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Problems and results on the distribution of

algebraic points on algebraic varieties

par ENrRIcCO BOMBIERI

RESUME. Cet article est un exposé de plusieurs résultats sur la
distribution des points algébriques sur les variétés algébriques.

ABSTRACT. This is a survey paper on the distribution of algebraic
points on algebraic varieties.

1. Introduction

In this expository talk I will restrict my attention to questions about
classical heights, in the simplest arithmetic and geometric cases. Finiteness
theorems, notwithstanding their appeal and importance, will not be dis-
cussed here. Also, the reader will find no analysis of the counterpart of the
topics discussed here in the setting of abelian or semi-abelian varieties, nor
there will be a report of very recent work by several authors (some of it still
unpublished) about the structure of multiplicative relations in subvarieties
of linear tori, or their counterpart for subvarieties of semi-abelian varieties
or Shimura varieties. Each of these topics would require at least one sep-
arate lecture to give it justice. The bibliography will be limited to papers
directly relevant to what will be treated here and has no pretense of being
complete.

The theory of heights has been a very powerful tool in studying the
distribution of rational and algebraic points on algebraic varieties. The main
questions relate to finiteness and density of solutions, sometimes restricted
by integrality conditions or by asking that they belong to finitely generated
groups, typically a group of S-units or a subgroup of a group variety.

The simplest notion of height is the Weil absolute logarithmic height in
the standard model of projective space, defined as follows.

Let K be a number field. The height of a point x = (z¢ : 21 : -+ : x,) in
P™ (homogeneous coordinates) with z; € K, i =0,...,n, is given by
(1.1) h(x) = Z max log |4y

vEMK
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where M is the set of all places of K and |- |, is an associated absolute
value normalized so that for z € Q\ {0} one has

(1.2) 2l = |- Crl/ 1501,

Here p € My is the place of Q with v|p and || - ||, denotes the usual p-adic
or archimedean absolute value of Q.

This height is well defined, i.e. it does not depend on the representative x.
The height of an algebraic number x is the height of the point (1 : z) € P!,
With this normalization the height h(x) is invariant by base change (hence
the name absolute height) and can be used in an algebraic closure of K.

The main properties of this height are:

a)  Product formula: For z € K \ {0} it holds
(1.3) > loglz|, = 0.

veMx
b)  Multiplicativity: For x € P, y € P", it holds
(1.4) h(x ®@y) = h(x) + h(y).
In particular, h(z™) = |m|h(z). Also, for z,y € K \ {0} it holds
(1.5) h(zy) < h(z) + h(y).

c¢) Foruxy,...,z, € K—{0} it holds
(1.6) h(z1+ -+ xn) < h(x1)+ -+ h(zy) + logn.

If My give(@) is the maximum of the absolute value of the coefficients of a
minimal equation over Z of a non-zero algebraic number «, then one has

(1.7) deg(a)h(a) = lim e log Myaive (™) .

m—oo m,

Also of importance is the Mahler measure

2 .
(1.8) M(P) = exp (;ﬂ /0 log | P(c?)| d9>
of a polynomial P(x) € Clz]. By its very definition,
(1.9) M(PQ) = M(P)M(Q).

By Jensen’s formula, if f is the minimal polynomial over Z of an algebraic
number «, it holds

(1.10) deg(a)h(a) = log M(f).

It is well known that the Mahler measure of a polynomial with integer
coefficients is comparable to the naive measure M, i, defined above and
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in fact if P has degree d then

[d/2
We note here Mahler’s discriminant inequality. If f is the minimal polyno-
mial over Z of an algebraic number « of degree d and Dy is the discriminant
of f, it holds

-1
(1.11) ( 4 J) Maive(P) < M(f) < Vd+ 1 Mygive(P).

1

(1.12) p log|Dys| <logd+ (2d — 2) h(a).
It is also convenient to consider the exponential of the logarithmic height
(1.13) H(z) = @
and we refer to this as “Height” with the capital H, to distinguish it from
the logarithmic height h (a suggestion of Paula Cohen Tretkoff).

