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On rational torsion points of central Q-curves

par Fumio SAIRAĲI et Takuya YAMAUCHI

Résumé. Soit E une Q-courbe centrale sur un corps polyquadra-
tique k. Dans cet article, nous donnons une borne supérieure des
diviseurs premiers de l’ordre du sous-groupe de torsion k-rationnel
Etors(k) (voir Théorèmes 1.1 et 1.2). La notion de Q-courbe cen-
trale est une généralisation de celle de courbe elliptique sur Q.
Notre résultat est une généralisation du Théorème de Mazur [12],
et c’est une précision des bornes supérieures de Merel [15] et Oes-
terlé [17].

Abstract. Let E be a central Q-curve over a polyquadratic field
k. In this article we give an upper bound for prime divisors of the
order of the k-rational torsion subgroup Etors(k) (see Theorems
1.1 and 1.2). The notion of central Q-curves is a generalization
of that of elliptic curves over Q. Our result is a generalization of
Theorem 2 of Mazur [12], and it is a precision of the upper bounds
of Merel [15] and Oesterlé [17].

1. Introduction

Let E be an elliptic curve over an algebraic number field k of degree d.
Let E(k) be the group of k-rational points on E and let Etors(k) be its
torsion subgroup. The Mordell-Weil Theorem asserts that E(k) is a finitely
generated abelian group and thus the order ]Etors(k) of Etors(k) is finite.
We discuss about prime divisors of the order ]Etors(k).

When k is the rational number field Q, Mazur [12] shows that Etors(Q)
is isomorphic to one of 15 abelian groups. Each prime divisor of ]Etors(Q)
is less than or equal to 7. When k is a quadratic field, after Kenku-Momose
[10], Kamienny [9] shows that Etors(k) is isomorphic to one of 25 abelian
groups. Each prime divisor of ]Etors(k) is less than or equal to 13.

When d is greater than one, Merel [15] shows that each prime divisor of
]Etors(k) is less than or equal to d3d2 . The bound is improved by Oesterlé
[17]. He shows that ]Etors(k) is less than or equal to (1 + 3d/2)2. We want
to improve Oesterlé’s bound in case where we restrict E to Q-curves.
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Definition. We call an elliptic curve E over Q a Q-curve if there exists an
isogeny φσ from σE to E for each σ in the absolute Galois group GQ of Q.
Furthermore, we call a Q-curve E central if we can take an isogeny φσ with
squarefree degree for each σ in GQ.

Elkies [3] shows that each non-CM Q-curve is isogenous to a central Q-
curve and that each non-CM central Q-curve is defined over a polyquadratic
field. In this paper we always assume that each Q-curve is non-CM.

Let X∗
0 (N) be the quotient curve of the modular curve X0(N) by the

group W (N) of Atkin-Lehner involutions of level N . Let π be the natural
projection from X0(N) to X∗

0 (N). The isomorphism classes of central Q-
curves are obtained from π−1(P ) where P is a non-cuspidal non-CM point
of X∗

0 (N)(Q) and N runs over the squarefree integers.
Let E be a central Q-curve defined over a polyquadratic field k of degree

d. In this paper we always assume that k is the minimal field of definition
of E. Since E is a central Q-curve, there exists an isogeny φσ from σE to
E with squarefree degree dσ for each σ in GQ.

Theorem 1.1. If a prime number N divides ]Etors(k), then N satisfies at
least one of the following conditions.

(1) N 5 13.
(2) N = 2m+2 + 1, 3 · 2m+2 + 1 for some integer m 5 log2 d.
(3) The character ε of GQ, associated with E, defined in (3.4), is real

quadratic, and N divides the generalized Bernoulli number B2,ε.

Corollary 1.1. Assume the scalar restriction A of E from k to Q is of
GL2-type with real multiplications. If a prime number N divides ]Etors(k),
then N is less than or equal to 13.

Theorem 1.2. Assume that each dσ divides ]Etors(k). Let N be the product
of all prime divisors of ]Etors(k). Then [k : Q] and N satisfy the following.

[k : Q] N
1 1, 2, 3, 5, 6, 7, 10
2 2, 3, 6, 14
4 6
≥ 8 empty

We note that each case in the above list occurs. There is a family of
infinitely many Q-curves with rational torsion points corresponding to each
element in the above list except for N = 14. The case of [k : Q] = 1 is due
to Kubert [11]. The case of [k : Q] = 2 and N = 2, 3 is given by Hasegawa
[6]. The case of N = 6 is given by Quer [20] (see also Appendix 1). When
N = 14, there is only one Q-curve corresponding to the above list. More



On rational torsion points of central Q-curves 467

precisely, k = Q(
√
−7) and the corresponding Q-curve has the j-invariant

j =
56437681− 1875341

√
−7

32768
and the global minimal model:

y2 + (2 +
√
−7)xy + (5 +

√
−7)y = x3 + (5 +

√
−7)x2.

It is a Q-simple factor of Jnew
0 (98).

Let π be the natural projection from X1(N) to X0(M)/W via X0(N),
where M is the least common multiple of dσ and W is a subgroup of
the group W (M) of order [k : Q]. We note that M is a divisor of N
by the assumption of Theorem 1.2. Each element in the list of Theo-
rem 1.2 corresponds to the existence of a non-cuspidal non-CM point of
X1(N)(k)×X0(1)(Q) π

−1(X0(M)/W )(Q).
In Section 2 we review basic facts on modular curves and in Section 3 we

investigate fields of torsion points of central Q-curves over polyquadratic
fields. In Sections 4 and 5 we prove Theorems 1.1 and 1.2, respectively.

2. Preliminaries

Let H be the complex upper half plane. For any positive integer N , let

Γ1(N) :=
{[
a b
c d

]
∈ SL2(Z) | a ≡ d ≡ 1 mod N , c ≡ 0 mod N

}
,

and

Γ0(N) :=
{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 mod N

}
.

