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Non-trivial III in the Jacobian of an infinite

family of curves of genus 2

par ANNA ARNTH-JENSEN et E. VicTor FLYNN

RESUME. Nous donnons une famille infinie de courbes de genre 2
dont la Jacobienne possede des éléments non triviaux du groupe
de Tate-Shafarevich pour une descente via 'isogénie de Richelot.
Nous le prouvons en effectuant une descente via l'isogénie de Ri-
chelot et une 2-descente compleéte sur la Jacobienne isogene. Nous
donnons également un modele explicite d'une famille associée de
surfaces qui violent le principe de Hasse.

ABSTRACT. We give an infinite family of curves of genus 2 whose
Jacobians have non-trivial members of the Tate-Shafarevich group
for descent via Richelot isogeny. We prove this by performing a de-
scent via Richelot isogeny and a complete 2-descent on the isoge-
nous Jacobian. We also give an explicit model of an associated
family of surfaces which violate the Hasse principle.

1. Introduction

Let C : y?> = F(x), where F(z) is a polynomial of degree 5 or 6, denote
a curve of genus 2 over Q and let J denote its Jacobian.

In connection with computing the rank of the finitely generated Mordell-
Weil group J(Q) it is relevant to determine the size of 7(Q)/27(Q). This is
bounded by the size of the Selmer group S? (7 /Q) which is effectively com-
putable. The size of the 2-part of the Tate-Shafarevich group I1(J/Q)[2]
measures the deviation of the Selmer group from J(Q)/2J(Q), since

0— J(Q)/27(Q) — SP(7/Q) — (T /Q)[2] — 0.

The group S (J/Q) can be determined by means of descent methods.
The method of complete 2-descent [11] makes possible a determination of
the 2-Selmer group S®)(J/Q) in the case where F(X) has degree 5. In
the case where the equation of C is in sextic form the method of descent
via isogeny [5],[7] often proves useful. More precisely, this method can be
applied if F'(z) is of the form F(z) = G1(x)G2(x)Gs(x), where each G;(z) €
Q[z] is of degree 2. Both methods avoid the use of homogeneous spaces and
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so are well suited for explicit computations. Section 2 briefly reviews the
main points of these methods.

No known algorithm for computing II(7/Q)[2] exists. However, it is
sometimes possible to demonstrate non-trivial members of this group; [2]
contains a specific numerical example of a pair of curves of genus 2, C and
D, over Q with Richelot isogenous Jacobians Jac(C) and Jac(D), where com-
plete 2-descents on each Jacobian result in the rank bounds rank(Jac(C)(Q))
< 4 and rank(Jac(D)(Q)) = 0, thereby proving the existence of non-trivial
members of III(Jac(C)/Q)[2]. In Section 3 we take this idea of demon-
strating non-trivial members of the Tate-Shafarevich group by playing off
two descents against each other a step further: we give an example where
non-trivial members of the ¢-part of the Tate-Shafarevich group of a Jaco-
bian can be demonstrated by performing a 2-descent as well as a descent
via isogeny where ¢ is a 2-isogeny. Furthermore, our example will be for a
familiy of curves, whereas the Richelot example in [2] is only for a specific
numerical example (there is also a family of examples in [2] using instead
the Brauer-Manin obstruction on a related degree 4 del Pezzo surface, as
is also the case in [3],[10]).

2. Descent methods

First, we outline the method of complete 2-descent [8],[11],[12]; we shall
do this for the quintic case, but note that there are also algorithms described
for the general sextic case, for example, in [4],[9],[14]. We let C : y? = F(x)
denote a curve of genus 2 defined over Q and assume that deg(F(z)) = 5.
Let J denote its Jacobian. Furthermore, let F(z) = Fi(z) - ... Fy(z),
n < b5, denote the irreducible factorization of F(x) and let a; denote a
root of Fj(z), 1 <1i < n. We define L; := Q(«;). There exists an injective
homomorphism