Another absolute height is the Arakelov height induced by the Fubini-
Study metric on P". This is done by changing in the definition of the height

the terms with v an archimedean valuation, replacing max by an L?-norm,
namely

(K, : R]
1.14 ——— log||x
(1.14) T el
where || - || is the euclidean length of the vector x.

Other heights can be defined in a similar way, replacing the archimedean
norms by more general ones. The fundamental property of all these heights
is that bounded sets in number fields are finite.

2. Varieties with many points

It is an interesting and difficult problem to determine asymptotically
the number N(V(K), X; H) of points x € V(K) rational over the field K,
with Height H(-) bounded by X.

The simplest case V = P*, K = Q, counting the number of rational
points with Weil Height at most X on P"/Q (n > 1) is classical and
goes back to Dedekind and Weber; the asymptotic is N(P"(Q), X;H) ~
X" /¢(n 4 1). The case of a general number field K was treated by
Schanuel [23] in his thesis, who proved

(2.1) N(P"(K), X; H) = ¢u(K) X" 4 O( XD~ og X))
where

hi Rk (27'(277)8)"“ ot
2.2 cn(K) = n+1)7°
22 SRR AN R
with hg, Rg, wg, and Dg the class number, regulator, number of roots
of unity, and absolute discriminant of K, and with r and s the number of
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real and complex places of K. The term log X can be omitted if either m
or n are greater than 1.

W.M. Schmidt was able to treat the case when V' is a Grassmannian [25].

Franke, Manin, and Tschinkel [15] treated the case of V' a flag manifold,
by considering the zeta function determined by the height of rational points
and applying a tauberian theorem, thereby getting an asymptotic formula.
J.L. Thunder [31] obtained asymptotics for flag varieties and quite general
heights, with explicit error terms (valid for large height).

The Hardy and Littlewood circle method can be used with success when
V' is defined by equations of additive type, such as Fermat type hypersur-
faces

n
(2.3) Z a;xd = 0.
i=0

If the coefficients a; are non-zero rational integers, it turns out that the
number of solutions in integers |z;| < X is eX"H1=4 4 o(X"*+1=4) with ¢
a constant depending on the vector a of coefficients of (2.3), provided n
is sufficiently large as a function of d. The constant c itself is the infinite
product, over all primes p (including p = 00), of the p-adic volumes V), of
V/Q, with respect to the measure induced by the standard measure on the
ambient affine space A”*!. Note that Vp = 0 occurs if there is failure of the
local p-adic solubility of the equation (2.3). The best known result today
for large d is due to K.B. Ford [14], obtaining the expected asymptotic if
n > d*(logd + loglog d) + O(d?).

Notwithstanding the many results obtained by the circle method, some
of them quite impressive, its weakness stems from the fact that its success
usually depends on the additivity of the defining equations, because only
in this case the underlying harmonic analysis is done in the much easier
dimension 1. For general non-singular hypersurfaces of degree d in A"+!,
the results obtained by the circle method require n to be very large, even
if the final result has the same form as described before. At any rate, one
should not expect a Hardy and Littlewood asymptotic formula to hold if
n < d. Even if n > d + 1, such a formula need not hold in general.

The following example is due to Hooley [17]. Consider the equation

(2.4) 3+t +ad =23+ 23 + a2

to be solved in integers |z;] < X, thus d = 3 and n = 5. In this case,
we have the obvious solutions where zg,x1,x2 are given arbitrary values
and x3, x4, x5 are a permutation of xg, 1, x2. The number of such solutions
bounded by X is easily seen to be asymptotic to a X3 +O(X?) for a certain
constant a > 0. Geometrically, the associated projective variety, of dimen-
sion 4, contains several projective planes defined over QQ, necessarily with
many rational points. On the other hand, the Fourier analysis of the circle
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method is insensitive to what happens on subsets of positive codimension
of a variety, so the expected counting of solutions cX? + o(X?) does not
take into account the anomalous density of rational points on these planes.
Hooley [17] has given convincing heuristic evidence that, in the example
above, the correct counting of solutions is (a + ¢) X3 + o(X?).