The group Γ1(N) acts on H∗ := H∪Q∪{i∞} via fractional linear transfor-
mations. The quotient X1(N) (resp. X0(N)) of H∗ by Γ1(N) (resp. Γ0(N))
has a structure as a compact Riemann surface and it also has a canoni-
cal structure as an algebraic curve over Q. For i = 0, 1, each element in
Γi(N)\Q∪ {i∞} is so called cusp and Yi(N) := Xi(N)\(Γi(N)\Q∪ {i∞})
is an open affine curve.

The modular curve X1(N) is the coarse moduli space of the isomorphism
classes of pairs (E,P ) where E is a generalized elliptic curve and P is a
point of E of order N and the modular curve X0(N) is the coarse moduli
space of the isomorphism classes of pairs (E,C) where E is a generalized
elliptic curve and C is a cyclic subgroup of E of order N . For a subfield k of
the complex number field C, each k-rational point of Y0(N) (resp. Y1(N))
corresponds to a pair (E,C) (resp. (E,P )) where E is an elliptic curve over
k and C (resp. P ) is a k-rational subgroup (resp. point) of order N .

Let 0 :=
(0
1

)
and i∞ :=

(1
0

)
be the Q-rational cusps on X0(N). Then

they are represented by (Gm,Z/NZ) and (Gm, µN ) respectively, where Gm
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is the multiplicative group. In fact, 0 (resp. i∞) corresponds to Kodaira’s
symbol IN (resp. I1).

Let d be a positive divisor d of N with d 6= 1, N and let m be the
greatest common divisor of d and N/d. For a positive integer i, coprime to

N , with 1 ≤ i ≤ m, we denote by
( i
d

)
the cusps on X0(N). Then they are

represented by
(Gm × Z/(N/d)Z, 〈ζN 〉 × 〈i〉).

Each cusp
( i
d

)
is defined over Q(ζm). In particular, if N is squarefree, then

all cusps on X0(N) are defined over Q.

Let n be a positive divisor of N such that (n,
N

n
) = 1, and put Wn :=[

nx y
Nz nw

]
, where x, y, z, w are in Z and det(Wn) = n . Then Γ0(N) ∪

WnΓ0(N) is a normalization of Γ0(N) in GL+
2 (Q) and Wn induces an invo-

lution on X0(N). The group W (N) generated by involutions Wn on X0(N)
is an elementary abelian 2-group of order 2r, where r is the number of dis-
tinct prime divisors of N . It is well known that all elements of W (N) are
defined over Q. So the quotient modular curve X∗

0 (N) of X0(N) by W (N)
is defined over Q.

3. The field k(E[N ]) of N-torsion points

3.1. The minimal field of definition of E. Let E be a central Q-curve
over Q with the j-invariant jE . We call the field Q(jE) the minimal field
of definition of E. By taking a model defined over Q(jE), we assume that
E is defined over Q(jE). We put k := Q(jE). We denote by G the Galois
group of k over Q.

According to Ribet [22], we introduce the 2-cocycle c associated with E.
Since E is a central Q-curve, there exists an isogeny φσ from σE to E with
squarefree degree dσ for each σ in GQ. We put

(3.1) c(σ, τ) := φσ
σφτφ

−1
στ for each σ, τ in GQ.

Then the mapping c is a 2-cocycle of GQ with values in Q∗. By taking the
degree of both sides, we have

(3.2) c(σ, τ)2 = dσdτd
−1
στ for each σ, τ in GQ.

Proposition 3.1. The mapping

GQ → Q∗/(Q∗)2 : σ 7→ dσ

is a homomorphism with the kernel Gk.
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Proof. It follows from (3.2) that the above mapping is a homomorphism.
Since σjE = jσE , we see

jσE = jE if and only if σ ∈ Gk.

Thus we have
dσ = 1 if and only if σ ∈ Gk.

�

Proposition 3.2. k is a polyquadratic field.

Proof. By Proposition 3.1 we see that σ2 is in Gk for each σ in GQ. �

3.2. The case of N dividing dσ for some σ. Let N be a prime number.
Let E be a central Q-curve defined over a polyquadratic field k of degree d
with a k-rational N -torsion point Q1.

Let k(φσ) be the field of definition of φσ over k, and let k〈σ〉 be the fixed
subfield of k by σ.

Proposition 3.3. The extension k(φσ)/k〈σ〉 is a Galois extension. Fur-
thermore its Galois group is an elementary abelian 2-group of order two or
four.

Proof. Since E is non-CM, the automorphism group

Aut Hom(σE,E) = {±1}.
Since Hom(σE,E) = Zφσ, we have an exact sequence

1 → Gk(φσ) → Gk → Aut Hom(σE,E).

Thus Gk(φσ) is a normal subgroup of Gk with the index dividing two.
Similarly we have an exact sequence

1 → Gk(σφσ) → Gk → Aut Hom(E, σE).

Since the transpose mapping

Hom(σE,E) → Hom(E, σE) : ψ 7→ ψ∗

is a Gk-module isomorphism, we see

Gk(φσ) = Gk(σφσ) = σGk(φσ)σ
−1.

Since Gk〈σ〉 is generated by σ and Gk, Gk(φσ) is a normal subgroup of Gk〈σ〉 .
We may put σφσ = εφ∗σ for some ε in {±1}. Then we have

σ2
φσ = εσφ∗σ = ε(εφ∗σ)∗ = φσ.

Thus σ2 is in Gk(φσ). Thus the order of Gk〈σ〉/Gk(φσ) divides four, and its
exponent of is at most two. This completes the proof. �

Let ζN be a primitive N -th root of unity. We determine prime divisors
of ]Etors(k) which divide dσ for some σ in GQ.
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Proposition 3.4. If N divides dσ for some σ in GQ, then N is either 2
or 3.

