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Comparison between the fundamental group
scheme of a relative scheme and that of its

generic fiber

par Marco ANTEI

Résumé. On montre que le morphisme canonique ϕ : π1(Xη, xη)
→ π1(X,x)η entre le schéma en groupes fondamental de la fibre
générique Xη d’un schéma X sur un schéma de Dedekind connexe
et la fibre générique du schéma en groupes fondamental de X est
toujours fidèlement plat. On donnera ensuite des conditions néces-
saires et suffisantes pour qu’un G-torseur fini, dominé et pointé au
dessus de Xη puisse être étendu sur X. On décrira des exemples
où ϕ : π1(Xη, xη)→ π1(X,x)η est un isomorphisme.

Abstract. We show that the natural morphism ϕ : π1(Xη, xη)
→ π1(X,x)η between the fundamental group scheme of the generic
fiber Xη of a scheme X over a connected Dedekind scheme and
the generic fiber of the fundamental group scheme of X is al-
ways faithfully flat. As an application we give a necessary and
sufficient condition for a finite, dominated pointed G-torsor over
Xη to be extended over X. We finally provide examples where
ϕ : π1(Xη, xη)→ π1(X,x)η is an isomorphism.

1. Introduction
In [17] and [16] (respectively) Saïdi and Romagny give an example of a G-

torsor Y over the generic fiber Xη of a scheme X over a d.v.r. (i.e. a discrete
valuation ring) R of equal characteristic p > 0 whith field of fractions K,
such that the normal closure Y of Y in X does not have any structure of
torsor which extends the one given on Y . Namely they construct such an
example when X = Spec(R[x]) and G = (Z/p2Z)K . Nevertheless one can
ask whether we can find a scheme Y ′ and a torsor structure on it which
extends the torsor structure on Y .

This problem is tightly related to the study of the fundamental group
schemes of X and of Xη. In [12] Nori gives the definition of the fundamental
group scheme π1(X,x) of a reduced, connected and proper scheme X over
a perfect field k provided with a point x ∈ X(k). This definition has been
extended by Gasbarri in [6] where he replaces k by a Dedekind scheme S
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(that is to say a normal noetherian scheme of dimension≤ 1) and whereX is
a reduced and irreducible scheme faithfully flat over S. The two definitions
coincide if S is the spectrum of a perfect field.

In the first part of this paper we will briefly recall Nori’s and Gasbarri’s
definitions of the fundamental group scheme and we state some prelimi-
nary lemmas necessary to solve our problem. Then we study the generic
fiber of Gasbarri’s fundamental group scheme of a scheme X over a con-
nected Dedekind scheme S putting it in relation with the fundamental
group scheme of Xη, the generic fiber of X. The principal results of this
paper are theorems 2.2 and 3.1. In theorem 2.2 we prove that the natural
morphism ϕ : π1(Xη, xη) → π1(X,x)η is always faithfully flat. This has
been recently proved by Garuti (cf. [5] §4, Theorem 4) when X is normal
and S is the spectrum of a d.v.r.. As an application we prove theorem 3.1,
that gives sufficient and necessary condition for a pointed torsor over Xη

to be extended over X. As a corollary we have that any dominated pointed
torsor over Xη (the meaning of “dominated torsor” will be explained in
the text) can be extended to a pointed torsor over X if and only if ϕ is
an isomorphism. This is always the case (see proposition 3.2) for X an
abelian scheme whose fundamental group scheme is isomorphic to the di-
visible group of X, i.e. the inverse limit of the kernels of the multiplication
by an integer maps (cf. again proposition 3.2) using what Nori has already
proved over a field (cf. [14]). In this case we prove that any pointed torsor
(not only dominated) over the generic fiber Xη of X can be extended if and
only if the finite group scheme acting on it has a model, which is always
true when the field of functions of S has characteristic 0 (cf. 3.3).

2. The fundamental group scheme
2.1. Preliminaries. In [12], Nori defines the fundamental group scheme
π1(X,x) of a reduced, connected and proper scheme X over a perfect field
k provided with a point x ∈ X(k) as the group scheme associated to the
neutral tannakian category (EF (X),⊗, x∗,OX) of essentially finite vector
bundles over X. In [13], Part I, Ch. II, §1 Nori gives a second equivalent
description for his fundamental group scheme. Gasbarri in [6] develops this
point of view. We give some details on Gasbarri’s construction. So from now
on let S be a Dedekind scheme, X a reduced, irreducible scheme, j : X → S
a faithfully flat morphism and x : S → X a fixed S-valued point.

