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Variants of the Brocard-Ramanujan equation

par Omar KIHEL et Florian LUCA

Résumé. Dans cet article, nous étudions quelques variations sur
l’équation diophantienne de Brocard-Ramanujan.

Abstract. In this paper, we discuss variations on the Brocard-
Ramanujan Diophantine equation.

1. Introduction

Brocard (see [4, 5]), and independently Ramanujan (see [15, 16]), posed
the problem of finding all integral solutions to the diophantine equation

(1) n! + 1 = x2.

Although it is unlikely that equation (1) has any solution with n > 7, the
fact that it has only finitely many solutions has only been conditionally
proved by Overholt (see [13]). He showed that the weak form of Szpiro’s
conjecture implies that equation (1) has only finitely many solutions. The
weak form of Szpiro’s conjecture is a special case of the ABC conjecture
and asserts that there exists a constant s such that if A, B, and C are
positive integers satisfying A + B = C with gcd(A,B) = 1, then

C ≤ N(ABC)s,

where N(k) is the product of all primes dividing k taken without repetition.
Berend and Osgood [1] showed that if P ∈ ZZ[X] is a polynomial of degree
≥ 2, then the density of the set of positive integers n for which there exists
an integer x satisfying the more general diophantine equation

(2) n! = P (x)

is zero. Erdős and Obláth [7] and Pollack and Shapiro [14] showed that if
P (x) = xd ± 1 and d ≥ 3, then equation (2) has no solution with n > 1.
Generalizing Overholt’s result, the second author [11] showed that the full
ABC conjecture implies that equation (2) has only finitely many solutions.
A wealth of information about this equation can be found in the recent
paper [2].

Manuscrit reçu le 13 février 2007.
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In this paper, we discuss some variations on the above diophantine equa-
tions. We look at the following diophantine equations:

(3) xp ± yp =
n∏

k×n
k=1

k,

and

(4) P (x) =
n∏

k×n
k=1

k,

where P ∈ Q[x] is a polynomial of degree ≥ 2. Here and in what follows,
we write k × n to mean that k does not divide n.

2. New results

In what follows, we use the Vinogradov symbols �, � and � as well
as the Landau symbols O and o with their regular meanings. Recall that
A � B, B � A and A = O(B) are all equivalent and mean that |A| ≤ c|B|
holds with some positive constant c.

Theorem 1. The Diophantine equation

xp ± yp =
n∏

k×n
k=1

k

admits only finitely many integer solutions (x, y, p, n) with p ≥ 3 a prime
number and gcd(x, y) = 1.

Proof. There is no loss of generality to consider only the ’+’ sign and to
assume that |x| > |y|. Since the right hand side is positive, we get that x
is positive. Note that gcd(x, y) = 1 implies that no prime q ≤ n coprime to
n divides either x or y. Now either x ≤ n, or x ≥ n + 1. In the first case,

(n− 1)!1/2 ≤ xp + |y|p ≤ 2np,

therefore by Stirling’s formula
(n− 1)

2
(1 + o(1)) log n ≤ p log n + log 2.

For large n, the above inequality implies that p ≥ n/3. Note however that
xp + yp = (x + y)(xp + yp)/(x + y), and, by Fermat’s Little Theorem, it
follows easily that (xp + yp)/(x + y) = δm, where δ ∈ {1, p}, and every
prime factor of m is 1 (mod p). Since every prime factor of m is ≤ n ≤ 3p,
it follows that

xp + yp

x + y
≤ p(p + 1)(2p + 1).
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However,
xp + yp

x + y
≥ xp−2 ≥ 2p−2.

Indeed, the above inequality holds for positive y because

xp + yp > xp ≥ 2xp−1 = (2x)xp−2 ≥ (x + y)xp−2,

and for negative y because
xp + yp

x + y
= xp−1 + xp−2(−y) + · · ·+ (−y)p−1 > xp−1 > xp−2.

We thus get the inequality

2p−2 ≤ p(p + 1)(2p + 1),

which shows that p is bounded, and since p ≥ n/3, we get that n is bounded
as well in this case.

We now assume that x ≥ n + 1. If y > 0, then nn > n! > xp ≥ (n + 1)p,
and if y < 0, then

nn > (x + y)
(
xp−1 + xp−2(−y) + · · ·+ (−y)p−1

)
> xp−1 ≥ (n + 1)p−1.