Proof. Firstly we show that ζN is in k(φσ). If ker φσ 6= 〈σQ1〉, then E[N ] =
〈Q1〉 ⊕ 〈φσ(σQ1)〉. Thus we see that ζN is in k(φσ). Suppose that ker φσ =
〈σQ1〉. Since σQ1 is k(φσ)-rational, the Weil pairing e on σE[N ] induces an
exact sequence of Gk(φσ)-modules

1 → 〈σQ1〉 → σE[N ]
e(σQ1,∗)−−−−→µN → 1.

Since we have an exact sequence of Gk(φσ)-modules

1 → 〈σQ1〉 → σE[N ]
φσ−−−→〈Q1〉 → 1,

we see that µN is Gk(φσ)-isomorphic to 〈Q1〉, which has trivial action. This
implies that ζN is in k(φσ).

Secondly we show thatN = 2, 3. Since the field k(φσ) is at most quadratic
extension of the polyquadratic field k, we have N = 2, 3, 5. Assume that
N = 5. Since ζ5 is not in k, we have k(φσ) = k(ζ5) and

√
5 ∈ k. Since

k(φσ)/k〈σ〉 is polyquadratic, we have
√

5 ∈ k〈σ〉. We have

]{σ ∈ G \ {1} |
√

5 ∈ k〈σ〉} = ]{σ ∈ G \ {1} | σ(
√

5) =
√

5} = [k : Q]/2− 1,

where G is the Galois group of k over Q. By using Proposition 3.1, we have

]{σ ∈ G \ {1} | 5 | dσ} = [k : Q]/2.

This leads to a contradiction. Thus N is not equal to 5. �

3.3. The field k(E[N ]) for N > 3. Until the end of this subsection, we
assume N > 3. Then the isogeny φσ induces the isomorphism from σE[N ]
to E[N ] for each σ in GQ, since N does not divide dσ for any σ in GQ by
Proposition 3.4.

Furthermore, we have φσ〈σQ1〉 ⊂ 〈Q1〉. Indeed, if φσ〈σQ1〉 is not con-
tained in 〈Q1〉, then E[N ] = 〈Q1〉 ⊕ 〈φσ(σQ1)〉 and thus ζN is in k(φσ).
This contradicts Proposition 3.4. We define the element aσ in (Z/NZ)∗ by

φσ(σQ1) = aσQ1.

Proposition 3.5. The congruence c(σ, τ) ≡ aσaτa
−1
στ mod N holds for

each σ, τ in GQ.

Proof. We have σφτ (στQ1) = aτ
σQ1 by the definition of aτ . Thus we

have φσ
σφτ (στQ1) = aτaσQ1. On the other hand, c(σ, τ)φστ (στQ1) =

c(σ, τ)aστQ1. Thus we have the assertion. �

Proposition 3.6. The 2-cocycle c is symmetric, that is, c(σ, τ) = c(τ, σ)
for each σ, τ in GQ.

Proof. Since E is non-CM, we have c(σ, τ) = ±c(τ, σ). By Proposition 3.5
we have c(σ, τ) ≡ c(τ, σ) mod N . Since N is odd, c(σ, τ) = c(τ, σ). �
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Proposition 3.7. E is completely defined over k, that is, the isogeny φσ

is defined over k for each σ in GQ.

Proof. Since c is symmetric, we have

φ1
τφσφ

−1
σ = c(τ, σ) = c(σ, τ) = φσ

σφ1φ
−1
σ = φ1

for τ in Gk. Thus we have τφσ = φσ for τ in Gk. �

By Proposition 3.7, we may consider that c is a 2-cocycle of the Galois
group G of k over Q. Since the 2-cocycle c is symmetric and G is commu-
tative, there exists a mapping β from G to Q such that

(3.3) c(σ, τ) = β(σ)β(τ)β(στ)−1 for each σ, τ in G

(cf. e.g. [7], Theorem 3.2). The splitting map β is uniquely determined up
to multiplication by characters of G. Together with (3.2), we see that

(3.4) ε(σ) := dσβ(σ)−2

is a character of G. Since G is of exponent less than or equal to two, the
character ε does not depend on the choice of β. As below we consider that
the splitting mapping β and the character ε are mappings from GQ through
the projection from GQ to G.

Proposition 3.8. The character ε is quadratic, and φσ
σφσ = ε(σ)dσ holds

for each σ in GQ.

Proof. It follows from (3.1) and (3.3) that c(1, 1) = φ1 = β(1). Since
c(σ, σ) = φσ

σφσφ
−1
1 = β(σ)2β(1)−1, it follows from (3.4) that φσ

σφσ =
ε(σ)−1dσ. Since E is non-CM, the signature ε(σ) = ±1, and the assertion
follows. �

Proposition 3.9. The character ε is real, that is, ε(ρ) = 1, where ρ is the
complex conjugation.

Proof. We fix an invariant differential ωE of E over k. We have φ∗ρωE =
αρωρE for some α in k. Then we have

ε(ρ)dρωE = (φρ
ρφρ)∗ωE = αραωE .

It follows from αρα > 0 that ε(ρ) = 1. �

We denote by F the extension of Q adjoining all values β(σ). Since
β(σ) = ±

√
ε(σ)dσ, F is a polyquadratic field.

Proposition 3.10. N splits completely in F , that is, the Legendre symbol
(ε(σ)dσ/N) is equal to 1 for each σ in GQ.

Proof. Since σ2 is in Gk, we have

ε(σ)dσ = φσ
σφσ = c(σ, σ)φ1 = a2

σa
−1
1 a1 = a2

σ

on 〈Q1〉 by using φ1 = c(1, 1) = a1. Thus we have ε(σ)dσ ≡ a2
σ mod N. �
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We denote by A the scalar restriction of E from k to Q. Since E is a
central Q-curve completely defined over k, A is an abelian variety of GL2-
type with End0

QA = F . The abelian variety A is of GL2-type with real
multiplications if and only if the character ε is trivial.