(2.1) W J(Q)/2T(Q) — Li/(L})? x ... x Ly /(L})?
given by
(2.2) {(z1,91), (22,92)} = [(x1 — 1) (2 — 1), .., (21 — o) (22 — )],

where {(z1,y1), (z2,y2)} is a shorthand notation for the divisor class con-
taining (x1,y1) + (x2,y2) — 200. We let S denote the finite set of primes
in Q consisting of the prime oo, the prime 2 and the primes of bad reduc-
tion for 7. The image of 1’ is a subgroup of the finite group M generated
by the elements [c1,...,c,] with the following property: The field exten-
sions Lq(y/c1) : L1, ..., Ln(y/cn) : Ly, are ramified only at primes lying over
primes of S. Let p € S and let Q, denote the p-adic numbers. We have a
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commutative diagram

J@27@ 5 M
(2.3) L ip L Jgp
'u/
T(@)/2T(Q) = M,
where ,u; and M), are the local equivalents of ¢/ and M and the maps i, and
Jp are induced by the natural injection Q — Q,. The method now works
as follows: we start with a finite set of elements of 7(Q) which we suspect
generate (or form part of a generating set of) J(Q)/2J(Q). We then search
for a set of generators for J(Qp)/2J(Qp). According to [4] (p.73):

(2.4) #J(Qp) /2T (Qp) = #T(Q)[2)/ 1217,

which tells us when a complete set of generators has been found. Now,
we can compute j, 1(imu;,) which, by the commutativity of (2.3), contains
imy/. Repeating this process for every p € S we can compute

M Jp ' (imyry) = SP(T/Q).

peS
which contains imy/. If N,esj, '(impr,) = imy/, then J(Q)/27(Q) has
been completely determined, and thus r = rank(7(Q)), using the fact that
J(Q)/2TJ(Q) = (Z/2Z)" x T(Q)[2], given that J(Q)[2] is easy to compute.
Otherwise, we are either missing some generators for J(Q)/27(Q) or there
are non-trivial members of III(7 /Q)[2].

Next, we describe the method of descent via Richelot isogeny [4],[5],[7].
We let C : y?> = F(z) denote a curve of genus 2 defined over Q and we
assume that F(z) = G1(z)G2(z)G3(x), where each G;(r) = ginx? + gnz +
gio € Q[z], i = 1,2, 3, has degree 2. We let J denote the Jacobian of C. We
define R

C: Ay® = Li(z)La(x)Ls(z),

where Li(z) := G (2)Gri2(z) — Grgr(2)Ghpo(2), k = 1,2,3 (here the

= det(gij). Lettlng J
denote the Jacobian of C it can be shown that J is isogenous to J over
Q. More precisely, there exist isogenies defined over Q, ¢ : J — J and
¢: J — J, such that ¢op = [2]. For each of these Richelot isogenies, the
kernel is exactly the group consisting of the identity and the three rational
points of order 2 corresponding to the above quadratic factors (G1, G2, G3

or Ly, Ly, L3). The exact sequence
(2.5)

0= ker¢ — J(Q)/2(T(Q) S T(Q)/27(Q) — T(Q)/$(T (@) —

now reduces the problem of determining J(Q)/27(Q) and the rank of
J(Q) to finding generators for J(Q)/¢(J(Q)) and J(Q )/go(j( Q)) which

indices should be interpreted modulo 3) and A
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can be performed in a way similar to complete 2-descent: letting b;; =

resultant(G;, G;), and similarly, b;; = resultant(L;, L;), we define S as the
finite set ofAragiO{lal primes consisting of the prime 2 and the primes dividing
Ablgb23b31b12b23b31. We can write S = {pl,...,pT} and define Q(S) =
{£pT* - pt|e1,...,e, = 0,1}. There exists an injective homomorphism
p: J(@/e(T(Q) — (Q°/(Q")*)**
given by
{(z1,91), (22, 92)} = [La(z1) L1 (22), Lo(z1) La(z2)]-

In fact, imu¥ sits inside the finite group Q(S)*? and for any rational finite
or infinite prime p we have a commutative diagram

~ ®
JQ/eT@) = Qs
(2.6) Lip L Jp
7 MO /(OF
T(@)/e(T(@)) = (Q/(Q)*)**
where i, and j, are natural maps on the quotient induced by the inclusion
map Q — Qp and w7 is the local equivalent of ;#. Reversing the roles of

