OURNAL de Théorie des Nombres de Bordeaux

 anciennement Séminaire de Théorie des Nombres de BordeauxGabriele NEBE et Kristina SCHINDELAR
S-extremal strongly modular lattices
Tome 19, n ${ }^{\mathrm{o}} 3$ (2007), p. 683-701.
http://jtnb.cedram.org/item?id=JTNB_2007__19_3_683_0
© Université Bordeaux 1, 2007, tous droits réservés.
L'accès aux articles de la revue «Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

S-extremal strongly modular lattices

par Gabriele NEBE et Kristina SCHINDELAR

RÉSUMÉ. Un réseau fortement modulaire est dit s-extrémal, s'il maximise le minimum du réseau et son ombre simultanément. La dimension des réseaux s-extrémaux dont le minimum est pair peut être bornée par la théorie des formes modulaires. En particulier de tels réseaux sont extrémaux.

Abstract. S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.

1. Introduction.

Strongly modular lattices have been defined in [11] to generalize the notion of unimodular lattices. For square-free $N \in \mathbb{N}$ a lattice $L \subset\left(\mathbb{R}^{n},(.,).\right)$ in Euclidean space is called strongly N-modular, if L is integral, i.e. contained in its dual lattice

$$
L^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \forall \ell \in L\right\}
$$

and isometric to its rescaled partial dual lattices $\sqrt{d}\left(L^{*} \cap \frac{1}{d} L\right)$ for all $d \mid N$. The simplest strongly modular lattice is

$$
C_{N}:=\perp_{d \mid N} \sqrt{d} \mathbb{Z}
$$

of dimension $\sigma_{0}(N)$, the number of divisors of N. For

$$
N \in \mathcal{L}=\{1,2,3,5,6,7,11,14,15,23\}
$$

which is the set of square-free numbers such that $\sigma_{1}(N)=\sum_{d \mid N} d$ divides 24, Theorems 1 and 2 in [13] bound the minimum $\min (L):=\min \{(\ell, \ell) \mid$
$0 \neq \ell \in L\}$ of a strongly N-modular lattice that is rational equivalent to C_{N}^{k} by

$$
\begin{equation*}
\min (L) \leq 2+2\left\lfloor\frac{k}{s(N)}\right\rfloor, \text { where } s(N)=\frac{24}{\sigma_{1}(N)} \tag{1.1}
\end{equation*}
$$

For $N \in\{1,3,5,7,11\}$ there is one exception to this bound: $k=s(N)-1$ and $L=S^{(N)}$ of minimum 3 (see [13, Table 1]). Lattices achieving this bound are called extremal.

For an odd strongly N-modular lattice L let

$$
S(L)=L_{0}^{*} \backslash L^{*}
$$

denote the shadow of L, where $L_{0}=\{\ell \in L \mid(\ell, \ell) \in 2 \mathbb{Z}\}$ is the even sublattice of L. For even strongly N-modular lattices L let $S(L):=L^{*}$. Then the shadow-minimum of an N-modular lattice is defined as

$$
\operatorname{smin}(L):=\min \{N(x, x) \mid x \in S(L)\} .
$$

In particular $\operatorname{smin}(L)=0$ for even lattices L. In this paper we show that for all $N \in \mathcal{L}$ and for all strongly N-modular lattices L that are rational equivalent to C_{N}^{k}

$$
\begin{array}{ll}
2 \min (L)+\operatorname{smin}(L) \leq k \frac{\sigma_{1}(N)}{4}+2 & \text { if } N \text { is odd and } \\
\min (L)+\operatorname{smin}(L) \leq k \frac{\sigma_{1}(N / 2)}{2}+1 & \text { if } N \text { is even }
\end{array}
$$

with the exceptions $L=S^{(N)}, k=s(N)-1(N \neq 23,15$ odd $)$ where the bound has to be increased by 2 and $L=O^{(N)}, k=s(N)$ and N even, where the bound has to be increased by 1 (see [13, Table 1] for the definition of the lattices $S^{(N)}, O^{(N)}$ and also $\left.E^{(N)}\right)$. Lattices achieving this bound are called s-extremal. The theory of modular forms allows us to bound the dimension $\sigma_{0}(N) k$ of an s-extremal lattice of even minimum μ by