By the definition of the Weil restriction, A(Q) and E(k) are in bĳection.
Since ζN is not in k, the group of k-rational N -torsion points on E must
be 〈Q1〉. Thus A has the unique Q-rational N -torsion group 〈R1〉. There
exists the unique prime ideal λ in OF dividing N such that R1 is in A[λ].

We take R2 in A[λ] such that (R1, R2) is a Z/NZ-basis of A[λ]. For the
basis (R1, R2) the image of the representation of GQ on A[λ] consists of

matrices of the form
[
1 b
0 εχ

]
, where χ is the cyclotomic character modulo

N . We denote by kε the fixed subfield of k by the action of the kernel of ε.
By Propositions 3.8 and 3.9 kε is a real field of degree at most two.

The action of Gal(kε(ζN )/Q) on Gal(kε(A[λ])/kε(ζN )) is via εχ−1 since[
1 0
0 ε(κ)χ(κ)

] [
1 b
0 ε(τ)χ(τ)

] [
1 0
0 ε(κ)χ(κ)

]−1

=
[
1 ε(κ)χ−1(κ)b
0 ε(τ)χ(τ)

]
.

Thus kε(A[λ])/kε(ζN ) is an εχ−1-extension.

Proposition 3.11. The equation k(E[N ]) = k(A[N ]) holds.

Proof. Since φσ induces an isomorphism from σE[N ] to E[N ], we have
k(σE[N ]) = k(E[N ]) for each σ in GQ. Thus k(E[N ]) = k(A[N ]). �

Proposition 3.12. The equation k(E[N ]) = k(A[λ]) holds.

Proof. If 〈R2〉 is Q-rational, then kε(A[λ]) = kε(ζN ). Since the group 〈R2〉
determines a k-rational subgroup of E[N ] which is not 〈Q1〉, we see that
k(E[N ]) = k(ζN ) = k(A[λ]). If 〈R2〉 is not Q-rational, kε(A[λ]) is a cyclic
extension of kε(ζN ) of degree N . Since N is prime to [k(ζN ) : kε(ζN )], we
have [k(A[λ]) : k(ζN )] = N . Since k(E[N ]) is a cyclic extension of k(ζN ) of
degree N containing k(A[λ]), we have k(A[λ]) = k(E[N ]). �

Proposition 3.13. If k(E[N ])/k(ζN ) is unramified and N does not divide
the generalized Bernoulli number B2,ε, then k(E[N ]) = k(ζN ).

Proof. Since k(ζN )/kε(ζN ) is polyquadratic and k(E[N ])/k(ζN ) is unrami-
fied, the ramification index of each prime at k(E[N ])/kε(ζN ) is a power of
two. Thus kε(A[λ])/kε(ζN ) is unramified. By Proposition 7.4 in Appendix
2, there exists no non-trivial unramified εχ−1-extension of kε(ζN ), which
leads to kε(A[λ]) = kε(ζN ). Thus k(E[N ]) = k(ζN ). �

3.4. The reduction type of E modulo p. We assume that N > 3. We
denote the p-factor of the L-series attached to l-adic (resp. λ-adic) represen-
tations of GQ on A by Lp(A/Q, u) (resp. Lp(A/Q, F, u)). Then Lp(A/Q, u)
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(resp. Lp(A/Q, F, u)) is a polynomial with coefficients in Z (resp. OF ). We
denote the p-factor of the L-series attached to l-adic representations of Gk

on E by Lp(E/k, u).

Proposition 3.14. Let p be a prime in k. If p ramifies in k over Q, then
E has good or additive reduction at p.

Proof. Since A is the Weil restriction of E and it is of GL2-type, we have

(3.5) NF/QLp(A/Q, F, u) = Lp(A/Q, u) = Np|pLp(E/k, ufp),

where fp is the residue degree for p.
Suppose that E has multiplicative reduction at p. Since E is a Q-curve,

it follows from (3.5) that

NF/Q(1− au+ ηpu2) = (1− apu
fp)[k:Q]/epfp

for some a in OF , η = 0, 1 and ap = ±1, where ep is the ramification index
for p. By comparing the degree of the both sides, we have a contradiction
to ep ≥ 2. �

Proposition 3.15. Assume that the residue degree of p is two. Then E
does not have multiplicative reduction at p.

Proof. Assume that E has multiplicative reduction at p. By the assumption
it follows from (3.5) that

NF/Q(1− au) = Np|p(1− apu
2)

for some a in OF and ap = ±1. Since the zero of the right hand side is
u = ±1 or u = ±

√
−1. Thus we have a = ±

√
−1 and hence

√
−1 is in F .

Since F is generated by
√
ε(σ)dσ over Q, there exists σ in GQ such that

ε(σ)dσ = −1. Thus we have dσ = 1 and ε(σ) = −1. By Proposition 3.1, σ
is in Gk and thus ε(σ) must be one. This is a contradiction. �

Proposition 3.16. If E is semistable, k is an unramified extension of kε.

Proof. Let p be a prime in k. Assume that p ramifies in k over Q. Since E
is semistable, it follows from Proposition 3.14 that p is a good prime of E.
For each element σ in the inertia group Ip of p, the reduction of φσ modulo
p is an endomorphism of the reduction of E modulo p. It is a complex
multiplication, since dσ is squarefree. Thus for a non-trivial element σ in
Ip we have ε(σ) = −1. This implies Ip ∩ ker ε = {1} and k is an unramified
extension of kε. �

4. Proof of Theorem 1.1

LetN be a prime number. Let E be a central Q-curve over a polyquadrat-
ic field k with k-rational N -torsion point Q1. Throughout this section we
always assume the following:
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(1) N > 13
(2) N 6= 2m+2 + 1, 3 · 2m+2 + 1
(3) N - B2,ε.