J and J we obtain an injective homomorphism p? : J(Q)/@(J(Q)) —
(Q*/(Q*)?)*? and a diagram similar to (2.6). Using the fact [4],[6]

(2.7) #T(Qp) /(T (Q)) - #T (@) /P(T (Qp)) = (4/1215)°

to tell us when complete sets of generators for J(Q)/p(J(Q)) and

J(Q)/¢(J(Q)) have been found, we now proceed similarly to the method
of complete 2-descent and compute

(2.8) (4, (imp$) = SW(F/Q) and (7, ' (imuf) = S@(T/Q)

which, by the commutativity of (2.6), contain imu® and imu?, respectively.

The main advantage of descent via isogeny is that of breaking the process
of determining J(Q)/27(Q) into two easier steps, involving only compu-
tations over QQ instead of some larger number field.

3. Family of Jacobians with non-trivial III
We consider the infinite family of curves of genus 2 given by
(3.1) C: y’=F(x)=q(z® = 2)(a" + 2)(=* + 1),

where ¢ is a prime congruent to 13 modulo 24. Unless something else is
explicitly stated we will always assume that ¢ is of this form. We denote
the Jacobian of C by J. The curve whose Jacobian is isogenous to J is given

e note that in (2.8) it is sufficient to intersect over the set of primes p satisfying
P|2Ab12b23b31b12b23b31 or P = 00.
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by y? = —3q(—2? + 2z + 1)(—6qz)(gx? + 4qx + 2¢) which is birationally
equivalent to
(3.2) C: = (—2?422+1) 2z (2 + 4z +2).

The primes not dividing 2 - disc(F’) are the primes p satisfying p & {2, 3, q}.
Using the fact that the reduction map is injective on the rational torsion
subgroup for p = 11,17, in particular, we obtain

Lemma 3.1. Let q be a prime congruent to 5 modulo 8. The torsion sub-

groups, J(Q)sors and T (Q)ors, of T(Q) and J(Q) are given by
j(@)tors = <{(\/§7 0)7 (_\/57 O)}v {(0’ 0)7 (_17 0)}>

and

j(@)tors = <{(1 - \/570)7 (1 + \/i 0)}7 {(070)7 OO}>

The curve C in (3.1) is seen to be in the form suitable for descent via
isogeny and so we perform a descent via isogeny on its Jacobian (we have
placed further details on the descent at [1]). Using the notation from the
previous section we find that 2Ab12b23b31612623831 = —28.3%. q9, so S =
{2, 3, ¢}. Furthermore, we have injective homomorphisms

w JQ/e(T(Q) = (@ /(Q))

given by
2 2
{(z1,91), (22, 92)} lH (—2f + 2 + 1), [ ] 26]%’]
=1 i=1
and ) R
pe: J(Q/(T (@) — (Q°/(Q)*)*
given by
2 2
{(x17y1)7(x27?/2)}’_> [H ZE -2 7H LL’ +«772
=1 =1

These satisfy
imp?, imp? < Q(8)** = ([~1,1], [1, ~1], [2,1],[1, 2], [3, 1], [1, 3], [g, 1], [1, a])-

The generators of the torsion subgroups map as follows:
= {(V2,0), (V2,0)} £ [2.2],

(0,0), (~1,0)} £ [2,1),

(

(

1-v/2,0), (1+v2,0)} 5 [-1,1],
0,0), 00} £5 [~1,2].