Thus the best one could hope for is that the number N(V(K), X; H) of
rational points on a projective variety V' should be a formula

(25)  N(V(K),X;H)=N(V°K),X;H)+ N(W(K),X; H)

where V' is a Zariski open subset of V and W is the closed complement of
V', and where the number of points N(V°(K), X; H) is determined aymp-
totically by the Hardy and Littlewood prediction using the circle method.
Even in this form, other conditions will be needed, since the product [V,
of local volumes need not be absolutely convergent. Also, rational points on
V may concentrate on a countable union subvarieties of lower dimension,
with the union of these varieties being Zariski dense on V'; for example,
a cone over an elliptic curve C'/K and vertex defined over K has all its
rational points over K lying on the countably many lines determined by
the vertex and a rational point on C. Thus it is important to consider not
just projective varieties V', but more generally constructible subsets U of
V. Then N(U(K), X; H) can be defined as before.

Changing the projective embedding of a projective variety V will change
the height function and therefore the counting function. In some cases, it is
possible to define canonical polarizations of a variety. An interesting class
of varieties for which this occurs is the class of Fano varieties, defined by
the property that the anticanonical bundle O(— Ky ) is ample. Batyrev and
Manin [3] noticed that Fano varieties tend to have a large number of rational
points over a number field K and formulated three main conjectures about
their density. Since Fano varieties have a canonical polarization, it is natural
to consider the problem of counting points relative to a height Ho_x,(*)
determined by a choice of a metric on O(—Ky ). A naive elementary way
of defining such a height is to consider a very ample multiple O(—mkK),
a choice of a basis s of I'(V,O(—mKy)) yielding an embedding of V' as
a projective variety in a projective space PV, and a height hs(-) on V
induced by a height equivalent to the standard height in PY. Then the
heights m~'hg(+) are all equivalent and can be taken as a height relative to
the anticanonical bundle O(—K). (Note however that a definition obtained
directly from an adelic metric on O (—Ky) is both more general and more
intrinsic.)

The basic invariant is

. log N(U(K), X; H)

(2.6) BUK); H) = limsup =m0 %
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A non-empty subvariety W of V is called a strong accumulator if for every
non-empty open subset U’ of W defined over K there is a non-empty open
subset U of V, also defined over K, such that

(2.7) BU(K); H) > BU(K); H).

Thus if V' admits a strong accumulator over K the majority of points of
V(K) must lie in a closed proper subset of V.
If we have only the weaker statement that

- N(U'(K),X; H)
(2.8) h)Iglj;lop N(U(K), X: H)

>0 and N(U(K),X;H)— oo

then W is called a weak accumulator.

The following conjectural example is characteristic of some of the prob-
lems which occur in presence of accumulators, already in the case of sur-
faces. The construction is classical (I learned it from Aldo Andreotti in
1964 but certainly it is much older). Consider a K3 surface V' defined over
Q such that the even quadratic form given by the self-intersection on the
Néron-Severi group represents 2. Then every divisor D with D? = 2 gives
rise to a linear system |D| of curves of genus 2 without base points, of
dimension 2. Let x be a general point on V. The linear system |D — z|
of such curves passing through x has dimension 1 and any two irreducible
curves Dy, Ds, in this linear system intersect in two points x, y, where y is
independent of the choice of the curves (otherwise, fixing D and varying
D5 we would obtain a dominant map P! — D, which is impossible because
D7 has genus 2). Therefore, every divisor D (or —D) of self-intersection 2
on a K3 surface V determines an involution. The automorphism group of
V' generated by such involutions is infinite.

Now any K3 surface contains a rational curve C (see the reference in [3]).
Then the transforms of C' by the automorphism group give rise to countably
many rational curves on V', of unbounded degree. By going to a suitable
finite extension L of the base field K and to an infinite subgroup of the
automorphism group, we may also ensure that such a countable set {C;};cn
can be achieved over L. Each rational curve obtained in this way will have
B(Ci(L); H) > 0, but B(Cs(L); H) — 0 as the degree of C; increases (this
follows from the easy fact that the number of rational curves on V of fixed
degree is bounded). It is expected that this construction will give a sequence
of open subsets U; of V such that 3(Us(L); H) — 0 and therefore V will
admit a countable infinite sequence of strong accumulators.