In this section we give a proof of Theorem 1.1 by modifying the result of
Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let p be a prime ideal
of k above a prime integer p.

Proposition 4.1. E is semistable over S.

Proof. Let kp be the completion of k at p and let Op be its ring of inte-
gers. Let E/Op

be the Néron model of E/kp
over Spec Op. By the universal

property of the Néron model the morphism from Z/NZ/kp
to E/kp

extends
to a morphism from Z/NZ/Op

to E/Op
which maps to the Zariski closure

in E/Op
of Z/NZ/kp

⊂ E/kp
. This group scheme extension H/Op

is a sepa-
rated quasi-finite group scheme over Op whose generic fibre is Z/NZ. Since
it admits a map from Z/NZ/Op

which is an isomorphism on the generic
fibre, it follows from this that H/Op

is a finite flat group scheme of order
N . Since k is polyquadratic and N is odd, the absolute ramification index
ep over Spec Z is equal to 1 or 2. Since ep is less than N − 1, by Raynaud
[21], Corollary 3.3.6, we have H/Op

∼= Z/NZ/Op
. Therefore we shall identify

H/Op
with Z/NZ/Op

.
Suppose that the component (E/p)0 is an additive group. Then the index

of (E/p)0 in E/p is less than or equal to 4. It follows that Z/NZ/p ⊂ (E/p)0.
Thus, the residue characteristic p is equal to N . By Serre-Tate [23] there
exists a field extension k′p/kp whose relative ramification index is less than
or equal to 6, and such that E/k′p

possess a semistable Néron model E/O′
p

where O′
p is the ring of integers in k′p. Then we have a morphism ψ from

E/O′
p

to E/O′
p

which is an isomorphism on generic fibres, using the universal
property of the Néron model of E/O′

p
. The mapping ψ is zero on the con-

nected component of the special fibre of E/O′
p

since there are no non-zero
morphisms from an additive to a multiplicative type group over a field. Con-
sequently, the mapping ψ restricted to the special fibre of Z/NZ/O′

p
is zero.

Using Raynaud [21], Corollary 3.3.6, again, we see that this is impossible.
Indeed, since k is polyquadratic and N is odd, the absolute ramification
index of k′p is less than or equal to 12, which leads to a contradiction to the
assumption N − 1 > 12. �

Proposition 4.2. Assume that p is either 2 or 3. Then p is a multiplicative
prime of E. Furthermore the reduction Q1 does not specialize mod p to
(E/p)0.

Proof. If p is a good prime of E, then E/p is an elliptic curve over O/p
containing a rational torsion point of order N . By the Riemann hypothesis
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of elliptic curves over the finite field O/p, N must be less than or equal to
(1+pfp/2)2, where fp is the degree of residue field. Since k is polyquadratic,
we have fp = 1, 2. Thus we have (1+pfp/2)2 ≤ 16. Since N is prime, N ≥ 17
follows from the assumption N > 13. Hence this is impossible, and E has
multiplicative reduction at p.

Suppose that Q1 specializes to (E/p)0. Over a quadratic extension κ

of O/p we have an isomorphism (E/κ)0 ∼= Gm/κ, so that N divides the
cardinality of κ∗. Since it follows from fp = 1, 2 that the cardinality of κ∗
is one of 3,8,15,80, this is impossible by the assumption N > 13. �

The pair (E, 〈Q1〉) defines a k-rational point on the modular curve
X0(N)Q. Let us call this point x. If p 6= N , we denote by x/p the image of x
on the reduced curve X0(N)/(Ok/p) When p is a potentially multiplicative
prime of E, we know that x/p = ∞/p if the point Q1 does not specialize to
the connected component (E/p)0 of the identity (cf. [8], p.547).

We denote by J0(N)/Q the Jacobian of X0(N)/Q. The abelian variety
J0(N) is semistable and has good reduction at all primes p 6= N ([2]). We
denote by J̃/Q the Eisenstein quotient of J0(N)/Q. Then Mazur [13] shows
that J̃(Q) is finite of order the numerator of (N−1)/12, which is generated
by the image of the class 0−∞ by the projection from J0(N) to J̃ .
Proposition 4.3. Q1 does not specialize to (E/p)0 for any bad prime p of
E.
Proof. Define a map g from X0(N)(k) to J0(N)(Q) by g(x) =

∑
σ∈G

σx−d·
∞, where d := [k : Q]. Let f be the composition of g with the projection h
from J0(N) to J̃ . Then f(x) is a torsion point, since J̃(Q) is a finite group
and f(x) is Q-rational. By Proposition 4.2 we have σx/p = ∞/p for each σ
and p dividing 2, so we have

f(x)/p = h(
∑
σ∈G

σx/p − d · ∞/p) = 0,

so f(x) has order a power of 2. However, f(x)p = 0 for p dividing 3 by the
same reasoning. Thus, f(x) has order a power of 3, and so f(x) = 0.

If p is a bad prime of E such that Q1 specializes to (E/p)0, then x/p =
0/p. By Proposition 4.2 we may assume that the residue characteristic p is
neither 2 nor 3. Since E is a Q-curve completely defined over k, the types
of reduction at σp are the same for any σ and thus we have σx/p = 0/p for
each σ. We have

f(x)/p = h(
∑
σ∈G

σx/p − d · ∞/p) = h(d(0−∞))/p.

Since h(0−∞) is a Q-rational point, the order of h(0−∞) divides d. Since
the order of h(0−∞) is equal to the numerator of (N − 1)/12, N is of the
form 2m+2 +1, 3 ·2m+2 +1, which is impossible by the assumption (2). �
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Proposition 4.4. k(E[N ])/k(ζN ) is everywhere unramified.