{
{
ﬁ {
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The last image was computed by using the fact that p¥ is a homomorphism
on {(]— - \/Qv 0)7 (1 + \/éa O)} + {(07 0)7 OO} = {(_2 + \/ia 0)7 (_2 - \/iv 0)}
Thus,
H:=([2,2],12,1]) <imp? and H := ([-1,1],[-1,2]) < impu?.
At p = oo we have in (2.6)
ker joo = ([2,1],[1,2], [3,1], 1, 3], [¢, 1], [1, ¢]),
so 2 and Ay are both mapped to [1,1] by u? whereas ﬁl and 5[2 are both
mapped to [~1,1]. By (2.7) #J(R)/¢(J (R)) - £ (R)/(T(R)) = 2 so
we are missing 1 generator. A search yields B := {(2,0),(0,0)} € J(R),
where 3 € R* and 2 = 22-3-5-¢, and B — [-1,—1] € (R*/(R*)?)*?
by pg. Hence, 7(R)/$(T(R)) = (B) and T(R)/o(T(R)) = (21). The
commutativity of (2.6) implies
jmﬂ‘;’ < <kerj00a H7 [_17 _1]>
= <[2a 1]7 [17 2]7 [37 1]7 [1’ 3]a [Qa 1]7 [17 Q]a [_1> _1]>

and

~

imp® < (ker joo, )
=([2,1),[1,2],3,1], [1, 3], [¢, 1], [1, ¢}, [-1, 1]).

Next, let p = 3. Using {41, £3} as a set of representatives for Q%/(Q%)?

we find
kerj3 - <[_27 1]7 [17 _2}7 [q7 1]a [17 Q]>7

and so the images of 201 and 2 in Q%/(Q%)? are independent and the images
of % and 2 in Q%/(Q3)? are independent. By (2.7) #T(Qs3) /(T (Q3)) -
#J(Q3)/2(T(Q3)) = 2%, so that J(Q3)/¢(T(Qs)) = (1,Az) and
J(Q3)/e(T(Q3)) = (A1, As). From diagram (2.6) we now get
(3'3) imﬂ(ﬁ < <kerj3, H> = <[_27 1]> [L _2]7 [CL 1]7 [L Q]a [2a 2]7 [27 1]>
and
(34) lmlu’w < <kerj37 ﬁ) = <[_27 1]7 [17 _2]7 [(L 1]7 [17 Q]a [_17 1]7 [_17 2]>

We now let p = ¢q and observe that a set of representatives for Q} /(Qf)?
is given by {1, 2, ¢q,2q}. We have

ker j, = ([-1,1], 1, —1],[3,1],[1, 3]),

and so 2y Jeok” [2,2] and 2 To” [2,1] while 2, Jeok” [1,1] and 2; Jqok”
[1,2]. Since #J(Qq)/e(T(Qy)) - #T(Qy)/¢(T(Q,)) = 2* according to
(2.7), we are missing 1 generator. We suspect that we may choose the
missing generator in J(Qq)/¢(J(Qyq)), in such a way that it is mapped
to [2,¢q] € Q;/ (Q2)2 by ,uq‘;’. More precisely, by considering the explicit
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expression for the homomorphism uf it can be proved that there exists
(z,y) € T(Qq) such that J(Qq) > {(0,0), (z,y)} — [2,q] € (Q5/(Q5)*)*?
by p1g- Letting D := {(0,0), (z,y)} we have 7 (Qq)/ (T (Qy)) = (%1, %2, D)
and j(@q)/gp(j((@q)) = <§l2> The commutative diagram (2.6) tells us that

im/ﬁa < <kerjq7H7 [27Q]> = <[_17 1]7 [17 _1]7 [37 1]7 [173]7 [272]7 [27 1]7 [27Q]>
and
imp? < (ker jg, ) = ([~1,1], [1, 1,3, 1], [1,3], [ 1, 2)).

Finally, we consider p = 2. A set of representatives for Q}/(Q3)? is given
by {£1,+2, +3,46} and