Definition. Let P(X) be the category whose objects are triples (Y,G, y)
where:

(1) G is a finite and flat S-group scheme.
(2) f : Y → X is a G-torsor for the fpqc topology.
(3) y : S → Y is a section such that f(y) = x.
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A morphism ϕ : (Y1, G1, y1)→ (Y2, G2, y2) between two triples is the datum
of two morphisms α : Y1 → Y2 and β : G1 → G2 where β is a group scheme
morphism, α(y1) = y2 and such that the following diagram

G1 × Y1 → Y1
↓ 	 ↓

G2 × Y2 → Y2
commutes, the horizontal arrows being the actions.

Lemma 2.1. Let α : G → H be a group scheme morphism, Y a G-torsor
over X, P an H-torsor over X and ϕ : Y → P a morphism between
torsors compatible with the actions of G and H. Then P is isomorphic to
the contracted product Y ×G H (as defined in [3], III, §4, 3.2).

Proof. For any X-scheme T we have a canonical arrow:
Y (T )×H(T ) → P (T )

(y, h) 7→ ϕ(y) · h
that passes to quotient (under the left action of G). We deduce a morphism
of H-torsors Y ×G H → P over X which is then an isomorphism since
every morphism between H-torsors is an isomorphism, hence the desired
result. �

Let I be the set of isomorphism classes of objects of P(X); it is a poset
when provided with the following relation: if i, j ∈ I then i ≤ j if and only
if there exists a morphism from the triple corresponding to j to the triple
corresponding to i. Moreover the following theorem holds:

Theorem 2.1. The set I is filtered. Then we can define a pro-object
lim←−i∈I(Yi, Gi, xi). Moreover, π1(X,x) = lim←−i∈IGi is an S-group scheme
and Ỹ = lim←−i∈IYi is a scheme.

Proof. See [6], Proposition 2.1. �

Definition. We call the S-group scheme π1(X,x) constructed in theorem
2.1 the fundamental group scheme. We call the scheme Ỹ the π1(X,x)-
universal torsor over X.

Remark. When they can be compared Nori’s and Gasbarri’s construction
coincide (cf. [13], Ch. II). Thus from now on we denote by π1(X,x) both
Nori’s and Gasbarri’s fundamental group schemes and no confusion will
arise.

Remark. There is a bĳection between isomorphism classes of triples
(Y,G, y) as in def. 2.1 and S-group scheme morphisms ρ : π1(X,x) → G.
Indeed given a triple (Y,G, y), the morphism ρ : π1(X,x) → G comes di-
rectly from theorem 2.1. On the other direction it is sufficient to consider
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the contracted product Ỹ ×π1(X,x)G. Lemma 2.1 ensures that one direction
is the inverse of the other.

2.2. Some elementary lemmas. If not stated otherwise S is any scheme.
All group schemes that we will consider will be affine over S. We recall
that a morphism of schemes f : Z → Y is called schematically dominant
(cf. [10], Définition 11.10.2) if the corresponding morphism of OX -modules
f# : OY → f∗(OZ) is injective.

Remark. Let β : G′ → G be a morphism of affine (not necessarily finite)
group schemes over a field. The following are equivalent:

(1) β : G′ → G is schematically dominant,
(2) β : G′ → G is surjective for the fpqc topology,
(3) β : G′ → G is faithfully flat.

Indeed 1) ⇔ 2) comes from [18], Ch. 15, §5 and 2) ⇔ 3) [18], Ch. 14, §1.

Definition. Let S be a Dedekind scheme. A triple (Y,G, y), as defined
before, is said to be a dominated triple1 if for any triple (Y ′, G′, y′) and
any morphism ϕ = (α, β) : (Y ′, G′, y′) → (Y,G, y), β is a schematically
dominant morphism. We will often refer to a triple (resp. dominated triple)
(Y,G, y) as a pointed (resp. dominated pointed) torsor.

For the sake of completeness we give some details for the easy proofs of
the following useful lemmas.

Lemma 2.2. Any S-morphism f : G′ → G between group schemes can
be factored into a schematically dominant morphism s : G′ → F (F some
S-group scheme) and a closed immersion i : F ↪→ G such that i ◦ s = f :

G′
f //

s
  A

AA
AA

AA
G

F
/ � i

??~~~~~~~

Proof. The question being local on S, we can assume S to be an affine
scheme, thus we set S := Spec(B), G := Spec(C), G′ := Spec(A) to be
affine. Denote by h : A → C the B-Hopf algebra morphism correspond-
ing to f . Then F := Spec(Im(h)) is the B-group scheme with the desired

1N.B.: such a triple is called a “reduced triple" in [13], Part I, Ch. II when S is the spectrum
of a field. Because of the confusion that can arise we have decided to call it in a different manner.
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properties. Indeed let ∆A : A→ A⊗A and ∆C : C → C⊗C be the comul-
tiplications of (resp.) A and C. By the following commutative diagram:

A
h //

∆A
��

C

∆C
��

A⊗A
h⊗h

// C ⊗ C

one deduces that H := Im(h), the B-submodule image of h (then B-flat
as C is), is a B-subcoalgebra of C since ∆C(H) ⊆ H ⊗ H. Similarly let
mA : A⊗ A→ A and mC : C ⊗ C → C be the multiplications of A and C
we have
mC(H ⊗H) ⊆ H. If moreover SA and SC are the antipodal morphisms

of A and C one can easily verify that SC(H) ⊆ H and this gives H the
desired B-Hopf algebra structure. �

Lemma 2.3. Let (Gi, γli)i∈I be an inverse system of S-group schemes and
G = lim←−i∈IGi; we have, for any pair (i, l) such that i ≤ l, the following
commutative diagram:

Gi G
ρioo

ρl~~}}
}}

}}
}}

Gl.

γli

OO

Then the canonical morphism ρi is schematically dominant if and only if
for any l ≥ i the map γli : Gl → Gi is schematically dominant.

Proof. As before we set S := Spec(B), Gi := Spec(Ai) and G := Spec(A) =
Spec(lim−→i∈IAi) and we prove the dual statement forB-Hopf algebras, where
f li : Ai → Al corresponds to γli and αi : Ai → A to ρi. One direction is
obvious. In the other direction, we suppose that f li is injective for all l ≥ i;
let x ∈ Ai and αi(x) = 0. Now, we set y := f li (x) ∈ Al, we know that
αl(y) = 0 according to the previous diagram; but αl is defined as the
composition of the following morphisms:

αl : Al ↪→
∐
k∈I Ak �

∐
k∈I Ak

∼ ' A
y 7→ y 7→ 0

where, for ai ∈ Ai and aj ∈ Aj , we write ai ∼ aj if and only if there exists
k ≥ i, k ≥ j such that fki (ai) = fkj (aj) and this means that there exist
r ∈ I, r ≥ l and f rl : Al → Ar such that f rl (y) = 0, in particular the
morphism f ri = f rl ◦ f li : Ai → Ar maps x into 0, but according to the
assumption on Ai the morphism f ri is injective and then x = 0. �

As a consequence we have the following
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Corollary 2.1. Let S be a Dedekind scheme. A triple (Y,G, y) is dominated
if and only if the morphism ρ : π1(X,x) → G naturally associated to this
triple is a schematically dominant morphism.

Lemma 2.4. Let S be a Dedekind scheme. Let ρ : π1(X,x) → G be an
S-morphism of group schemes where G is finite and flat over S. Then there
exist an S-group scheme G′ finite and flat over S, an S-morphism of group
schemes ρ′ : π1(X,x) → G′ and a closed immersion β : G′ → G such that
β ◦ ρ′ = ρ and ρ′ is a schematically dominant morphism.

Proof. The existence of morphisms ρ′ : π1(X,x)→ G′ (schematically dom-
inant) and β : G′ → G (closed immersion) such that β ◦ ρ′ = ρ

π1(X,x)
ρ //

ρ′ $$H
HHHHHHHH G

G′
/�

β

??��������

is ensured by lemma 2.2. The pointed torsor associated to ρ′ is then domi-
nated. �

According to lemma 2.4 we can say that any triple (Y,G, y) is preceded
by a dominated triple or equivalently any pointed torsor over X is preceded
by a dominated pointed torsor.

Lemma 2.5. Let (Gi, γji )i∈I be an inverse system of S-group schemes,
G = lim←−i∈IGi and ρi : G→ Gi the canonical morphism. Let J be a filtered
subset of I and G′ = lim←−j∈JGj. We assume that for any j ∈ J the canonical
morphism

ρ′j : G′ → Gj

is schematically dominant. Then the natural morphism ϕ : G → G′ is
schematically dominant if and only if ρj : G → Gj is schematically domi-
nant for any j ∈ J .

Proof. Again we can assume that S is affine, so we set S := Spec(B),
Gi := Spec(Ai), G := Spec(A) = Spec(lim−→i∈IAi) and G′ := Spec(C) =
Spec(lim−→j∈JAj). For any j ∈ J we have the following commutative diagram:

C
ψ // A

Aj
?�

γj

OO

αj

>>~~~~~~~

where ψ, αj and γj correspond respectively to ϕ, ρj and ρ′j . If ψ is injective
then αj is injective too for all j ∈ J (obvious). Conversely, suppose αj



Comparison between fundamental group schemes 543

injective for all j ∈ J and let x ∈ C be such that ψ(x) = 0. Once again we
make use of the canonical factorisation:

γj : Aj ↪→
∐
u∈J

Au �

∐
u∈J Au

∼
' C.