Proof. If E has good reduction at p and p 6= N , then k(E[N ])/k(ζN ) is
unramified at the primes lying above p (cf. Serre-Tate [23]).

If E has good reduction at p and p = N , then E[N ] is a finite flat group
scheme over Op. Then there is a short exact sequence of finite flat group
schemes over Op:

0 → Z/NZ → E[N ] → µN → 0.

However, E[N ] also fits into a short exact sequence

0 → E[N ]0 → E[N ] → E[N ]ét → 0,

where E[N ]0 is the largest connected subgroup of E[N ] and E[N ]ét is the
largest étale quotient (cf. [14], p.134-138). Clearly we have E[N ]0 = µN , and
this gives us splitting of the above exact sequences. Since [k(E[N ]) : k(ζN )]
divides N , the action of the inertia subgroup for p in Gk(ζN ) on E[N ] is
trivial. Namely, k(E[N ])/k(ζN ) is unramified at the primes lying above p.

Assume that E has bad reduction at p. Since J0(N) is semistable, E[N ]/p

is a quasi-finite flat group scheme over Op (cf. [5]), and fits into a short exact
sequence

0 → Z/NZ → E[N ] → µN → 0,
where µN is a quasi-finite flat group with generic fibre isomorphic to µN .
Since Q1 does not specialize to (E/p)0, we see that the kernel of multiplica-
tion by N on (E/p)0 maps injectively to µN . Thus, µN is actually a finite
flat group scheme. If p 6= N , then E[N ] is étale, and so k(E[N ])/k(ζN ) is
unramified at the primes above p. If p = N , then µN = µN by Raynaud [21],
Corollary 3.3.6, and eN ≤ 2 < N − 1. We see that E[N ]/Op

= Z/N ⊕ µN ,
so k(E[N ])/k(ζN ) is unramified at the primes above p. �

Under the assumption (3), we see that k(E[N ]) = k(ζN ) by using Propo-
sitions 3.13 and 4.4. Since E[N ] = 〈Q1〉 ⊕ 〈Q2〉, the subgroup 〈Q2〉 is k-
rational.

Proposition 4.5. The quotient curve E/〈Q2〉 is again a central Q-curve
over k with N -rational torsion point. Furthermore the image of Q1 is N -
rational point of E/〈Q2〉 and the following diagram is commutative.

σE
φσ−−−→ E

↓ ↓
σ

(
E/〈Q2〉

)
φσ−−−→ E/〈Q2〉.

Proof. Since 〈Q2〉 is k-rational, the quotient curve E/〈Q2〉 is a Q-curve
over k. We show that φσ〈σQ2〉 ⊂ 〈Q2〉. We may put φσ(σQ2) = aQ1 + bQ2.
Since Q1 is k-rational, φσ(τσQ2) = aQ1 +bτQ2 for each τ in Gk. Since 〈Q2〉
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is k-rational, a 6= 0 implies τQ2 = Q2 and thus k(E[N ]) = k. Since k is
polyquadratic and N > 3, this leads to a contradiction.

Since φσ〈σQ2〉 ⊂ 〈Q2〉, we have the above diagram. Specially E/〈Q2〉 is
again a central Q-curve. �

Proof of Theorem 1.1. By Proposition 4.5 we get a sequence of central
Q-curves over k

E → E(1) → E(2) → E(3) → · · ·
each obtained from the previous one by an N -isogeny, and such that the
original group Z/NZ maps isomorphically into every E(j).

It follows from Shafarevic theorem that among the set of E(j) there can be
only a finite number of k-isomorphism classes of elliptic curves represented.
Consequently, for some indices j > j′ we must have E(j) ∼= E(j′). But E(j)

maps to E(j′) by a nonscalar isogeny. Therefore E(j) is a CM elliptic curve
and so is E. This contradicts the assumption that E is non-CM.

Proof of Corollary 1.1. Assume the condition (1) in Theorem 1.1 does not
hold, that is, N > 13. Since A has real multiplications, the character ε
is trivial and thus kε = Q. We recall that the proof of Proposition 4.1 is
independent of the conditions (2) and (3). Since E is semistable by Propo-
sition 4.1, we have k = Q by Proposition 3.16. The conditions (2) and (3)
in Theorem 1.1 mean that N = 5, 13, or, N divides the second Bernoulli
number B2 = 1/6. This leads to a contradiction to N > 13.

5. Proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2. We fix a k-rational
N -torsion point Q1 of E. Let M be the product of all prime divisors of dσ for
all σ. By the assumption of Theorem 1.2 we see that M divides N . Thus, by
using Proposition 3.4 we see thatM is a divisor of 6. Furthermore, (E,Q1) is
in X1(N)(k)×X0(1)(Q) π

−1(X0(M)/W )(Q) for some subgroup W of W (M)
such that [k : Q] = ]W . We note that the isogenies φσ correspond bĳectively
to elements of W . Hence we see that W = 〈1〉, 〈W2〉, 〈W3〉, 〈W2,W3〉.
Namely [k : Q] = 1, 2, 4.

If [k : Q] = 1, then our assertion follows from the result of Mazur [12].
Suppose that [k : Q] = 2. Then M = 2, 3 and N = Mn for some squarefree
integer n coprime to M . From the result of Kamienny [9] and Kenku-
Momose [10], we have (M,n) = (2, 1), (2, 3), (2, 5), (2, 7), (3, 1), (3, 2) such
that Y1(N)(k)×X0(1)(Q) π

−1(X0(M)/W )(Q) 6= ∅. Furthermore, we see that

(M,n) 6= (2, 5) by Proposition 3.10 and
(±2

5

)
= −1.