There is an important geometric invariant defined by Batyrev and Manin
which plays a big role in the study of the growth of N(U(K), X; H). Let
N, lf (V) be the closed cone generated by all line bundles O(D) determined

e
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by effective divisors D on V. Then define for a line bundle L on V'
(2.9) a(L) =inf{y €R : yL+ O(Ky) € Nj;¢(V)}

if it exists.

The first conjecture of Batyrev and Manin (stated here in a slightly
weaker form for the invariant 3 rather than their invariant ) states that
for L ample
(2.10) Jnf G(U(K); Hy) < max(a(L),0)

C
where U ranges over the non-empty open subsets of V. In all cases where
one has been able to compute the function 3, we have that if V C PV is a
non-singular complete intersection of type (di,...,dy) then

k
(2.11) inf B(U(K); Ho(y)) < max(N + 1 — > di,0) = a(O(1))
i=1
where the inf is taken over all non-empty open subsets of V', with equality
if K D K for a suitable number field K. This is compatible with the circle
method philosophy and with the well-known Lang conjecture on rational
points on varieties of general type.
The situation for asymptotics is more complicated. Franke, Manin, and
Tschinkel formulated the interesting conjecture that for a Fano variety (i.e.
with ample anticanonical bundle) a formula

(2.12) N(V(K),X; Ho(—,)) ~ CN (log N)"!

holds for some constant C and C' > 0 if K D Ky with Kj a sufficiently large
number field. In many cases where one could prove an asymptotic formula,
it turned out that b = rankN.S(V/K), the Néron—Severi group of V/K.
We refer to (2.12) with b = rankNS(V/K) as the Manin conjecture.
Batyrev and Tschinkel later exhibited several examples for which the
above conjecture does not hold. Here is the simplest, see also Peyre [20].
Consider the equation

3
(2.13) > aiyl =0
1=0

This defines a non-singular hypersurface V in P2 x P3. The canonical bundle
of Vis O(Ky) = O(—3,—1). The Néron-Severi group has rank 2 and no
torsion and the conjecture predicts

(2.14) N(U(K),X;Ho(—ky)) ~ CN log N.

Since O(Ky) = O(—3,—1), the height associated to the anticanonical bun-
dle is simply

(2.15) Ho(-xy)(x,y) = H(x)* H(y)
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where in the right-hand side we have the Weil height in projective space. For
fixed x with zox1xox3 # 0, the subvariety Vi of V' defined by inyf =0
is a non-singular cubic surface. If all z; are cubes and K contains the third
roots of unity, then the Néron—Severi group of V,,/K has rank 7. Again by
the conjecture, we would have

(2.16) N(Ux(K),X; Ho(—k,,)) ~ CN (log N)°

for any open subset of V.

On the other hand, since O(—Ky;, ) = O(1) the anticanonical height on
the Fano cubic surface is proportional to the induced Weil height. Since the
points x? with x € K are dense in P3, this implies that for any open set
U C V it holds

(2.17) N(U(K),X;Ho(—rc)) > N (log N)°

in contradiction with (2.14).

The failure in this example is due to the presence of infinitely many weak
accumulators, defined over K, in the variety V.

The constant in the Manin conjecture should be compatible with what is
expected from the circle method (i.e. the Tamagawa number coincides with
the Hardy-Littlewood singular series) and E. Peyre [21] has made a deep
analysis of the situation. The conjecture has been proved in many cases,
such as classes of toric varieties and many Del Pezzo surfaces. We refer to
[21, 11, 22, 20] for an overview of the ample literature on the subject.

3. A special case: The cubic threefold

A very interesting variety is a non-singular cubic threefold V in P*.
Its canonical bundle is the restriction of O(—2), hence V is a Fano three-
fold with very ample anticanonical bundle. Manin’s conjecture predicts an
asymptotic

(3.1) N(V(K),X;H) ~ c(V,K)X?

where H is induced by the standard height on P* and d = [K : Q) is the
degree of the extension K/Q.