ker jo = ([~3¢, 1], [1, —3q]),

S0 j2 © lisa(gll) = [272]7 j2 o ﬂf(mQ) = [21 1]7 j2 © ,U(’D(Qll) [ ) ] and
j2 0 p?(Az) = [~1,2]. Since #7(Q2)/¢(T (Q2)) - #T (Q2)/@(T (Q2)) = 2°
by (2.7), we are missing 2 generators. First, we find &; := {(5,11),(0,0)} €
J(Q2), where 71 € Q5 and 77 = 22-.3.5.13-23 - q. The existence of
71 is guaranteed by the fact that 3-5-13-23-¢ = 1 (mod 8), since
¢ = 5 (mod 8). We have ¢ — [2,-3] € (Q5/(Q3)%)*2 by uf. Next, we
find € = {(1,7),(0,0)} € J(Qy), where n, € Qf and § — 103,
The existence of 79 is guaranteed by the fact that —5-17-31.¢q = 1
(mod 8), since ¢ =5 (mod 8). We have & — [—2,—2] € (Q5/(Q3)?)*? by
us. Hence, J(Q2)/@(J(Q2)) = (1,2, €1, &) and J(Q2) /(T (Q2)) =
(2z,As). Then (2.6) tells us that

im,usa < <kerj2, H, [27 _3]7 [_27 _QD
= <[_3q7 1}7 [17 _3Q]ﬂ [27 2]7 [27 1]7 [27 _3]7 [_27 _2]>

(3.5)

and
(3'6) imp? < <kerj27 ﬁ> = <[_3Qa 1]’ [L _3Q]a [_17 1]7 [_L 2”

Using (3.3) and (3.5) we obtain imu® < (-2, —2],[1, q],[2,2], [2, 1]). Taking
the information at oo and ¢ into account does not improve this bound on
imp®. Thus, H < imp? < (H,[-2,-2],[1,q]), and so #7(Q)/3(T(Q)) €
{4,8,16}. Similarly, from (3.4) and (3.6) we get imu® < H, and so imu?® =
H, that is #7(Q)/¢(J(Q)) = 4. By the exact sequence (2.5) we conclude
that #7(Q)/27(Q) € {4,8,16}, giving a rank bound on J(Q) of 2. We
have thus proved the following lemma:

Lemma 3.2. Let C and C be as in (3.1) and (3.2), with Jacobians J and

j and Richelot isogenies p : J — j and @ : j J such that gop = [2].
Then

j(@)/@(j((@)) > <{(\/§, 0)7 (_\/57 0)}7 {(O’O)v (_170)}>7
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having 4 generators at the most, and

TJ(Q/e(T(Q) = ({(1 = v2,0), (1 + V2,0)}, {(0,0),00}).
This bounds the ranks of J(Q) and J(Q) by 2.

For the first 10 choices of ¢ = 13 (mod 24), a search for generators
for J(Q) of infinite order does not yield any results and so we suspect
that, for such cases, rank(7(Q)) is in fact 0. We prove that this is the
case by performing a complete 2-descent on J(Q). We have placed further
details of the 2-descent at [1]. First, we observe that since F(z) in (3.1)
has a root in Q we can write the equation of the curve C in the form y? =

(quintic in = over Q). In fact, using the transformation (z,y) — (%q, %)

the curve given by (3.1) is seen to be birationally equivalent to the family
of curves given by

(3.7) v =W(x) = (z —2¢)(z* — 2¢*)(2* + 2%2¢*), ¢=13 (mod 24).

By a slight abuse of notation we also denote this curve by C and its Jaco-
bian by J. By Lemma 3.1 J(Q)tors = Z/27 x 7/27, and so0 T (Q)tors =
({(24,0), ¢}, {(¢v/2,0), (—gv/2,0)}). In order to prove that the rank of
J(Q) equals 0 it suffices to prove that %y := {(2¢,0),00} and Ay :=
{(¢v/2,0), (—q\/2,0)} generate J(Q)/2J(Q). By (2.1) and (2.2) there ex-
ists an injective homomorphism
i J(@/27(Q — Q/(Q) x QV2)*/(Q(V2))? x Q(0)*/(Q(H)")?

given by

2

2 2
{(z1,91), (w2, 92)} H —2q), H (mj + qv'2), H xj + 2qi)
J=1 j=1 j=1
The primes dividing disc(W) are 2,3, ¢, and so, using the notation of the
previous section,
imp' < M
=([-1,1,1],[2,1,1],[3,1,1],[¢, 1, 1], [1, -1, 1],
1,1+ v2,1],[1,v/2,1],[1,3,1],[1,¢,1],[1, 1,1],
[1,1,1+4],[1,1,3],[1,1,a+bi],[1,1,a — bi])

(3.8)

for fixed positive integers a and b satisfying a? + b? = ¢, 2|a and 2 1 b. The
generators for the torsion subgroup map as follows:

A, 1, gvV2(1 + V2), (a + bi)(a — bi) (1 + )i,
Ay 2 [2,30v2(1 + V/2), 3.
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We define
H = ([1,qv2(1 + V2), (a + bi)(a — bi)(1 +4)i], [2, 3¢V2(1 + V2), 3i]).