Suppose that [k : Q] = 4. Then M = 6 and N = 6n, (6, n) = 1, n is
squarefree. We show n = 1.
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Assume that n > 1. Then we have N ≥ 30. By Proposition 3.4 we see
that ζ3 is in k, and by Proposition 3.7 E is completely defined over k.

Proposition 5.1. Assume N > 9 and ζ3 is in k. Then E has additive
reduction at the finite places of k lying above (2).

Proof. We assume E has good reduction at such places. Since Q(
√
−3) ⊂ k,

the ideal (2) decomposes as p2 or pp′ in k. In either cases, the residue field
at p is F4. By the Weil bound we have ]Ep(F4) ≤ (

√
4 + 1)2 = 9. But there

exists an inclusion Z/NZ ↪→ Etors(k) ↪→ Ep(F4). This is a contradiction.
So E has bad reduction at such places. Furthermore by Propositions 3.14
and 3.15 E has additive reduction at such places. �

Proposition 5.2. The inequality p ≤ 13 holds for any prime divisor p of
n.

Proof. If p > 13, then E is semistable over k by Proposition 4.1. This
contradicts Proposition 5.1. �

By Proposition 3.10, we have p 6= 5, 13, since
(±2

5

)
=

(±2
13

)
= −1. We also

have p 6= 3, 7 since
(2
3

)
= −1 and

(−2
7

)
= −1. So we must show n 6= 11.

For the proof we need the following proposition.

Proposition 5.3 ([4]). The modular curve X0(66)/W6 is a hyperellip-
tic curve with W11 as the hyperelliptic involution and an affine model of
X0(66)/W6 is as follows: y2 = (z4− 7z3 + 11z2− 8z+ 4)(z6− 9z5 + 32z4−
57z3 + 56z2 − 33z + 11).

Assume that n = 11. Let p be a prime of k lying above (3) and let R be
the localization of the integer ring Ok at p. Take x := (E,Q1) in X1(66)(k).
If the prime ideal (3) is unramified in k, the ramification index e3 = 1 <
2 = 3 − 1. By Raynaud’s theorem (see proposition (1.10) in [10]) and the
universal property of the Néron model ER of E over R, (Z/66Z)R ⊂ ER.
If the prime ideal (3) ramifies in k, (Z/22Z)R ⊂ ER. In both cases, ER

has multiplicative reduction at p. Furthermore, (Z/11Z)R ⊗ k(p) is not
contained in the identity component E0(k(p)), since E0(k(p)) ' Z/(q− ε)Z,
where q := ]k(p) = 3, or 9 (recall k is biquadratic !) and ε = ±1. For each
σ in Gal(k/Q) we also denote by xσ the image of xσ under the natural
projection from X1(66) to X0(66). For any σ in Gal(k/Q), there exists a

rational cusp Cσ represented by
(1
d

)
with d|6 such that xσ ≡ Cσ mod p.

Then the divisor D :=
∑

σ∈Gal(k/Q)(x
σ − Cσ) is Q-rational.

By Proposition 3.7 and the fact that ](Gal(k/Q)\{1}) = 3 > 1, there
exists a non-trivial element τ in Gal(k/Q) such that the isogeny φτ from
τE to E is defined over k. Then we have Cσ ≡ Cτσ mod p for all σ in
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Gal(k/Q). Put D′ := 2
∑

σ∈Gal(k/Q)/〈τ〉(x
σ − Cσ). Since J0(66) is isogenous

to a product of elliptic curves of conductors 11, 33 and 66 by Theorem 1 in
[25], we see that J0(66)(Q) is a finite group from Cremona’s database [1].
Since D′ ≡ D ≡ 0 mod p and ]J0(66)(Q) < ∞, we have D′ ≡ 0 in J0(66)
by Raynaud’s theorem (note that p does not divide 2). Denote by φ the
natural projection from J0(66) to Jac(X0(66)/W6). Since W6 acts on the

set A := {
(1
d

)
| d|6}, we have 0 = φ(D′) = 2

(∑
σ∈Gal(k/Q)/〈τ〉 x

σ − C ′
σ

)
,

where C ′
σ := φ(Cσ) in A. Since by Proposition 5.3, Jac(X0(66)/W6) has no

nontrivial Q-rational 2-torsion of the form P +Q−∞+ −∞−, where ∞±
are the points at infinity, we have

D′′ :=
∑

σ∈Gal(k/Q)/〈τ〉
(xσ − C ′

σ) ≡ 0,

on Jac(X0(66)/W6). Then we can see that D′′ = div
(
az + b

cz + d

)
where z

is the (local) z-coordinate of X0(66)/W6 in Proposition 5.3 and
[
a b
c d

]
in

GL2(Q). Since W11 induces the hyperelliptic involution on X0(66)/W6, W11

have to fix the pole part of D′′. On the other hand, W11(A) ∩ A = ∅. This
gives a contradiction.

6. Appendix 1

In this appendix, we give an explicit model of the central Q-curve asso-
ciated to a non-cuspidal non-CM point of X∗

0 (6)(Q) and X0(6)/Wi(Q) for
i = 2, 3, 6. A model of elliptic curve with (0, 0) as a 6-torsion point is well
known:

(6.1) y2 + (1− s)xy − (s2 + s)y = x3 − (s2 + s)x2

∆ := s6(s+ 1)3(9s+ 1) 6= 0,
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where Q(X1(6)) = Q(X0(6)) = Q(s) (see [11]). We often regard a point
of X0(6) as that of X1(6) through the natural isomorphism from X1(6) to

X0(6). We can take a generator s =
η(τ)5η(3τ)
η(2τ)η(6τ)5

of Q(X0(6)) where η(τ) is

the eta function. Then we have the following commutative diagram where
all maps are the natural projections between modular curves over Q:

X0(6)
↙ ↓ ↘

X0(6)/W2 X0(6)/W6 X0(6)/W3

↘ ↓ ↙
X∗

0 (6).