The solution of the problem of estimating N (V (K), X; H) with V a cubic
threefold or fourfold is of particular importance in the study of cubic Weyl
sums, namely

N
(3.2) S(a) = Z e?miaf(n)
n=1

where f(x) is a monic cubic polynomial with real coefficients.

The simplest case f(n) = n3 occurs in the study of Waring’s problem
for cubes and estimates for the moments of the associated Weyl sum are of
importance for Waring’s problem of decomposing an integer into a sum of
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cubes of positive integers. For the sixth moment, there is the conjectural
asymptotic estimate

1
(3.3) /0 |S(a)|® dex ~ eN3

for some positive constant ¢, which would follow from the Manin conjecture
for the cubic fourfold (2.4). (The integral is the number of integer solutions
in the positive octant 0 < z; < N.)

So far, no improvement in the exponent over L.K.Hua’s estimate of 1938

1
(3.4) / 15(c)[® dar < N3+3¢
0

has been obtained. Hua’s exponent is the critical one, any lowering of it
would have interesting consequences.

According to the Manin conjecture, a non-singular cubic threefold V/K
should satisfy an asymptotic relation

(3.5) N(V(K),X;H) ~ C(V,K)X?*

where d = [K : Q]. The cubic threefold should not have accumulators but
it may very well contain lines contributing an amount of order X? to the
counting of points. A more precise analysis is as follows.

If V/C is a non-sigular cubic threefold, there are exactly 6 lines through
a generic point P of V (i.e. for P in a dense Zariski open subset). If V' is
defined over a number field K, and P € V(K), some of these lines may
contain another point @ rational over K, giving rise to a subspace P!/K
contained in V. By Schanuel’s theorem, such a projective space contains
~ ¢X?4 points rational over K and Height at most X, for some positive
constant c. Therefore, the contribution to N(V(K), X; H) due to rational
lines is at least of the order predicted by the Manin conjecture. If V' contains
infinitely many lines defined over K, which certainly occurs in some cases,
it is a non-trivial problem to show that the overall contribution due to such
lines is not too large.

The lines of V' are naturally parametrized by a projective surface ¥ /K in
the Grassmannian G(2,5) of lines in projective space P*. The surface ¥ is
absolutely irreducible, with very ample canonical bundle yielding back the
embedding of ¥ in the Grassmannian, via a corresponding canonical embed-
ding in P? D G(2,5). The standard embedding of G(2,5) into PY given by
the Grassmann coordinates defines, by restriction of the standard Arakelov
Height in P?, an Arakelov Height on G(2,5) and, again by restriction, an
Arakelov Height on X.

Let L(V/K) = lines(V)/K denote the Zariski closure in V' of the subset
of rational lines in V defined over K. The interest of this set is twofold.
On the one hand, it gives a sizable contribution to the total counting of
rational points of V/K. On the other hand, on the complement U of L(V/K)
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in V there is a well-defined composition law for rational points: Given
two rational points P and @ in U(K), the line through these points is
not contained in V' by the very definition of L(V/K), hence the residual
intersection R with the cubic is a well-defined rational point R, again in
U(K). The hope is that a clever use of this composition law may help in
studying the distribution, and the density, of points in U(K).

The following theorem was proved in [5], see Th.11.10.11 there and its
proof.

Theorem 3.1. The following statements hold:

a) For every number field K, the closed set L(V/K) is the union of a
finite set of lines and of not more than 30 cubic cones over elliptic
curves, defined over K.

b) Let Na,(L(V/K),X) be the number of rational points of L(V/K)
defined over K, of Arakelov Height at most X. Let d = [K : Q] be
the degree of the number field K. Then for every fized € > 0 and
X > 1 it holds

(3.6) N (L(V/K), X) = coy X2 + O(X24717¢)
where ¢y is Schanuel’s constant for a projective line (relative to the
standard Arakelov Height)

hx Rk 2d—1yd

wr((2) Dk

and vy is given by the convergent series

(3.8) > Ha(Q)

QeX(K)