In both cases, we get p ≤ n. We write again

xp + yp = (x + y)
(

xp + yp

x + y

)
,

and we use the fact that (xp + yp)/(x + y) = δm, where δ ∈ {1, p}, and
every prime factor of m is 1 (mod p). If y > 0, we get

m =
xp + yp

δ(x + y)
>

xp

2xp
=

xp−1

2p
,

while if y < 0, then

m =
1
δ

(
xp + yp

x + y

)
=

1
δ

(
xp−1 + xp−2(−y) + · · ·+ (−y)p−1

)
>

xp−1

2p
.

Thus, we always have

m ≥ xp−1

2p
>

(2xp)(p−1)/p

4p
>

(∏n
k×n
k=1

k

)(p−1)/p

4p
,

where we used the fact that
∏n

k×n
k=1

k = xp + yp < 2xp. Let M be the largest

divisor of
∏n

k×n
k=1

k build up only from primes of the form q ≡ 1 (mod p).

Then m | M , and so

log M >
p− 1

p
log

 n∏
k×n
k=1

k

− log(4p) >
p− 1
2p

(n−1) log
(

n− 1
e

)
− log(4p).
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In the above inequality, we used Stirling’s formula as well as the fact that∏n
k×n
k=1

k > (n− 1)!1/2. It is clear that for all q ≤ n, the order of q in n! is⌊
n

q

⌋
+

⌊
n

q2

⌋
+ · · · < n

∑
i≥1

1
qi

=
n

q − 1
.

Thus,

log M < n
∑
q≤n

q≡1 (mod p)

log q

q − 1
.

Comparing the above inequalities, we get
p− 1
2p

log(n− 1)− p− 1
p

− log 4p

n− 1
<

n

n− 1

∑
q≤n

q≡1 (mod p)

log q

q − 1
,

which together with the fact that p ≤ n leads to
p− 1
2p

log(n− 1) ≤ n

n− 1

∑
q≤n

q≡1 (mod p)

log q

q − 1
+ O(1).

Writing q = 1 + pt for some t ≤ n/p and using the trivial inequality∑
q≤n

q≡1 (mod p)

log q

q − 1
≤ log n

p

∑
t≤n/p

1
t
� log2 n

p
,

we get
1
3

log(n− 1) ≤ p− 1
2p

log(n− 1) � log2 n

p
+ O(1),

therefore p � log n. Using the Montgomery-Vaughan Theorem concerning
primes in arithmetic progressions (see [12]) as well as partial summation,
we deduce that ∑

q≤n
q≡1 (mod p)

log q

q − 1
� log n

p
,

and therefore get
1
3

log(n− 1) ≤ p− 1
2p

log(n− 1) � log n

p
+ O(1),

which leads to p � 1. Since now p may be assumed fixed, we may apply
Dirichlet’s theorem on primes in arithmetical progressions, to get that∑

q≤n
q≡1 (mod p)

log q

q − 1
=

log(n− 1)
p− 1

+ O(1),
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and now we are led to
p− 1
2p

log(n− 1) ≤ log(n− 1)
p− 1

+ O(1),

which tells us that(
p− 1
2p

− 1
p− 1

)
= O

(
1

log(n− 1)

)
,

which admits only finitely many solutions (p, n) with p ≥ 5 because

p− 1
2p

− 1
p− 1

=
p2 − 4p + 1
2p(p− 1)

≥ 6
40

for p ≥ 5. Finally, since nn > xp−1 and n and p are bounded, we get that x
is also bounded. The statement with p = 3 follows from the same arguments
by strengthening the inequality

n∏
k×n
k=1

k > (n− 1)!1/2,

to say
n∏

k×n
k=1

k > n!2/3

for n sufficiently large. To see that this last inequality holds, note that
n∏

k×n
k=1

k ≥ n!
nτ(n)

,

where τ(n) is the number of divisors of n. Thus, it suffices to show that the
inequality

nτ(n) < n!1/3

holds for large n, and this inequality is implied by

τ(n) log n <
n

3
log(n/e).

Since log(n/e) > (log n)/2 if n is large, it follows that it is enough that the
inequality

τ(n) <
n

6
holds for large n, and this last inequality is obvious. ut

Before stating and proving Theorem 2, we restate the ABC conjecture
mentioned already in the introduction. The ABC conjecture asserts that
for any ε > 0 there exists a constant C(ε) depending only on ε, such that
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if A, B and C are three nonzero coprime integers satisfying A + B = C,
then

max(|A|, |B|, |C|) < C(ε)N(ABC)1+ε.

