

(1− z)2(1− z2) + z

(1− z)2(1 + z) .

Hence, (2.4) becomes

σp =
{

(1 + 1
p)−1(1 + 1

p + 1
p2 ), if p > 2,

4
3 , if p = 2,

as required to complete the proof of the lemma. �

Once combined, Lemmas 5.1 and 5.2 yield

Σ1 − Σ2 �ε XH
1
2 (logX)3 +XH(logX)2 +X

1
2 +εH +X

7
4 +ε.

This is o(XH(logX)3) for H > X
3
4 +ε, as claimed in Theorem 2.

6. Bilinear hypersurfaces

In this section we establish Theorem 4, for which we begin by studying
the counting function

N0(X) = #{(u,v) ∈ (Z \ {0})6 : |v| 6 v0 6 X
1
2 , |u| 6 v−1

0 X, u.v = 0},
for large X, where |x| = max{|x0|, |x1|, |x2|} for any x = (x0, x1, x2) ∈ R3.
The overall contribution from vectors with |v1| = v0 is

�
∑

|v2|6v06X
1
2

#{u ∈ Z3 : |u| 6 v−1
0 X, u0v0 + u1v0 + u2v2 = 0}

�
∑

|v2|6v06X
1
2

X2

v3
0
� X2,

as can be seen using the geometry of numbers. Similarly there is a contri-
bution of O(X2) to N0(X) from vectors for which |v2| = v0. Thus we may
conclude that

N0(X) = 23N1(X) +O(X2),
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whereN1(X) is the contribution toN0(X) from vectors with 0 < v1, v2 < v0
and u2 > 0, with the equation u.v = 0 replaced by u0v0 + u1v1 = u2v2.

Define the region

V =
{
α ∈ [0, 1]6 : α2, α3 < α1 6

1
2 , α1 + α5 − α2 6 1, α1 + α6 − α3 6 1

}
,

and set
L1(x) = x1, L2(x) = x2, L3(x) = x1 + x2.

We will work with the region R = {x ∈ [−1, 1]2 : x1x2 6= 0, x1 + x2 > 0}.
Then we clearly have N1(X) = R(X), with

R(X) =
∑

x∈Z2∩XR
#
{

e ∈ N3 : ei | Li(x), (ε, ξ) ∈ V
}
,

where ε = (ε1, ε2, ε3), ξ = (ξ1, ξ2, ξ3) and

εi = log ei
logX , ξi = log |Li(x)|

logX .

Note that for V = [0, 1]6 this sum coincides with (1.5) for di = Di = 1. We
establish an asymptotic formula for R(X) along the lines of the proof of
Theorem 3. We will need to arrange things so that we are only considering
small divisors in the summand. It is easy to see that the overall contribution
to the sum from e such that e2

j = Lj(x) for some j ∈ {1, 2, 3} is

�ε X
ε
∑

ej6
√
X

#
{
x ∈ Z2 ∩XR : Lj(x) = e2

j

}
�ε X

3
2 +ε.

It follows that we may write

(6.1) R(X) =
∑

m∈{±1}3
R(m)(X) +Oε(X

3
2 +ε),

where R(m)(X) is the contribution from miei 6 mi

√
|Li(x)|.

We indicate how to handle R(1,1,−1)(X) = R+,+,−(X), say, which is typ-
ical. Writing L3(x) = e3f3, we see that f3 6

√
L3(x) and

ε3 = log(f−1
3 L3(x))
logX = ξ3 −

log f3
logX .

On relabelling the variables we may therefore write

R+,+,−(X) =
∑

x∈Z2∩XR
#
{

e ∈ N3 : ei | Li(x), ei 6
√
|Li(x)|

(ε, ξ) ∈ V +,+,−

}
,

where
V +,+,− = {(ε, ξ) ∈ R6 : (ε1, ε2, ξ3 − ε3, ξ) ∈ V }.
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Interchanging the order of summation we obtain

R+,+,−(X) =
∑

e∈N3

#
{

x ∈ Λ(e) ∩XR : ξ ∈ V +,+,−(e)
}
,

where ξ ∈ V +,+,−(e) if and only if (ε, ξ) ∈ V +,+,− and 2εi 6 ξi.
On verifying that the underlying region is a union of two convex regions,

an application of Lemma 2.1 yields

R+,+,−(X) =
∑

e∈N3

vol{x ∈ XR : ξ ∈ V +,+,−(e)}%(e)
(e1e2e3)2 +Oε(X

7
4 +ε).

Lemma 2.3 implies that
%(e)
e1e2e3

= gcd(e1, e2, e3) = f(e),

say, whence

R+,+,−(X) =
∫

x∈XR

∑
e∈N3
2εi6ξi

χV (ε1, ε2, ξ3 − ε3, ξ)f(e)
e1e2e3

dx +Oε(X
7
4 +ε),

where χV is the characteristic function of the set V . We now write f = h∗1
as a convolution, for a multiplicative arithmetic function h. Opening it up
gives

(6.2) R+,+,−(X) =
∑

k∈N3

h(k)
k1k2k3

∫
x∈XR

M(X)dx +Oε(X
7
4 +ε),

where for κi = log ki
logX we set

M(X) =
∑

e∈N3
2εi+2κi6ξi

χV (ε1 + κ1, ε2 + κ2, ξ3 − ε3 − κ3, ξ)
e1e2e3

.