(37) Cy) =

The idea of the proof is as follows. As shown in [9, 6], the surface ¥
(already studied by Fano) parametrizing the lines of V' is immersed in its
Albanese variety, which is an abelian variety of dimension 5. Rational lines
correspond to rational points on ¥. By Faltings’s Big Theorem [13], £(K)
is a finite union

(3.9) S(K) = (J{w: + Bi(K)}

of the rational points of translates x; + B; C X of finitely many abelian
subvarieties of the ambient abelian variety. Since ¥ is of general type it
contains only finitely many elliptic curves z; + E;. Thus the rational lines on
V/K are, apart a finite set, parametrized by the rational points z; + E;(K).
The contribution of each line to the counting of rational points is clearly
of order X? and if we have infinitely many rational lines, which is the case
if F;(K) has positive rank, it is no longer sufficient to count naively an
estimate based only on the main term of the asymptotic formula, the error
terms also must be controlled.
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It turns out that the totality of lines parametrized by z; + E; is a cone
with rational vertex and with directrix an elliptic curve isomorphic to F;.
The maximal number of such cones is 30, see H. Clemens and P.A. Griffiths
[9]. The height of the line itself is the height of the corresponding point in ¥,
hence the height of any other rational point on this line is, up to a constant
factor, at least the height of this point. Since the height of rational points on
an elliptic curve grows very fast, only O((log X)"/?) points may contribute
to the counting (here r is the rank of the Mordell-Weil group of the elliptic
curve). In order to conclude the proof, one needs an asymptotic bound for
the number of points of bounded height on a line in P*, with an explicit
error term valid in all ranges of X. An explicit estimate for the number of
points in linear subspaces of projective space is in Thunder’s paper [31],
but it cannot be applied directly because it is valid only for sufficiently
large X. However, a simple additional argument using geometry of number
suffices for filling the gap in a satisfactory manner (see Christensen and
Gubler [8]), yielding at the end the result we wanted.

The situation is better for the cubic complete intersection given by the
equations

2
xy + o} + a3 = 23 + 2 + 2

(3.10) xo+ 1+ 22 =23+ 24+ T5

which is a linear section of the cubic fourfold (2.4). This is associated to
the sixth moment of the Weyl sum > e2mi(an®+6n) taken with respect to «
and (. The variety V so defined is a cubic threefold with 10 double nodes
and with 15 planes.

In 1995 Vaughan and Wooley [32] considered the positive integer solu-
tions of the above system. In their notation, solutions in the union of the 15
planes form the diagonal set of solutions. They proved that the diagonal of
V/Q is a strong accumulator and that outside of the diagonal the number
of solutions has the precise order of magnitude

(3.11) N(U(Q),X;Hoay) < X*(log X)°.

This agrees with the Manin conjecture and the components of the diago-
nal are the only strong accumulators. Very recently, in a remarkable pa-
per, R. de la Bréteche [11] was able to prove the expected asymptotics for
N(V(Q),X; H). The proof, which starts from the approach propounded
by Vaughan and Wooley, requires a combination of deep techniques from
algebraic geometry and analytic number theory and is rather delicate.

Results of this type have important applications to additive number the-
ory and to the theory of trigonometric sums.
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4. The Northcott property

The first basic result about heights was proved by Northcott, who
showed that there are only finitely many algebraic numbers of bounded
degree and bounded height. This is immediate by looking at the minimal
polynomial over Z of a given algebraic number. In spite of its simplicity,
Northcott’s theorem is very useful.

We say that a set A of algebraic numbers has the Northcott property if
bounded subsets for the height function above are finite. Thus the set .A(m)
of all algebraic numbers of degree at most m has the Northcott property.

This raises the question of studying the distribution of points of degree m
over a number field K, lying on a variety V. We denote by N(m,V/K, X)
the number of such points of degree m over K. By Northcott’s theorem,
N(m,V/K,X) is a finite quantity. The determination of asymptotics for
N(m,V/K,X) is a difficult problem.