$$
2 k<\mu s(N)
$$

In particular s-extremal lattices of even minimum are automatically extremal and hence by [12] there are only finitely many strongly N-modular s-extremal lattices of even minimum. This is also proven in Section 3, where explicit bounds on the dimension of such s-extremal lattices and some classifications are obtained. It would be interesting to have a similar bound for odd minimum $\mu \geq 3$. Of course for $\mu=1$, the lattices C_{N}^{k} are s-extremal strongly N-modular lattices of minimum 1 for arbitrary $k \in \mathbb{N}$ (see [9]), but already for $\mu=3$ there are only finitely many s-extremal unimodular lattices of minimum 3 (see [10]). The s-extremal strongly N-modular lattices of minimum $\mu=2$ are classified in [9] and some s-extremal lattices of minimum 3 are constructed in [15]. For all calculations we used the computer algebra system MAGMA [2].

2. S-extremal lattices.

For a subset $S \subset \mathbb{R}^{n}$, which is a finite union of cosets of an integral lattice we put its theta series

$$
\Theta_{S}(z):=\sum_{v \in S} q^{(v, v)}, \quad q=\exp (\pi i z)
$$

The theta series of strongly N-modular lattices are modular forms for a certain discrete subgroup Γ_{N} of $S L_{2}(\mathbb{R})$ (see [13]). Fix $N \in \mathcal{L}$ and put

$$
g_{1}^{(N)}(z):=\Theta_{C_{N}}(z)=\prod_{d \mid N} \Theta_{\mathbb{Z}}(d z)=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)\left(1+q^{d(2 j-1)}\right)^{2}
$$

(see [4, Section 4.4]). Let η be the Dedekind eta-function

$$
\eta(z):=q^{\frac{1}{12}} \prod_{j=1}^{\infty}\left(1-q^{2 j}\right) \text { and put } \eta^{(N)}(z):=\prod_{d \mid N} \eta(d z)
$$

If N is odd define

$$
g_{2}^{(N)}(z):=\left(\frac{\eta^{(N)}(z / 2) \eta^{(N)}(2 z)}{\eta^{(N)}(z)^{2}}\right)^{s(N)}
$$

and if N is even then

$$
g_{2}^{(N)}(z):=\left(\frac{\eta^{(N / 2)}(z / 2) \eta^{(N / 2)}(4 z)}{\eta^{(N / 2)}(z) \eta^{(N / 2)}(2 z)}\right)^{s(N)}
$$

The meromorphic function $g_{2}^{(N)}$ generates the field of modular functions of Γ_{N}. It is a power series in q starting with

$$
g_{2}^{(N)}(z)=q-s(N) q^{2}+\ldots
$$

Using the product expansion of the η-function we find that

$$
q^{-1} g_{2}^{(N)}(z)=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1+q^{d(2 j-1)}\right)^{-s(N)} .
$$

For even N one has to note that

$$
\begin{aligned}
q^{-1} g_{2}^{(N)}(z) & =\prod_{d \left\lvert\, \frac{N}{2}\right.} \prod_{j=1}^{\infty}\left(\frac{1+q^{4 d j}}{1+q^{d j}}\right)^{s(N)} \\
& =\prod_{d \left\lvert\, \frac{N}{2}\right.} \prod_{j=1}^{\infty}\left(1+q^{2 d(2 j-1)}\right)^{-s(N)}\left(1+q^{d(2 j-1)}\right)^{-s(N)}
\end{aligned}
$$

By [13, Theorem 9 , Corollary 3] the theta series of a strongly N-modular lattice L that is rational equivalent to C_{N}^{k} is of the form

$$
\begin{equation*}
\Theta_{L}(z)=g_{1}^{(N)}(z)^{k} \sum_{i=0}^{b} c_{i} g_{2}^{(N)}(z)^{i} \tag{2.1}
\end{equation*}
$$

for $c_{i} \in \mathbb{R}$ and some explicit b depending on k and N. The theta series of the rescaled shadow $S:=\sqrt{N} S(L)$ of L is

$$
\begin{equation*}
\Theta_{S}(z)=s_{1}^{(N)}(z)^{k} \sum_{i=0}^{b} c_{i} s_{2}^{(N)}(z)^{i} \tag{2.2}
\end{equation*}
$$

where $s_{1}^{(N)}$ and $s_{2}^{(N)}$ are the corresponding "shadows" of $g_{1}^{(N)}$ and $g_{2}^{(N)}$ as defined in [13] (see also [9]).