The estimation of M(X) will depend intimately on the set V . Indeed we
wish to show that

∫
M(X)dx has orderX2 logX, whereas taking V = [0, 1]6

leads to a sum with order X2(logX)3.
Writing out the definition of the set V we see that

M(X) =
∑
e1∈N

06ε1+κ16 1
2

2ε1+2κ16ξ1

1
e1

∑
e2∈N

06ε2+κ2<ε1+κ1
ε1+κ1+ξ261+ε2+κ2

2ε2+2κ26ξ2

1
e2

∑
e3∈N

ξ3<ε1+κ1+ε3+κ361
2ε3+2κ36ξ3

1
e3
,

where εi = log ei
logX , κi = log ki

logX and ξi = log |Li(x)|
logX . Further thought shows that

the outer sum over e1 can actually be taken over e1 such that
ξ3
2 < ε1 + κ1 6 min

{1
2 ,
ξ1
2 , 1−

ξ2
2
}
.



600 Tim Browning

The inner sums over e2, e3 can be approximated simultaneously by integrals,
giving(

logX
∫ min{ε1+κ1,

ξ2
2 }

max{0,ε1+κ1+ξ2−1}
dτ2 +O(1)

)(
logX

∫ min{1−ε1−κ1,
ξ3
2 }

max{0,ξ3−ε1−κ1}
dτ3 +O(1)

)
,

after an obvious change of variables. We see that the overall contribution
to M(X) from the error terms is

� logX
∫ ξ1

2

ξ3
2

(
1 + logX

∫ τ1

ξ2+τ1−1
dτ2 + logX

∫ ξ3
2

ξ3−τ1
dτ3
)
dτ1

= (I1 + I2 + I3) logX,

say. Let Ii denote the integral of Ii logX over x ∈ XR. We see that

I1 6
1
2

∫
{x∈XR: x1+x2<|x1|}

(
log |x1| − log(x1 + x2)

)
dx� X2.

Next we note that

I2 � (logX)2
∫

(τ1,τ2)∈[0, 12 ]2

∫
{x∈XR: ξ362τ1, ξ261+τ2−τ1, x2>0}

dxdτ1dτ2

6 (logX)4
∫

(τ1,τ2)∈[0, 12 ]2

∫ 2τ1

−∞

∫ 1+τ2−τ1

−∞
Xu+vdudvdτ1dτ2

= (logX)2
∫

(τ1,τ2)∈[0, 12 ]2
X1+τ1+τ2dτ1dτ2 � X2,

and likewise,

I3 � (logX)2
∫

(τ1,τ3)∈[0, 12 ]2

∫
{x∈XR: ξ261, ξ36τ1+τ3, x2>0}

dxdτ1dτ3

6 (logX)4
∫

(τ1,τ3)∈[0, 12 ]2

∫ 1

−∞

∫ τ1+τ3

−∞
Xu+vdudvdτ1dτ3 � X2.

Interchanging the sum over e1 with the integrals over τ2, τ3 one uses the
same sort of argument to show that the final summation can be approxi-
mated by an integral.

This therefore leads to the conclusion that∫
x∈XR

M(X)dx = (logX)3
∫

x∈XR

∫
2τ16ξ1
2τ26ξ2
2τ3>ξ3

χV (τ , ξ)dτdx +O(X2),

after an obvious change of variables. We insert this into (6.2) and then, on
assuming analogous formulae for all the sums R±,±,±(X), we sum over all
of the various permutations of m in (6.1). This gives

R(X) = c0I(X) +O(X2),
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where

c0 =
∑

k∈N3

h(k)
k1k2k3

, I(X) = (logX)3
∫

x∈XR

∫
τ∈R3

χV (τ , ξ)dτdx.

Recalling (5.2) we easily deduce that

c0 =
∑

a∈N3

µ(a1)µ(a2)µ(a3)
a1a2a3

∑
b∈N3

gcd(b1, b2, b3)
b1b2b3

=
∏
p

(
1− 1

p

)3
S
(1
p

)
=
∏
p

(
1 + 1

p

)−1(
1 + 1

p
+ 1
p2

)
.

It remains to analyse the term

I(X) = (logX)3 vol

(x, τ ) ∈ R2 × [0, 1]3 :

x1 + x2 > 0, |x1| 6 X,
τ2, τ3 < τ1 6 1

2 ,
log |x2|
logX 6 1 + τ2 − τ1,

log x1+x2
logX 6 1 + τ3 − τ1


= I+,+(X) + I−,+(X) + I+,−(X),

where I+,+(X) (resp. I−,+(X), I+,−(X)) is the contribution from x, τ such
that x1 > 0 and x2 > 0 (resp. x1 < 0 and x2 > 0, x1 > 0 and x2 < 0). In
the first integral it is clear that x1 < x1 + x2 6 X so that the condition
|x1| 6 X is implied by the others. Likewise, in the second volume integral
we will have x2 > |x1| and so the condition |x1| 6 X is implied by the
inequalities involving x2. An obvious change of variables readily leads to
the conclusion that I+,+(X) + I−,+(X) is

= (logX)5
∫
{τ∈[0, 12 ]3:τ2,τ3<τ1}

∫ 1+τ3−τ1

−∞

∫ 1+τ2−τ1

−∞
Xu+vdudvdτ

= X2(logX)3
∫
{τ∈[0, 12 ]3:τ2,τ3<τ1}

Xτ2+τ3−2τ1dτ

= 1
2X

2 logX +O(X2).

The final integral I+,−(X) can be written as in the first line of the above,
but with the added constraint that Xu +Xv 6 X in the inner integration
over u, v. For large X this constraint can be dropped with acceptable error,
which thereby leads to the companion estimate

I+,−(X) = 1
2X

2 logX +O(X2).
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Putting everything together we have therefore shown that
N0(X) = 23N1(X) +O(X2) = 8c0X

2 logX +O(X2),
with c0 given above. Running through the reduction steps in [11, §5] rapidly
leads from this asymptotic formula to the statement of Theorem 4.
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