The case m = 2, V = P" K = Q, was solved by W.M. Schmidt [26],
obtaining

¢(2,n) X2+ L O (X 2+ if n>3,
(4.1) N(2,P"/Q,X) =< ¢(2,2)X%log X + O(X® VIog X) if n=2,
c(2,1)X% + O(X51og X) if n=1;

the constants c¢(2,n) are given explicitly, with ¢(2,1) = 8/¢(3) and ¢(2,2) =
(48+4472)/¢(3)2. This was followed by X. Gao [16] who obtained in his thesis
an asymptotic

(4.2) N(m,P"/Q, X) ~ ¢(m, n)Xm(nJrl)

for n > m > 3 and also showed that if n < m then the precise order of
magnitude of N(m,P", X) is X™(m+1),
D. Masser and J.D. Vaaler [19] have established for m > 2 an asymptotic

(4.3) N(m,P'/K, X) ~ ¢(m,1; K)X9mm+1)

with an explicit error term, corresponding to Schanuel’s if m = 1. The
intermediate cases 1 < n < m remain open.

Let K be a number field and denote by K@ the compositum of all
extension fields L/K of relative degree at most d. It was proved in [7] (see
also [5], Ch.4, for an exposition) that K (?) again has the Northcott property,

and, more generally, the maximal abelian subfield KCSZ) of K9 also has the
Northcott property. This provides examples of extensions of K of infinite
degree with the Northcott property.

It remains an open problem to determine whether the Northcott prop-
erty holds for K® if d > 3 and, more generally, to determine workable

conditions for its validity.
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5. Small points

In 1933 D.H. Lehmer raised the question whether there was a positive
lower bound ¢ > 1 for the Mahler measure of a non-zero algebraic num-
ber not a root of unity. This statement is nowadays known as the Lehmer
conjecture and it has proved to be a very stubborn problem to solve. In-
terestingly enough, the Lehmer conjecture admits many variants both for
classical and more sophisticated heights as well, such as the Néron—Tate
height on abelian varieties. It has become clear that the Lehmer conjec-
ture is the prototype of a group of basic questions on algebraic numbers
and algebraic varieties over number fields and, as such, it deserves a lot of
attention.

For the normalized Weil height, the Lehmer conjecture states that there
is an absolute constant ¢ > 0 such that

(5.1) deg(a) h(a) > ¢

unless « is zero or a root of unity. The simple example o = 21/¢ shows that
if the conjecture is true we must have ¢ < log 2. In the other direction, it is
easy to show that h(a) > (log2)/deg(c) unless a # 0 is a unit (i.e. both
a and 1/« are algebraic integers).

C.J. Smyth [27] has shown that the minimum of M («) when the minimal
polynomial of o # 0 is not reciprocal occurs for the cubic number with
minimal polynomial 23 — z — 1, hence the Mahler conjecture holds if « is
not reciprocal.

The best general lower bound is due to Dobrowolski [12]. It states that
there is an absolute constant ¢ > 0 such that for & # 0 an algebraic number
of degree d and not a root of unity it holds

(5.2) ha) > & (loglogd)g.
—d logd

The constant ¢ can be taken as ¢ = 1 + ¢ if we assume d sufficiently large
as function of ¢ > 0. R. Louboutin [18] improved the last statement to
c= % + ¢ for large d, by a variant of Dobrowolski method. It was remarked
by Vaaler and the author (unpublished) that Dobrowolski’s argument can
be refined to Louboutin’s result by using the full force of Siegel’s lemma
(i.e. the successive minima) in the proof.

By Mahler inequality, if av # 0 has height h(«) < k/d then the minimal
equation f of o has discriminant

(5.3) |Dy| < (e*"d)?

which is relatively small. Although it is known that there is an absolute
constant C' > 1 such that there are infinitely many number fields K with
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|Dg| < CHEQ (the proof of this is not easy), the discriminant of an irre-
ducible equation f can be much larger than the discriminant of the associ-
ated number field. To the best of my knowledge, the problem of determining

(5.4) C* := liminf log | Dy
deg(f)—o0 deg(f)
when f ranges over all irreducible polynomials with integer coefficients, and
in particular the question whether C* is a finite constant or not, remains
open.
There is a very interesting multidimensional version of the Dobrowolski
theorem, due to Amoroso and David [1], which has found several applica-
tions.