In view of our previous remark it is sufficient to show that H = imy’.
First, consider p = co. Since there are two embeddings of Q(y/2)* into R*
we have My, = R*/(R*)? x (R*/(R*)?)*2 x C*/(C*)2. Furthermore,

ker joo = ([2,1,1],[3,1,1], [¢, 1, 1], [1, V2(1 + v/2), 1], [1, 3, 1], [1, ¢, 1],
[1,1,4],[1,1,1+4],[1,1,3],[1,1,a + bi], [1,1, a — bi]),

and 0 jeo o ¢/ (A1) = [1,[1,1],1] and joo o p/(A2) = [1,[1,1],1]. Since
#J(R)[2] = 8, (2.4) implies that #J(R)/2J(R) = 2, so we are miss-
ing one generator. We find B := {(0,),c} € J(R), where 8 € R and
B% =245 and B — [-1,[1,-1],1] by u... Hence, J(R)/2J(R) = (B).
The commutativity of (2.3) gives

(3.9) imy/ < (ker joo, H, [—1,V/2,1]).

Next, we let p = 3. Sets of representatives for Q3(v/2)*/(Q3(v/2)*)? and
Qs(i)*/(Qs(i)°)? are given by {11+ v2,3,3(1 + v2)} and {1,1 + 1,3,
3(1 +14)}, respectively. Furthermore

kerj3:<[—2,1,1],[q,1,1],[1,—1,1] [1 \f 1] [1 q, ] [1,1,i],[1,1,a+bi],
[1,1,a — bi]),

and so jz o p/(1) = [1,1 4 v2,1 4] and jz o 4/ (A) = [-1,3(1 + v2), 3.
Since #J(Q3)/27(Q3) = 2% by (2.4), the known members of J(Q)/27(Q)

generate J(Q3)/27(Q3), that is J(Q3)/27(Q3) = (™A1,2As). From (2.3) we
have that

(3.10) imy < (ker js, H).

Now, let p = q. A set of representatives for Q,(v/2)*/(Q,(+v/2)*)? is given
by {1,v2,q,qv2}. We let a denote the solution to 22 = —1 in Q; that
makes 1 + z a square in Q. Then we have 2 embeddings of Q(i)* into Qj

given by x + yi — x + ya and x + yi — 2 — ya, and so (Q(2)):/((Q(7))%)?
is isomorphic to Q:;/(QZ)Q X Q:;/(Q;;)z. Furthermore

ker j, = ([-1,1,1],(3,1,1],[1,—1,1], [1,1 + V2, 1,[1,3,1],[1,1, 3]),

which implies j, o p/(2;) = [1, \f 2, [2¢,q]] and j, o ' (RA2) = [2, 92, [2,2]].
Since #J(Qq)/27(Q,) = 23 by (2.4), we are missing one generator for
J(Qq)/2T(Qg)- We find D : {(20«17 0),00} € J(Qq), where 14(D) =
[a.av2(1 + av2),[2¢,1]] = [g,4v2,[2¢,1]], since 1 + av/2 is a square in
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Qq(v2)*. Hence, J(Q,)/2J(Q,) = (1,A2,D). Since there exists t €

{a+bi,a—bi,(a+bi)i,(a—bi)i} such that M > [q, qv/2, (1 +1)] 2 11,(D),
the commutative diagram (2.3) implies that

(3.11) imy’ < (ker jg, H, [q,qV'2,t(1 +14))).