So let z ∈
∐
u∈J Au be a representing element of x ∈ C, it follows that

there exists v ∈ J such that z ∈ Av and γv(z) = x, in particular we have
0 = ψ(x) = ψ ◦γv(z) = αv(z), but since we have assumed αv to be injective
we have z = 0, then x = γv(z) = 0. �

Lemma 2.6. Let (Gi, γji )i∈I be an inverse system of S-group schemes,
G = lim←−i∈IGi and ρi : G→ Gi the canonical morphism. Let J be a filtered
subset of I and G′ = lim←−j∈JGj. If for every i ∈ I there exists a morphism
γi : G′ → Gi such that the following diagram

G
ϕ //

ρi
��

G′

γi~~}}
}}

}}
}}

Gi

commutes, then ϕ is a closed immersion. If moreover every ρi is schemat-
ically dominant then ϕ is an isomorphism.

Proof. Similar to the previous one. �

2.3. A comparison theorem. From now on S will denote a connected
Dedekind scheme. We have recalled that the fundamental group scheme is
the projective limit of S-finite and flat group schemes as follows

π1(X,x) := lim←−i∈IGi;

we will denote by
ρi : π1(X,x)→ Gi

the corresponding canonical morphisms.

Proposition 2.1. Let J ⊆ I be the set of all i ∈ I such that ρi : π1(X,x)→
Gi is a schematically dominant morphism. The group scheme π1(X,x) is
isomorphic to the projective limit of all the finite and flat S-group schemes
Gj, j ∈ J , i.e. π1(X,x) ' lim←−j∈JGj.

Proof. J is filtered, indeed the construction made in [6], Proposition 2.1 still
holds: so given two dominated pointed torsors (Y1, G1, y1) and (Y2, G2, y2)
and morphisms over a third dominated pointed torsor (Y,G, y) over X we
can construct a fourth pointed torsor (P,H, p) with morphisms over the
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first two making the diagram

(P,H, p)

��

// (Y1, G1, y1)

��
(Y2, G2, y2) // (Y,G, y)

commute. If (P,H, p) is not a dominated torsor it is sufficient to use lemma
2.4 in order to find a dominated pointed torsor (P ′,H ′, p′) making a sim-
ilar diagram commute. Since J ⊂ I we have a canonical morphism v :
π1(X,x) → lim←−j∈JGj which is an isomorphism: indeed it is schematically
dominant by lemma 2.5, since by definition for all j ∈ J

π1(X,x) v // lim←−j∈JGj // Gj

is schematically dominant, and a closed immersion by lemma 2.6 since
for all i ∈ I there exists j ∈ J such that the canonical morphism ρi :
π1(X,x) → Gi factors through Gj hence we have a natural morphism
vi : lim←−j∈JGj → Gj → Gi such that vi ◦ v = ρi. �

Now, let η be the generic point of S, we construct Xη := X ×S η that
possesses a point xη ∈ Xη(η) (fiber of x ∈ X(S)). Over η we can construct
the fundamental group scheme

π1(Xη, xη) := lim←−m∈MFm,

where M is the set of isomorphism classes of objects of P(Xη), but also the
group scheme

π1(X,x)η := π1(X,x)×S η.
Now we compare the fundamental group scheme π1(Xη, xη) and the

generic fiber π1(X,x)η of the fundamental group scheme of X.
Direct limits of algebras commute with base change (cf. [11], Appendix

A, Theorem A.1), so the same is true for inverse limits of affine group
schemes. Hence one gets

π1(X,x)η ' lim←−j∈JGj,η
where Gj,η := Gj ×S η and ρj,η : π1(X,x)η → Gj,η denotes the fiber of ρj .
Since η → S is flat and ρj is schematically dominant then ρj,η is schemati-
cally dominant too. We consider the set J ′ := J/ ∼ where for j1, j2 ∈ J we
set j1 ∼ j2 if and only if ρj1,η ' ρj2,η; thus

(†) π1(X,x)η ' lim←−j∈J ′Gj,η.

Lemma 2.7. J ′ is filtered and there is an injective map J ′ ↪→M .
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Proof. We are given two pointed torsors (Y1,η, Gj1,η, y1,η) and
(Y2,η, Gj1,η, y2,η) and morphisms over a third pointed torsor (Yη, Gj,η, yη)
over Xη (for j, j1, j2 ∈ J ′) then since J ⊂ I is filtered there exists a triple
(Y ′, G′, y′) over X dominating (Y1, G1, y1) and (Y2, G2, y2) whose generic
fiber makes the obvious diagram commute. �

As a consequence there exists a morphism

ϕ : π1(Xη, xη) −→ π1(X,x)η.
We can now state the principal result of this section:

Theorem 2.2. The morphism ϕ : π1(Xη, xη) −→ π1(X,x)η is faithfully
flat.