Theorem 5.1. There is a positive constant c(n) > 0 with the following
property. Let a, ..., ay be non-zero multiplicatively independents algebraic
numbers and let D = [Q(au, ..., o) : Q]. Then
(5.5 o) hiean) > U (10g(3D)) )
where k(n) = (n+1)(n + 1)!I" — 1.

Moreover, the degree D can be replaced by the smallest degree of a hy-
persurface in A", defined over Q, containing the point (au, ..., o).

The proof of this theorem is much harder than the proof of Dobrowolski’s
theorem and requires deep tools from arithmetic geometry. A consequence
of this theorem is the validity of Lehmer’s conjecture for a if Q(«) is a
Galois extension of Q.

A nice theorem of Amoroso and Dvornicich [2] states that if K is an
abelian extension of Q and o € K is not 0 or a root of unity then

log 5
(5.6) h(a) > 15
Thus the same lower bound holds for the infinite cyclotomic extension of
Q generated by all roots of unity. This gap phenomenon with the height is
quite remarkable and we refer to it as the Bogomolov property.

Another infinite extension of Q with the Bogomolov property is the field
of all totally real numbers. Here the sharp bound was found by A. Schinzel
[24], who proved that if « # 0 is totally real and not a root of unity then
(5.7) ha) > % log (1 +2\/5).

The minimum is attained if o = 4(1 £ v/5)/2.
C.J. Smyth [29] observed that if « is totally real then 8 — 37! = « yields
another totally real number of degree at most 2 deg(«). Starting with av = 1,
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he obtained a sequence a7, ao, ... of totally real numbers with small height,
accumulating at A = lim h(ay,) = 0.2732831 .. ..

The minimum h(«q) is isolated and so are the next three values at h(as),
h(as), and h(2cos(2m/7)). It is conjectured that A is the first limit point
of the set of values of h(a) for totally real a.

Let p be a prime number. We say that « is totally p-adic if the rational
prime p splits completely in the field Q(«). Then again the field L of totally
p-adic numbers has the Bogomolov property, see [7].

The Bogomolov property is intimately related to the general question of
the distribution of points of small height on varieties. The basic result here
is the uniform distribution with respect to Galois orbits. The statement for
the standard height is due to Yu.F. Bilu [4]. We need a definition.

For an algebraic number &, let d¢ be the uniform probability measure
supported by the Galois orbit of £, namely

1

GRS

(5.8) 5 =

where ¢, is the Dirac measure at a. Bilu’s theorem states

Theorem 5.2. Let {&}ien be an infinite sequence of distinct non-zero
algebraic numbers such that h(§;) — 0 as i — oo. Then the sequence of
probability measures {9; }ien converges in the weak*-topology to the uniform
probability measure pp = d/(2m) on the unit circle T = {€* : 0 < 0 < 21}
in C.

Bilu’s elegant proof exploits in a clever way Mahler’s discriminant in-
equality (1.12).

This theorem can be easily extended to the higher dimensional setting.
The corresponding result on an abelian variety is much harder to prove and
was obtained at the same time by L. Szpiro, E. Ullmo, S. Zhang [30] in a
well-known paper, proving a conjecture of Bogomolov that algebraic points
on a curve of genus at least 2 had the gap property with respect to the
Néron—Tate height. The corresponding result for the Weil height, also in
the case of algebraic varieties, had been proved earlier by S. Zhang [33] in
a landmark paper. Bilu’s theorem yields, as an easy consequence, Zhang’s
theorem that the Bogomolov property holds for the set of algebraic points
on the open set X* of a variety X C G obtained by removing all torus
cosets of positive dimension contained in X.

Good quantitative estimates for lower bounds in these problems are hard
to obtain and require sophisticated methods of arithmetic geometry. For
problems about Mahler’s measure, we refer to the excellent survey by C.
Smyth [28]. We also refer to P. Philippon and S. David [10] for the best
results obtained on the generalized Lehmer conjecture and related topics.
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