Finally, we let p = 2. We note that 2 is ramified in Q(v/2). A set
of representatives for Qu(v/2)*/(Q2(v2)*)? is given by {=£1,£v?2,
+(14+v/2), 43, £v2(1 + v/2), £3v/2, £3(1 + v/2), £3v/2(1 + v/2)}. Also, 2
is ramified in Qi) and {1,1 + 4,3,i,a + bi,34,3(1 + 4),i(1 + 1),
3i(1 + 1), (a + bi)(1 + 4),3(a + bi), (a + bi)i,3i(a + bi),3(1 + i)(a + bi),
i(144)(a+bi), 3i(1+i)(a+bi)} is a set of representatives for Q2 (7)*/(Qa(i)*)?,
where a and b are the integers from (3.8). Furthermore

keer = <[_3qa 17 1]7 [L _SQ7 1]7 [1> 17 3Q]>>

giving j> o #/(@) = [1,—3v2(1 + v/2),3(1 + )] and jz o /@) = [2.
—V/2(1 + v/2),3i]. By (2.4) #j(@g)/2j(@2) = 24 50 we are missing two
generators. Since W (5) € (Q3)?, there exists e7 € Q3 such that 3 =
W(5), and so & := {(5,&1), oo} € J(Q2). In fact, uh(€;) = [b — 2q,
5+qv/2,5+2¢i], which equals 3, =3(1++/2),i(a+bi)] if a = 2 (mod 8),b =
1,3 (mod 8) or a = 6 (mod 8),b = 5,7 (mod 8), and equals [3
—3(1 + v2),3i(a + bi)] if a = 2 (mod 8),b = 5, 7 (mod 8) or a =
(mod 8),b = 1,3 (mod 8). € (Q3)?, and s
there exists o € Qj such that €3 = ( ) Therefore (‘32 = {(8,2%9)} €
J(Qy). In fact, ph(€s) = [§—2q,§+gf,8 + 2qi] = [-2,-3V2,1] € M.
Hence, J(Q2)/27(Q2) = (1,2, €, &;) and by the commutativity of (2.3)

(3.12) imy/ < (ker ja, H, [3, —3(1 + v/2), 2], [~2,3v/2, 1),

where z € {i(a + bi), 3i(a + bi)}.

Combining (3.9),(3.10),(3.11) and (3.12) we conclude that imy’ < H,
that is imy’ = H, and so rank(J (Q)) = 0. The following lemma summarises
the results obtained from the complete 2-descent.

Lemma 3.3. Let C denote the infinite family of curves over Q given by
(3.7) and let J denote its Jacobian. Then

j(Q) = j(@)tm‘s = <{(\/§a 0)7 (_\/i O)}v {(an)v (_170)}>'

Since J and J are isogenous over Q, rank(7(Q)) = rank(J(Q)). Com-
bining the lemmas 3.2 and 3.3 we obtain the following result:
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Proposition 3.1. Let C be the curve of genus 2 over Q given by
C: y?=(—2>+2x+1) 2qz- (2% + 4z +2),

where q s a prime congruent to 13 modulo 24, and let J denote the Jaco-
bian of C. Furthermore, let J denote the Jacobian that is isogenous to j
and let ¢ denote the Richelot isogeny ¢ : JT—J.

A descent via Richelot isogeny bounds the rank of j(@) by 2 while a
complete 2-descent on J shows that the rank of j( ) is in fact 0, and
so 11(T /Q)[¢] is non-trivial. Hence, C is an infinite family of curves of
genus 2 whose Jacobian has non-trivial Tate-Shafarevich group for descent
via Richelot isogeny.

Remark. The Jacobian J (and hence j ) can be shown to be simple by a
method described in [4], originating from [13].

Proposition 3.1 immediately implies that I1I(.7 /Q)[2] is non-trivial. In
line with the idea of [2] this fact can, of course, also be proved by performing
a 2-descent on j giving a rank bound of 2 on J (Q).

In view of the fact that Lemma 3.1 holds for the larger family of curves
with ¢ =5 (mod 8) it is natural to suspect that Proposition 3.1 might also
be correct for this larger family. Letting ¢ = 5 (mod 8), one does, in fact,
obtain a rank bound of 2 from the descent via isogeny but the 2-descent
does not yield a rank bound of 0 on J(Q), and so no non-trivial members
of the Tate-Shafarevich group are demonstrated in this case.