As a first application of this result we give a non trivial example where
the fundamental group scheme is trivial. Thus in particular π1(P1

S , x) is
trivial for S a connected Dedekind scheme and x ∈ P1

S(S):

Example. Let S be a connected Dedekind scheme, X an integral scheme,
faithfully flat over S and x : S → X a section. If the generic fiber of X is
a complete normal rational variety, then π1(X,x) is trivial

Proof. Let η be the generic point of S. That π1(Xη, xη) is trivial follows by
[13], Ch II, Proposition 9 and its corollary). The fundamental group scheme
π1(X,x) is flat over S and has trivial generic fiber then it coincides with
the scheme theoretic closure of {1}η in π1(X,x), which is then trivial. �

Proof of Theorem. 2.2. We prove that
ϕ : π1(Xη, xη) −→ π1(X,x)η

is a schematically dominant morphism. For any j ∈ J ′ we consider the
following commutative diagram:

π1(Xη, xη)
ϕ //

qj
&&NNNNNNNNNNN

π1(X,x)η
ρj,η

��
Gj,η

According to lemma 2.5 since ρj,η : π1(X,x)η → Gj,η is schematically dom-
inant for any j ∈ J ′ (which is filtered in M , cf. lemma 2.7), it is sufficient to
prove that for all j ∈ J ′ the morphism qj : π1(Xη, xη) → Gj,η is schemat-
ically dominant too. By lemma 2.2 we split qj : π1(Xη, xη) → Gj,η into a
schematically dominant morphism followed by a closed immersion:

qj : π1(Xη, xη)→ G ↪→ Gj,η.

where G is a finite K-group scheme.
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Let (Y ′, G, y′) be the dominated pointed torsor associated to
π1(Xη, xη) → G and let (Y,Gj,η, y) be the pointed torsor associated to
qj : π1(Xη, xη)→ Gj,η. The latter is isomorphic to the contracted product
(cf. lemma 2.1)

Y ' Y ′ ×G Gj,η
via the morphism f : G ↪→ Gj,η , and y is the image in Y of y′. We
immediately observe that the canonical morphism f ′ : Y ′ → Y is a closed
immersion. Indeed locally, for the fpqc topology, it is certainly true since
locally any torsor is trivial. We deduce that the result is also true globally
since being a closed immersion is a local property for the fpqc topology ([9],
Proposition 2.7.1.). By construction there exist a finite and flat S-group
scheme Gj and a dominated triple (P,Gj , p) over X such that (Y,Gj,η, y)
is its generic fiber. The following diagram describes the present situation:

(Y ′, G, y′)

��
(Y,Gj,η, y)

��

// (P,Gj , p)

��
Xη //

��

X

��
η // S

According to [9], proposition 2.8.5, there is a unique S-group scheme H,
closed subgroup scheme of Gj which is flat over S and such that H×Sη ' G:
it’s the scheme theoretic closure of G in Gj . Similarly we construct Q, the
only closed subscheme of P which is flat over S and such that Q×S η ' Y ′.
Again we construct the section q : S → Q as the scheme theoretic closure
of y′ in p. We have the following

Lemma 2.8. (Q,H, q) is a pointed torsor over S.

Proof. (this is lemma 2.2 of [6] whose proof will be sketched here for the
comfort of the reader) The scheme theoretic closure of closed subschemes
of the generic fibre is fonctorial and commutes with fiber products (cf. [9],
(2.8.3) and Corollaire 2.8.6) so in particular from diagram

G× Y ′

��

action // Y ′

��
Gj,η × Y action // Y
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we deduce the commutative diagram

H ×Q

��

action // Q

��
Gj × P action // P

hence an action H × Q → Q. The isomorphism G × Y ′ ' Y ′ ×Xη Y ′
implies the isomorphism G× Y ′ ' Y ′ ×Xη Y ′; the latter is the only closed
subscheme of P ×X P , flat over S and whose generic fiber is isomorphic
to Y ′ ×Xη Y ′. Since the same properties are satisfied by Q ×X Q then
Y ′ ×Xη Y ′ ' Q ×X Q and consequently H × Q ' Q ×X Q and Q is a
H-torsor over X. With similar remarks we get the desired pointed torsor
considering the section q : S → Q. �

Thus we have a commutative diagram of triples:

(Y ′, G, y′)

��

// (Q,H, q)

��
(Y ′, Gj,η, y′)

��

// (P,Gj , p)

��
Xη //

��

X

��
η // S

where the morphism H → Gj is by construction a closed immersion. But
(P,Gj , p) is a dominated pointed triple hence by definition the morphism
H → Gj is also schematically dominant then an isomorphism. So the same
is true for the morphismG→ Gj,η, which proves that qj : π1(Xη, xη)→ Gj,η
was already schematically dominant and this is enough to conclude. �

Proposition 3.2 will provide an example where the morphism
ϕ : π1(Xη, xη)→ π1(X,x)η

is actually an isomorphism.