It is easy to see that ti := s + s|Wi is a generator of the function field

Q(X0(6)/Wi) for i = 2, 3, 6 and t := s+s|W2 +s|W3 +s|W6 = s+
−s− 1
9s+ 1

+
1
9s

+
−9s− 1
9(s+ 1)

is a generator of the function field Q(X∗
0 (6)). We also have

t3|W2 =
−10t3 − 4
9t3 + 10

, t2|W3 =
−t2
t2 + 1

, t6|W2 =
−t6

9t6 + 1
.

Let π be the projection from X0(6) to X∗
0 (6). For a general point a in

X∗
0 (6)(Q), we can easily compute the solution of π(s) = a. These are the

conjugations of s = (
√
a +

√
4 + a)(3

√
a +

√
4 + 9a)/12. Thus a model of

the central Q-curve corresponding to some non-cuspidal non-CM point of
X1(6)(k)×X0(1)(Q) π

−1X∗
0 (6)(Q) for some biquadratic field k is obtained by

restricting s in (6.1) as follows:

s =
1
12

(
√
a+

√
4 + a)(3

√
a+

√
4 + 9a),

where a is in Q such that ∆ 6= 0 and k = Q(s) is a biquadratic field (cf.
[20]). Since t2 + t2|[W3] = t3 + t3|[W2] = t6 + t6|[W2] = π(s) = a, we also
obtain models of Q-curves corresponding to some non-cuspidal non-CM
points of X1(6)(k) ×X0(1)(Q) π

−1(X0(M)/WM )(Q) for M = 2, 3, 6 and for
some quadratic field k. These models are obtained by restricting s in (6.1)
as follows:

if M = 2, s =
−3t2 −

√
9t22 + 4t2 + 4

6(t2 + 1)
;

if M = 3, s =
−1

12(9t3 + 10)
(6 + 3t3 +

√
9t32 − 4)(2 + 9t3 +

√
9t32 − 4) ;

if M = 6, s =
1
6
(3t6 +

√
9t62 + 36t6 + 4) ;

where t2, t3, t6 is in Q such that ∆ 6= 0 and k = Q(s) is a quadratic field.
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7. Appendix 2

In this appendix we modify the Herbrand theorem. The general reference
is Washington [26]. Let ε be a quadratic character of GQ and let kε be its
fixed field. Let N be an odd prime number and let ζN be the primitive
N -th root of unity. Put M := kε(ζN ). We take the minimal positive integer
m such that M ⊂ Q(ζm). Then m is equal to the conductor of εχ−1, where
χ is the N -th cyclotomic character of GQ.
H := Gal(M/Q) may be regarded as a quotient of (Z/mZ)∗. We define

the Stickelberger element θ by

θ :=
∑

1≤a≤m
(a,m)=1

{
a

m

}
σ−1

a ∈ Q[H],

where {x} denote the fractional part of the real number x. We define the
Stickelberger ideal I by Z[H] ∩ θZ[H].

Proposition 7.1 (Stickelberger’s Theorem). The Stickelberger ideal anni-
hilates the ideal class group ClM of M .

Let I ′ be the ideal of Z[H] generated by elements of the form c−σc, with
(c,m) = 1. Since

(c− σc)θ =
∑
a

(
c

{
a

m

}
−

{
ac

m

})
σ−1

a ∈ Z[H],

we have I ′θ ⊂ I.
Let N be a prime number. Let ClM [N ] be the N -primary subgroup of

ClM . Then ClM [N ] is an H-vector space over FN .
Since ]H divides 2(N − 1), N does not divide ]H. Put

eεχ−1 :=
1
]H

∑
σ∈H

ε(σ)χ−1(σ)σ−1 ∈ FN [H].

Then
ClM [N ]εχ

−1
= eεχ−1ClM [N ]

and
eεχ−1(c− σc)θ = (c− ε(σc)χ−1(σc))B1,εχeεχ−1 .

Since there exists c such that ε(σc)χ(σc) 6= c, B1,εχ−1 annihilates
ClM [N ]εχ

−1 .

Proposition 7.2. If ClM [N ]εχ
−1 is non-trivial, then N divides B1,εχ.

Proposition 7.3. Assume that εχ2 6= 1. Then the congruence

B1,εχ ≡
B2,ε

2
mod N

holds.
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Proof. By the definition of the p-adic L-function Lp(s, εχ2) (cf. e.g. [26],
Theorem 5.11),

Lp(0, εχ2) = −(1− εχ(N))
B1,εχ

1
= −B1,εχ

because of εχ(N) = 0. Since the odd part of the conductor of ε is squarefree,
N2 does not divide the conductor of εχ2. Since εχ2 6= 1, we have

Lp(0, εχ2) = Lp(−1, εχ2) mod N

and both numbers are N -integral. (cf. e.g. [26], Corollary. 5.13). By the
definition of the p-adic L-function Lp(s, εχ2) we have

Lp(−1, εχ2) = −(1− ε(N)N)
B2,ε

2
≡ −B2,ε

2
mod N

since Lp(−1, εχ2) is N -integral. Thus we have

B1,εχ ≡
B2,ε

2
mod N.

�

By Propositions 7.2 and 7.3, the next proposition follows from class field
theory.

Proposition 7.4. If kε(ζN ) has a non-trivial unramified εχ−1-extension
over Q, then N divides B2,ε.

Proof. If εχ2 6= 1, then the assertion follows from Propositions 7.2 and 7.3.
Suppose that εχ2 = 1. Then ε is trivial and N = 3, or ε is quadratic and
N = 5. In any case we have kε(ζN ) = Q(ζN ), and its class number is one.
Thus kε(ζN ) does not have a non-trivial unramified εχ−1-extension over
Q. �
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