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Configurations of rank-40r extremal even
unimodular lattices (r = 1, 2, 3)

par Scott Duke KOMINERS et Zachary ABEL

Résumé. Nous montrons que, si L est un réseau unimodulaire
pair extrémal de rang 40r avec r = 1, 2, 3, alors L est engendré
par ses vecteurs de normes 4r et 4r + 2. Notre résultat est une
extension de celui d’Ozeki pour le cas r = 1.

Abstract. We show that if L is an extremal even unimodular
lattice of rank 40r with r = 1, 2, 3, then L is generated by its
vectors of norms 4r and 4r + 2. Our result is an extension of
Ozeki’s result for the case r = 1.

1. Introduction

A lattice of rank n is a free Z-module of rank n equipped with a positive-
definite inner product (·, ·) : L× L→ R. The dual of L, denoted L∗, is the
set

L∗ = {y ∈ L⊗ R : ∀x ∈ L, (x, y) ∈ Z} ,

which itself forms a lattice of the same rank as L. For a lattice vector
x ∈ L, we call (x, x) the norm of x. A lattice L is integral if (x, x′) ∈ Z
for all x, x′ ∈ L, i.e. if and only if L ⊆ L∗. An integral lattice is said to be
unimodular if it is self-dual (L = L∗).

A lattice L is called even if and only if every lattice vector has an even
integer norm, i.e. (x, x) ∈ 2Z for x ∈ L. An even lattice is automatically
integral by the familiar parallelogram identity, 2 (x, x′) = (x + x′, x + x′)−
(x, x)− (x′, x′).

Lattices that are simultaneously even and unimodular are especially rare.
Indeed, such a lattice’s rank must be divisible by 8. Sloane proved that if L
is an even unimodular lattice of rank n then the minimal (nonzero) norm
in L is bounded by

(1.1) min
x∈L

x 6=0

(x, x) ≤ 2bn/24c+ 2

Manuscrit reçu le 5 novembre 2007.
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(see [2, p. 194, Cor. 21]). An even unimodular lattice of rank n is called
extremal if it attains the bound (1.1).

Ozeki [6, 8] showed that if L is an extremal even unimodular lattice of
rank 32 or 48 then L is generated by its vectors of minimal norm. The first
author [5] showed analogous results for extremal even unimodular lattices of
ranks 56, 72, and 96. In a similar vein, Ozeki [7] showed that if L is extremal
even unimodular of rank 40, then L is generated by its vectors of norms 4
and 6. Here, we extend and slightly simplify Ozeki’s methods, recovering
Ozeki’s rank-40 result and obtaining analogous results for extremal even
unimodular lattices of ranks 80 and 120.

2. Modular forms and theta series

We will use the notationH = {z ∈ C : Im(z) > 0} for the upper half plane
of complex numbers. A modular form of weight k for the group PSL2(Z) is
a holomorphic function f : H → Z which is holomorphic at i∞ and satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all
(

a b
c d

)
∈ PSL2(Z). If a modular form f vanishes at z = i∞, it is

called a cusp form.
Let Mk and M0

k be the C-vector spaces of modular forms and cusp forms
of weight k respectively. It is known that the Eisenstein series

E4(z) = 1 + 240e2πiz + 2160e4πiz + 6720e6πiz + · · · and

E6(z) = 1− 504e2πiz − 16632e4πiz − 122976e6πiz − · · · ,
which are modular forms of weights 4 and 6 respectively, freely generate
the spaces Mk in the sense that any nonzero modular form can be written
uniquely as a weighted homogeneous polynomial in E4 and E6. This implies
that dim(Mk) = 0 for k odd, negative, or k = 2; that dim(M2k) = 1 and
dim(M0

2k) = 0 for k = 0, 2 ≤ k ≤ 5 and k = 7; and that multiplication
by the weight-12 modular form ∆ = 12−3(E3

4 − E2
6) defines an isomor-

phism Mk−12
∼→M0

k . More information on the theory of modular forms for
PSL2(Z) can be found in [9].