3. Applications
3.1. Extension of torsors. Now we apply theorem 2.2 to the problem
of extending torsors or, more precisely, we explain how the kernel N of
the morphism ϕ : π1(Xη, xη) → π1(X,x)η measures the obstruction to
extending a torsor over Xη under the action of a finite group scheme to a
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torsor over X under the action of a finite and flat S-group scheme; we fix
some notations for this section:

Notation 3.1. From now on S will be a connected Dedekind scheme, η :=
Spec(K) its function field, X an integral scheme and j : X → S a faithfully
flat morphism. We fix a section x : S → X. We set N := ker(ϕ) where
ϕ : π1(Xη, xη) −→ π1(X,x)η is the canonical morphism already described.

We prove the following

Theorem 3.1. Let G be a finite group scheme over K, ρ : π1(Xη, xη) →
G a schematically dominant morphism of K-group schemes and (Y,G, y)
the associated dominated pointed torsor. Then there exists a pointed torsor
(Y ′, G′, y′) over X, with G′ a finite flat S-group scheme, whose generic fiber
is isomorphic to (Y,G, y) if and only if N < ker(ρ).

A consequence of theorem 3.1 (and lemma 2.6) is the following

Corollary 3.1. Any dominated triple over Xη can be extended to a (dom-
inated) triple over X if and only if ϕ : π1(Xη, xη) → π1(X,x)η is an iso-
morphism.

Proof of Theorem. 3.1. One direction is simple: assume in fact that there
exists a triple (Y ′, G′, y′) over X whose generic fiber is isomorphic to
(Y,G, y). This means that there exists a morphism ρ′ : π1(X,x) → G′

whose generic fiber ρ′η : π1(X,x)η → G′ ×S η ' G satisfies ρ′η ◦ ϕ = ρ, that
is the following diagram commutes:

π1(Xη, xη)
ϕ //

ρ
''NNNNNNNNNNNNN

π1(X,x)η
ρ′η
��

// π1(X,x)

ρ′

��
G // G′

The existence of ρ′η is equivalent (cf. [18], Ch. 15, Theorem 15.4) to the
condition N < ker(ρ). Now, suppose that the condition N < ker(ρ) holds,
then there exists a schematically dominant morphism γ : π1(X,x)η → G
such that γ ◦ ϕ = ρ, that is the following diagram commutes:

π1(Xη, xη)
ϕ //

ρ
''OOOOOOOOOOOO

π1(X,x)η
γ

��
G

We recall that π1(X,x)η ' lim←−j∈J ′Gj,η where ρj,η : π1(X,x)η → Gj,η is
schematically dominant for all j ∈ J ′ (cf. isomorphism (†)). Since to quo-
tient π1(X,x)η, which is often not of finite type, by N could be a problem
we first need the following
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Lemma 3.1. There exists j ∈ J ′ such that γ factors through Gj,η, i.e.
there exists a morphism γj : Gjη → G such that the following diagram

π1(X,x)η
ρjη //

γ

��

Gjη

γj
yyttttttttttt

G

commutes.

Proof. This follows directly from the finiteness of G. �

If G is any S-group scheme and H a closed subgroup scheme of G we
denote by G/H(fpqc) the sheaf associated, with respect to the fpqc topology,
to the functor

T 7→ G(T )/H(T )
from the category of schemes over S to the category of sets. If G/H(fpqc) is
represented by a S-scheme we denote it by G/H.

Proposition 3.1. Let G and H be two S-group schemes (here S need
not be a Dedekind scheme), H ↪→ G a closed immersion and assume that
G/H(fpqc) is represented by a scheme G/H, then:

(1) if H is a normal closed subgroup scheme of G then on G/H there
exists a unique structure of S-group scheme such that the canonical
morphism p : G→ G/H is a morphism of S-group schemes.

(2) Let T be any S-scheme and set GT := G×S T and HT := H ×S T .
Then GT /HT (fpqc) is represented by the T -scheme (G/H)×S T .

(3) the canonical morphism p : G → G/H is faithfully flat if and only
if H is flat over S.

Proof. Cf. [2], Proposition 9.2 (resp.) (iv), (v) and (xi). �

Now we recall a particular case of [4], Théorème 7.1 which fits to our
situation since finite implies projective (cf. [8] Corollaire 6.1.11):

Theorem 3.2. Let S be any connected scheme. Let G be a S-group scheme
of finite type and let H be a closed subgroup scheme of G, proper and flat
over S. If G is quasi projective over S then G/H(fpqc) is representable.