4. Family of surfaces violating the Hasse principle
We first note that (3.1) can be transformed via (x,) — (1/z,y/23) to
(4.1) C: 3?=q(1 -2 +x)(1+2?),
with Jacobian J. Recall ([4], p.19) that the coordinates ki = 1,ky =
T + 9, kg = T1x2, k4 = (Fo(xl,JJQ) — 23/13/2)/(331 — 332)2, Where
Fo(w1,22) = 2fo + fi(x1 + 22) + 2fa(w122) + f3(z122) (71 + 22)
+2f4(a;1x2)2 + f5(a:1a:2)2(:r1 + 332) + 2f6(x1332)3,
satisfy the equation of the Kummer surface. Specialising the Kummer sur-
face equation (see [4], p.19) to our curve C, and for simplicity using the
affine coordinates us = ko/k1,us = k3/ki,uq = ll<:4/l<:1 gives

(4.2)

u4u2 4U4U3 — duy — 2uquo + dugusg + 2ugususg
(4.3) +SU4u3 + 4U4u2u3 + dug + 2us + 8u2 — 11u?
+8u3 + 8uduz — 8ugu3 — 4ui + 4uj +5 = 0.

Note also, that if we let ur = (y1 — y2)/(z1 — x2) then

1
(4.4) Uy = gug + up 4 2u3 — 2uous + 2us + 1.
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Given uz, u3, u4, u7 € Q, one recovers {x1, 2} as the roots of x? —usz +us,
and can obtain u%, = (xoy1 — x1y2)/(x1 — x2), from which y; = urz; — ub
can be derived.

We know from the previous section that the homogeneous space corre-
sponding to [~2,—2] for imu? violates the Hasse principle, as will then
also be the case for J. A model for this homogeneous space, given by 72
equations in P!% (see [5]) would be rather unweildy, so we give here a more
accessible associated surface. To say that {(z1,v1), (¥2,%2)} € J(Q) maps
to [~2,—2] under imu? is equivalent to the three additional equations:
(1—223)(1-223) = =2, (x1+1)(z2+1) = =2, (23 +1)(23+1) = 1, mod-
ulo squares. Any of these is dependent on the other two, so we need only
take (for example) the second and third of these, which can be expressed as:
uz+us+1= —2u§ and u%—l—u% —2uz+1= ug, for some us, ug € Q. What is
nice here is that there is a simple resulting parametrisation of uo, us, ug in
terms of us and a further parameter, as follows. We express the first equa-

tion as: ug = —ug — 1 — 2u2 and substitute this into the second equation to
give:
(4.5) (ug + 2 + 2u?)? + ul = u.

Using ug = 0, ug = 2+2u? as a basepoint, and letting ug = (ug—2—2u2) /uz
(the slope from (0,2 + 2u2) to (uz,ug)) we can express ug,us in terms of
the parameters us, ug, as

_ 4(u2+1—ug—ugu?) _
(46) Uz (us, ug) = ————o—o—2-, Ug(us, ug) =
. _ 2(—u24-2ug+2ugu —ulu2 —2—2u?
UG(U5,U8) — 8 u§752 5U8 5

2_ .2 2,2
dug —2+4ugus —ug—2usug
u§—2

)

We finally obtain a model, given by a single equation in us, w7, ug by sub-
stituting (4.4) into (4.3), to eliminate w4, and then replacing ug, ug with
the parametrisations ug(us,ug), us(us,ug), respectively (and multiplying
through by (u2 —2)8). This family of affine surfaces has no affine Q-rational
point, for any ¢ = 13 (mod 24), since [—2, —2] is not in the image of u?®. It is
not immediately clear that there are affine points everywhere locally, since
the local points on the homogeneous space might not correspond to affine
points on our surface. However, it can easily be checked directly that there
are points everywhere locally, by first checking small primes and primes of
bad reduction, after which one can use Hensel’s lemma, together with the
Hasse-Weil bound on the genus 5 curves obtained by specialising usg.
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