The theta function ΘL : H → Z associated to a lattice L is defined by

ΘL(z) =
∑
x∈L

eπi(x,x)z;

it is a generating function encoding the norms of L’s vectors. For a ho-
mogeneous harmonic polynomial P ∈ C[x1, . . . , xn], i.e. a homogeneous
polynomial for which

∑n
j=1

∂2P
∂x2

j
≡ 0, we define the weighted theta

series ΘL,P by
ΘL,P (z) =

∑
x∈L

P (x)eπi(x,x)z.
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As shown in [9, 3], if L is an even unimodular lattice of rank n then ΘL is a
modular form of weight n

2 , and if in addition P is a homogeneous harmonic
polynomial of degree d, then ΘL,P is a modular form of weight n

2 + d.

3. Main result

We denote by Pd,x0(x) the “zonal spherical harmonic polynomial” of
degree d, related to the Gegenbauer polynomial by

(3.1) Pd,x0(x) = Gd((x, x0) , ((x, x) (x0, x0))1/2),

where Gd(·, ·) is the homogeneous polynomial of degree d such that Gd(t, 1)
is the Gegenbauer polynomial of degree d evaluated at t [1].

We let L be an extremal even unimodular lattice of rank 40r (where
r ∈ {1, 2, 3}), and adopt the notation used by Ozeki in [7]: For an even
unimodular lattice L, we denote by Λ2m(L) the set of vectors in L having
norm 2m. We denote by L2m(L) the sublattice of L generated by Λ2m(L),
and similarly denote by L2m1+2m2(L) the sublattice of L generated by
Λ2m1(L) ∪ Λ2m2(L).

We define a(2k, L) = |Λ2k(L)|. It is clear that the theta series ΘL is given
by ΘL(z) =

∑∞
k=0 a(2k, L)e2kπiz. We note that

4r = 2b5r/3c+ 2 = min{2k > 0 : a(2k, L) 6= 0}
is the minimal norm of vectors in L and use the notation

Nj(x) = |{y ∈ Λ4r(L) : (x, y) = j}| ,
Mj(x) = |{y ∈ Λ4r+2(L) : (x, y) = j}| .

Using the involution y ←→ −y of Λm(L), we see that we have Nj(x) =
N−j(x) and Mj(x) = M−j(x) for any j ∈ R and x ∈ L⊗ R.

We will show the following configuration result, which directly extends
Ozeki’s [7] result for extremal even unimodular lattices of rank 40:

Theorem 3.1. For r = 1, 2, 3 and L extremal even unimodular of rank
40r, we have L = L4r+(4r+2)(L).

Proof. We partition L into its equivalence classes modulo L4r+(4r+2)(L).
We need only show that any class [x] ∈ L/L4r+(4r+2)(L) is represented by
a vector x0 ∈ [x] with (x0, x0) ≤ 4r + 2.

Now, we suppose there exists some equivalence class [x0] ∈
L/L4r+(4r+2)(L) where x0 6= 0 is a representative of minimal norm with
(x0, x0) = 2t for some t ≥ 2r + 2. We have the inequality

(3.2) |(x0, x)| ≤ 2r for all x ∈ Λ4r(L).

Indeed, if (x0,±x) > 2r, then L contains a vector x∓ x0 with norm

(x∓ x0, x∓ x0) = (x, x)∓ 2(x, x0) + (x0, x0) < (x0, x0),
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contradicting the minimality of x0.
Similarly, we have

(3.3) | (x0, x) | ≤ 2r + 1 for all x ∈ Λ4r+2(L).

From (3.2) and (3.3), we have the equations

∑
x∈Λ4r(L)

(x, x0)
2k =

2r∑
j=1

2 · j2k ·Nj(x0),(3.4)

∑
x∈Λ4r+2(L)

(x, x0)
2k =

2r+1∑
j=1

2 · j2k ·Mj(x0),(3.5)

for all k > 0.
We extract from the theta series ΘL of L the coefficients a(4r, L) and

a(4r + 2, L). We observe immediately from (3.4) and (3.5) that∑
x∈Λ4r(L)

(x, x0)
0 = a(4r, L),(3.6)

∑
x∈Λ4r+2(L)