Now we come back to the proof of theorem 3.1. The morphism γj :
Gj,η → G from lemma 3.1 is schematically dominant since γ is. We set

N1 := ker(γj)
which is a closed subgroup scheme of N1. According to [9], Proposition
2.8.5, we construct the scheme theoretic closure of N1 in Gj , that is an
S-scheme N2 which is the only closed subgroup scheme of Gj flat over S
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whose fibre is isomorphic to Gj,η. Moreover, according to [1], remarque
1.2.5. d), N2 is normal in Gj . Let us denote by G′ the S-quotient scheme
Gj/N2. Moreover, according to proposition 3.1, ii) there is an isomorphism
G ' Gj,η/N1 ' G′×S η. Then we have the following commutative diagram:

N1 //
� _

��

N2� _

��
Gjη

γj

��

// Gj

γ′j
��

G //

��

G′

��
η // S

where we have denoted by γ′j the morphism Gj → G′; we compose it with
ρj : π1(X,x)→ Gj in order to obtain a morphism γ′j ◦ρj : π1(X,x)→ G′ to
which we associate the triple (Y ′, G′, y′) (cf. rem. 2.1) which is the desired
triple. This concludes the proof of theorem 3.1. �

Now we explain how to extend torsors if they are related to other torsors
that we know to be extensible. The proof of lemma 3.2 is similar to that of
theorem 3.1, so we only sketch it.

Lemma 3.2. Let (Y,G, y) ∈ P(X) and (Yη, Gη, yη) its generic fiber. Let
H ′ be a K-group, u : Gη → H ′ a faithfully flat morphism and (Z ′,H ′, z′)
the associated object of P(Xη). Then there exists a triple (Z,H, z) ∈ P(X)
whose generic fiber is isomorphic to (Z ′,H ′, z′).

Proof. Set N := ker(u), then construct the scheme theoretic closure N of
N in G and consider the quotient H := G/N in order to have the following
diagram:

N //
� _

��

N� _

��
Gη

u
����

// G

����
H ′ //

��

H

��
η // S

�
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Roughly speaking this means that if we are able to extend a triple then
we can extend any triple which is a “quotient” of the previous one (i.e. the
morphism between their group schemes is faithfully flat). In the following
lemma we solve a similar problem: suppose we are able to extend a triple,
then we want to know whether we can extend a triple that “contains” it.
More precisely:

Lemma 3.3. Let (Y,G, y) ∈ P(X) and (Yη, Gη, yη) its generic fiber. Let
H ′ be a K-group scheme such that u : Gη ↪→ H ′ is a closed immersion and
let (Z ′,H ′, z′) be the associated triple of P(Xη). Then there exists a triple
(Z,H, z) ∈ P(X) whose generic fiber is isomorphic to (Z ′,H ′, z′) if and
only if there exists a group scheme L finite and flat over S whose generic
fiber is isomorphic to H ′.

Proof. If the triple (Z,H, z) ∈ P(X) exists just set L := H. The other
direction is the non abelian version of [15], Proposition 2.3.1 (a): we are in
the following situation

Gη� _
u

��

// G

H ′ //

��

L

��
η // S

and we want to construct a S-finite and flat group scheme H and a mor-
phism v : G→ H in order to obtain a cartesian diagram:

Gη� _
u

��

// G

v

���
�
�

H ′ //

��

H

��
η // S.

We can assume S to be affine so set S := Spec(RS), G := Spec(A), L :=
Spec(B), Gη := Spec(Aη) and H ′ := Spec(Bη) and consider the induced
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diagram
Aη Aoo

Bη

û

OOOO

Boo

K

OO

RS

OO

oo

where η := Spec(K). Now let A∨ and B∨ be the duals respectively of
the commutative (but not necessarily cocommutative) Hopf RS-algebras A
and B: they are cocommutative (but not necessarily commutative and not
necessarily Hopf) RS-bialgebras; the antipodal morphisms SA : A → A,
SB : B → B, which are morphisms of RS-algebras, are transformed into
RS-coalgebra morphisms S∨A : A∨ → A∨, S∨B : B∨ → B∨. Similarly let
A∨η and B∨η be the cocommutative K-bialgebras, duals respectively of Aη
and Bη, provided with the K-coalgebra morphisms S∨Aη : A∨η → A∨η , S∨Bη :
B∨η → B∨η , then consider the diagram

K

��

RS

��

oo

A∨η

û∨

��

A∨oo

B∨η B∨.oo

Now factor û∨ = ϕ ◦ ρη : A∨η → B∨η where ρη : A∨η → A∨η ⊗ B∨η is the
generic fiber of ρ : A∨ → A∨ ⊗ B∨, x 7→ x ⊗ 1 and ϕ : A∨η ⊗ B∨η � B∨η ,
x⊗ y 7→ û∨(x) · y and consider the diagram