Theorem 2. Let P ∈ Q[x] be a polynomial of degree ≥ 2. Then the ABC
conjecture implies that the equation

P (x) =
n∏

k×n
k=1

k

has only finitely many solutions (x, n), where x is a rational number and n
is a positive integer.

Proof. We write the equation as

a0x
d + a1x

d−1 + · · ·+ ad = ad+1

n∏
k×n
k=1

k,

where a0, . . . , ad+1 are integers with a0ad+1 6= 0. Here, one may choose
ad+1 to be the least common denominator of all the coefficients of P (x).
Multiplying both sides of the above equation by ad−1

0 and letting y = a0x,
it follows that we arrive at the equation

yd + b1y
d−1 + · · ·+ bd = bd+1

n∏
k×n
k=1

k,

where bi = aia
i−1
0 for i = 1, . . . , d, and bd+1 = ad+1a

d−1
0 . Note now that y

is an integer because for every fixed positive integer n the above equation
shows that the rational number y is a root of a monic polynomial with
integer coefficients; hence, an algebraic integer, and therefore a rational
integer. With the substitution z = y + b1/d, we may rewrite the above
equation as

zd + c2z
d−2 + · · ·+ cd = cd+1

n∏
k×n
k=1

k,

where ci are rational numbers whose denominator divides dd. Finally, we
multiply the above equation by dd and use the substitution t = dz to arrive
at

td + e2t
d−2 + · · ·+ ed = ed+1

n∏
k×n
k=1

k,

where t and ei are integers for i = 2, . . . , d + 1. Let j ≤ d be the largest
index in {2, . . . , d} such that ej 6= 0. If this index does not exist, then the
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above equation is

td = ed+1

n∏
k×n
k=1

k.

By the Prime Number Theorem, for large n, the interval (n/2, n) contains
≈ n/(2 log n) prime numbers p and none of those divides n. Since d > 1
and t is an integer, it follows that every such prime number divides ed+1.
In particular, n/2 < ed+1, which shows that n is bounded.

Assume now that j exists and rewrite the equation as

(5) tj + (e2t
j−2 + · · ·+ ej) =

ed+1

td−j

n∏
k×n
k=1

k.

Since for large t we have that |td + e2t
d−2 + · · ·+ ej | � |t|d, it follows that

|t|d � |td + e2t
d−2 + · · ·+ ed| �

n∏
k×n
k=1

k � (n− 1)!1/2,

therefore, by taking logarithms and invoking Stirling’s formula, we get

(6) |t| ≥ exp
(

1
2d

(1 + o(1))n log n + O(1)
)

.

We now set A = tj , B = (e2t
j−2 + · · · + ej), C = ed+1

td−j

∏n
k×n
k=1

k, and we

apply the ABC conjecture to equation (5). We note that our A, B, C are
not necessarily coprime, but their greatest common divisor is O(1). Indeed,
let D1 = gcd(t, ej). Clearly, D1 ≤ |ej |, and

gcd(A,B) = gcd(tj , e2t
j−2 + · · ·+ ej) |

(
gcd(t, e2t

j−2 + · · ·+ ej)
)j
| Dd

1 .

Thus, we may apply the ABC-conjecture and get that

|t|j �

|t||B| ∏
p≤n

p

1+ε

� |t|(j−1)(1+ε) · 4(1+ε)n.

Choosing ε = 1/j, we get that (j − 1)(1 + ε) = j − 1/j, and that the
inequality

|t|1/j � 4(1+ε)n < 42n

holds. This last inequality leads to

(7) |t| ≤ exp (2jn log 4 + O(1)) ≤ exp(2dn log 4 + O(1)).

Comparing (6) and (7), we get

2dn log 4− 1
2d

(1 + o(1))n log n = O(1),
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which certainly implies that n is bounded. ut

Dabrowski (see [6]), showed that if P (x) = x2−A, where A is an integer
which is not a perfect square, then equation (2) has only finitely many
solutions. We consider the diophantine equation

(8) x2 −A =
n∏

k×n
k=1

k,

and prove the following result.

Theorem 3. If the integer A is not a perfect square, and n and x are
positive integers satisfying equation (8), then either

n ≤ p or n = 2p,

where p is the smallest prime such that (A
p ) = −1. Here, (•p) stands for the

Legendre symbol. In particular, equation (8) has only finitely many positive
integer solutions.

Before proving Theorem 3, we need the following Lemma.