(x, x0)
0 = a(4r + 2, L).(3.7)

Since L is even unimodular of rank 40r, we have ΘL,Pd,x0
∈M0

20r+d for any
d > 0. By comparing power-series coefficients, we then observe

ΘL,Pd,x0
≡ 0 for d ∈ {2, . . . , 4r − 2, 4r + 2},(3.8)

ΘL,P4r,x0
≡ c1∆2r for a constant c1,(3.9)

ΘL,P4r+4,x0
≡ c2E4∆2r for a constant c2.(3.10)

From (3.8), we obtain the equations
(3.11) ∑

x∈Λ4r(L)

(x, x0)
2d = a(4r, L)

1 · 3 · · · (2d− 1)
40r · (40r + 2) · · · (40r + 2d− 2)

(8r)dtd

and

(3.12)
∑

x∈Λ4r+2(L)

(x, x0)
2d =

a(4r + 2, L)
1 · 3 · · · (2d− 1)

40r · (40r + 2) · · · (40r + 2d− 2)
(8r + 4)dtd,
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for d ∈ {2, . . . , 4r − 2, 4r + 2}. We obtain from (3.9)

(3.13)
∑

x∈Λ4r+2(L)

P4r,x0(x) = c4r

∑
x∈Λ4r(L)

P4r,x0(x),

where ∆4r = e(4r)πiz + c4re
(4r+1)πiz + O(e(4r+2)πiz). Similarly, (3.10) gives

(3.14)
∑

x∈Λ4r+2(L)

P4r+4,x0(x) = c4r+4

∑
x∈Λ4r(L)

P4r+4,x0(x),

where E4∆4r = e(4r)πiz + c4r+4e
(4r+1)πiz + O(e(4r+2)πiz).

Combining the equations (3.6), (3.7), (3.11), (3.12), (3.13), and (3.14)
with (3.4) and (3.5), we obtain a system of 4r + 4 homogeneous linear
equations in the 4r + 3 unknowns

N0(x0), . . . , N2r(x0),M0(x0), . . . ,M2r+1(x0).

At this stage, we diverge from our natural generalization of Ozeki’s orig-
inal methods and obtain the (extended) determinants of these inhomoge-
neous linear systems; these determinants must vanish because the system
is overdetermined.

For r = 1, 2, 3, these determinants are respectively

255375874114131196233 · (t − 2) · t · (6t − 13) ·
(
10t2 − 55t + 77

)
,(3.15)

21323275167101161310234418436473 · (t − 4) · t · Q2(t),(3.16)

2244348526713117137176234311137159146111675713731 · (t − 6) · t · Q3(t),(3.17)

where Q2(t) is the irreducible quintic

10768t5 − 242280t4 + 2202310t3 − 10101795t2 + 23361877t− 21771246

and Q3(t) is the irreducible septic

19989882674056909935t7 − 892881426107875310430t6

+17258039601222654151533t5 − 187053310321121904306075t4

+1227398249908229181423784t3 − 4874010945909263810320032t2

+10840974078436271024624064t− 10414527769923133690990080.

In each case, there are no integer solutions t ≥ 2r + 2. However, we had
assumed the existence of an equivalence class

[x0] ∈ L/L4r+(4r+2)(L)

with minimal-norm representative x0 6= 0 having (x0, x0) = 2t for integral
t ≥ 2r + 2; since no such t exists, all equivalence classes must be generated
by vectors having norms 4r and 4r + 2. �
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4. Concluding remarks

A quick inspection will show that our results are the only possible imme-
diate extensions of Ozeki’s methods. In the cases r ≥ 4, it is not possible
to extract sufficiently many linear conditions by these exact techniques, as
the dimensions of the relevant spaces of cusp forms grow too large.

However, using different analysis, Elkies [4] has shown a stronger result
than our Theorem 3.1 in the r = 3 case: If L is an extremal even unimodular
lattice of rank 120 then L = L12(L). This result for rank-120 lattices is
analogous to Ozeki’s [6, 8] results in dimensions 32 and 48, and to the first
author’s [5] results in dimensions 56, 72, and 96.
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