K

��

RS

��

oo

A∨η

ρη

��

A∨

ρ

��

oo

A∨η ⊗B∨η
ϕ
����

A∨ ⊗B∨oo

B∨η .
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According to [9] (Proposition 2.8.1; (2.8.3); Proposition 2.8.4) we complete
the previous diagram by constructing ϕ′ : A∨⊗B∨ � C, where C is the only
RS-flat module quotient of A∨⊗B∨ whose generic fiber is isomorphic to B∨η
(it is moreover a cocommutative bialgebra provided with a RS-coalgebra
morphism SC : C → C). Its dual C∨ is a commutative bialgebra, flat
over RS whose generic fiber is isomorphic to Bη, and the dual morphism
S∨C : C∨ → C∨ gives C∨ a Hopf algebra structure; set H := Spec(C∨),
consider ϕ′∨ : C∨ → A⊗B the dual morphism of ϕ′ then the composition
ρ∨ ◦ ϕ′∨ : C∨ → A induces a morphism of S-group schemes ψ : G → H
which allows us to construct the desired triple (Z,H, z) as the contracted
product of (Y,G, y) via ψ. �

Remark. The assumption that u : Gη → H ′ is a closed immersion is never
used, but it is the only case of interest in our situation according to lemma
2.2.

Remark. When char(K) = 0 a group scheme H as in the statement of
Lemma 3.3 always exists.

3.2. The case of an abelian scheme. Let S be any connected Dedekind
scheme and assume that X → S is an abelian scheme (i.e. X is a smooth
and proper S-group scheme with geometric connected fibers), let 0X be the
unity for the group law of X and for any natural number m let mX : X → X
denote the multiplication by m. One observes that (X,mX, 0X) is a triple
over X where mX := ker(mX). In [14] Nori proves that for any point s ∈ S
and for any triple (Y ′, G′, y′) ∈ P(Xs) there exists a natural number n and

(1) a morphism of group schemes u : n(Xs)→ G′,
(2) a morphism Xs → Y ′ commuting with the actions of n(Xs) and G′

hence in particular, π1(Xs, 0Xs) ' lim←−n(n(Xs)). It is clear that the triple
(Xs, n(Xs), 0Xs) is isomorphic to the fiber in s of (X, nX, 0X) then we have
the following

Proposition 3.2. Let X be an abelian scheme over a connected Dedekind
scheme S, then for every s ∈ S the canonical morphism

ϕ : π1(Xs, xs)→ π1(X,x)s
is an isomorphism. Moreover π1(X, 0X) ' lim←−n(nX).

Proof. Every triple (Ys, Gs, ys) over Xs fiber of a triple (Y,G, y) over X
is preceded by a triple (Xs, n(Xs), 0Xs) for a certain n then every arrow
π1(X, 0X)s → Gs factors through n(Xs) hence the first assertion. Thus for
any s ∈ S the fiber ψs : π1(X, 0X)s → lim←−n(n(Xs)) is an isomorphism. As
usual let η be the generic point of S and consider the canonical morphism
ψ : π1(X, 0X)→ lim←−n(nX). Assume for a moment that it is faithfully flat,
then it is sufficient to consider its kernel which is flat and then trivial since
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it coincides with the scheme theoretic closure of {1}η, the kernel of ψη, in
π1(X, 0X). In order to prove it is faithfully flat then one has to show that for
any n ∈ N the canonical morphism π1(X, 0X)→ nX is faithfully flat too. To
show this, considering the usual projective limit π1(X, 0X) = lim←−i∈IGi, it
is sufficient to prove that whenever there is a morphism Gi → nX then it is
faithfully flat. But this is certainly true on the fibers, since (Xs, n(Xs), 0Xs)
is a dominated triple for any s ∈ S then (Gi)s → n(Xs) is faithfully flat.
Thus Gi → nX is faithfully flat by means of [10] Théorème 11.3.10. Hence
ψ is an isomorphism according to [3], I, §2, n◦ 3, Corollaire 2.9. �

Remark. That π1(X, 0X) is isomorphic to lim←−n(nX) can be proven directly
without considering fibers, following what Nori did in [14]. We cannot use
[10] Théorème 11.3.10 for ψ because in general the fundamental group
scheme is not of finite type.

Let η be the generic point of S, if (Y ′, G′, y′) is a dominated triple over X
then there exists n ≥ 1 such that u : n(Xs)→ G′ is faithfully flat and then,
according to lemma 3.2, there exists a triple (Y,G, y) extending (Y ′, G′, y′).
Then we have the following

Proposition 3.3. When X is an abelian scheme over a connected Dedekind
scheme S, then every dominated triple (Y ′, G′, y′) ∈ P(Xη) can be ex-
tended to a triple (Y,G, y) ∈ P(X); moreover every non dominated triple
(Y ′, G′, y′) can be extended to a triple (Y,G, y) if and only if there exists a
finite and flat S-group scheme H whose generic fiber is isomorphic to G′.

Proof. That every dominated triple can be extended follows from previous
discussion. Then apply lemma 3.3 to obtain the statement on non domi-
nated triples. �
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