Lemma 4. Every prime p ≤ n divides
∏n

k×n
k=1

k, except when n = p, 2p,

cases in which p is the only prime ≤ n which does not divide
∏n

k×n
k=1

k.

Proof. Suppose that p ≤ n and that n 6= p, 2p. If p ∈ (n/2, n), then p does
not divide n, therefore it divides

∏n
k×n
k=1

k. We now assume that p < n
2 .

Hence, there exists a positive integer i such that
n

2
≤ 2ip < n.

(i) If n
2 < 2ip < n, then 2ip does not divide n, and so it divides∏n

k×n
k=1

k.

(ii) If n
2 = 2ip, then 3 · 2i−1p < n, and does not divide n, therefore it

divides
∏n

k×n
k=1

k.

ut

Proof of Theorem 3. Since A is not a perfect square, there exists a prime p
such that (A

p ) = −1. Then p does not divide
∏n

k×n
k=1

k. Lemma 4 now shows

that either n ≤ p or n = 2p. ut
In the general case in which A is any integer in equation (8), we have the
conditional result given in the following theorem.

Theorem 5. If the weak form of Hall’s conjecture is true, then equation
(8) has only finitely many solutions.
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The weak form of Hall’s conjecture is a special case of the ABC-conjecture
and asserts that for every ε > 0, there exists a constant C(ε) depending only
on ε > 0, such that if x, y, and k are nonzero integers satisfying x2 = y3+k,
then

max
(
|x2|, |y3|

)
≤ C(ε)|k|6+ε.

Proof of Theorem 5. We assume that n ≥ 3. Let d and y be the two integers
with d cubefree such that

∏n
k×n
k=1

k = dy3. Then, from Chebyshev’s bound

we obtain that

d ≤

 ∏
p < n

p prime

p


2

< 42(n−1).

Equation (8) gives
dy3 + A = x2,

so
Y 3 + d2A = X2,

where X = dx and Y = dy. Taking ε = 1 in the weak form of Hall’s
conjecture we get that

d2
n∏

k×n
k=1

k = d3y3 = Y 3 ≤ C(1)|d2A|7.

Since

(n− 1)!1/2 ≤
n∏

k×n
k=1

k,

it follows, from Stirling’s formula, that

(4(n− 1)(n−1)e−(n−1))
1
2 ≤ (n− 1)!

1
2 ≤

n∏
k×n
k=1

k.

Hence,

(4(n− 1)(n−1)e−(n−1))
1
2 ≤

n∏
k×n
k=1

k � |d2|6|A|7 � 424(n−1)|A|7.

Thus, (
n− 1
448

)n−1
2

� |A|7.

This proves that n is bounded. ut
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We considered equation (8) with A = 1, namely

(9)
n∏

k×n
k=1

k + 1 = y2,

and did some computations. Except from the obvious solutions n = 4 and
n = 5, we didn’t find any other solution for equation (9) up to n = 105.

Finally, we look at yet another variant of the Brocard-Ramanujan dio-
phantine equation, namely

(10) 1 +
∏
k≤n

gcd(k,n)=1

k = y2.

Theorem 6. Suppose that there exist integers n > 4 and y satisfying equa-
tion (10). Then either n is equal to pα or 2pα for some prime p and positive
integer α, or all odd primes dividing n are ±1 (mod 8).

Proof. We know from Gauss generalization to Wilson’s Theorem (see [17])
that

∏
k≤n

gcd(k,n)=1

k =


−1 (mod n), if n = 4, pα, 2pα,

1 (mod n), otherwise.

Thus, if n 6= 4, pα, or 2pα, then Π
k≤n

gcd(k,n)=1

k + 1 ≡ 2 (mod n). This implies

that y2 ≡ 2 (mod n). In particular, y2 ≡ 2 (mod q) holds for all odd prime
factors q of n. Hence, (2

q ) = 1, leading to the conclusion that q ≡ ±1
(mod 8). ut

We remark that results of Landau (see pages 668–669 in [10]), together with
the Prime Number Theorem, imply that if x is any positive real number,
then the number of positive integers n ≤ x such that n = pα, 2pα, or n
is free of prime factors ≡ ±3 (mod 8) is � x/

√
log x. In particular, the

set of n for which equation (10) can have a positive integer solution y is
of asymptotic density zero, which is an analogue of the result of Berend
and Osgood from [1] for the particular polynomial P (X) = X2− 1 and our
variant of the Brocard-Ramanujan equation.
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