If N is odd, then

$$
s_{1}^{(N)}=2^{\sigma_{0}(N)} q^{\sigma_{1}(N) / 4}\left(1+q^{2}+\ldots\right)
$$

and

$$
s_{2}^{(N)}=2^{-s(N) \sigma_{0}(N) / 2}\left(-q^{-2}+s(N)+\ldots\right) .
$$

If N is even, then

$$
\begin{aligned}
& s_{1}^{(N)}=2^{\sigma_{0}(N) / 2} q^{\sigma_{1}\left(\frac{N}{2}\right) / 2}(1+2 q+\ldots), \\
& s_{2}^{(N)}=2^{-s(N) \sigma_{0}\left(\frac{N}{2}\right) / 2}\left(-q^{-1}+s(N)+\ldots\right) .
\end{aligned}
$$

Theorem 2.1. Let $N \in \mathcal{L}$ be odd and let L be a strongly N-modular lattice in the genus of C_{N}^{k}. Let $\sigma:=\operatorname{smin}(L)$ and let $\mu:=\min (L)$. Then

$$
\sigma+2 \mu \leq k \frac{\sigma_{1}(N)}{4}+2
$$

unless $k=s(N)-1$ and $\mu=3$. In the latter case the lattice $S^{(N)}$ is the only exception (with $\min \left(S^{(N)}\right)=3$ and $\left.\operatorname{smin}\left(S^{(N)}\right)=4-\sigma_{1}(N) / 4\right)$.
Proof. The proof is a straightforward generalization of the one given in [6]. We always assume that $L \neq S^{(N)}$ and put $g_{1}:=g_{1}^{(N)}$ and $g_{2}:=g_{2}^{(N)}$. Let $m:=\mu-1$ and assume that $\sigma+2 \mu \geq k \frac{\sigma_{1}(N)}{4}+2$. Then from the expansion of

$$
\Theta_{S}=\sum_{j=\sigma}^{\infty} b_{j} q^{j}=s_{1}^{(N)}(z)^{k} \sum_{i=0}^{b} c_{i} s_{2}^{(N)}(z)^{i}
$$

in formula (2.2) above we see that $c_{i}=0$ for $i>m$ and (2.1) determines the remaining coefficients $c_{0}=1, c_{1}, \ldots, c_{m}$ uniquely from the fact that

$$
\Theta_{L}=1+\sum_{j=\mu}^{\infty} a_{j} q^{j} \equiv 1 \quad\left(\bmod q^{m+1}\right) .
$$

The number of vectors of norm $k \frac{\sigma_{1}(N)}{4}+2-2 \mu$ in $S=\sqrt{N} S(L)$ is

$$
c_{m}(-1)^{m} 2^{-m \sigma_{0}(N) s(N) / 2+k \sigma_{0}(N)}
$$

and nonzero, iff $c_{m} \neq 0$. The expansion of g_{1}^{-k} in a power series in g_{2} is given by

$$
\begin{equation*}
g_{1}^{-k}=\sum_{i=0}^{m} c_{i} g_{2}^{i}-a_{m+1} q^{m+1} g_{1}^{-k}+\star q^{m+2}+\ldots=\sum_{i=0}^{\infty} \tilde{c}_{i} g_{2}^{i} \tag{2.3}
\end{equation*}
$$

with $\tilde{c}_{i}=c_{i}(i=0, \ldots, m)$ and $\tilde{c}_{m+1}=-a_{m+1}$. Hence Bürmann-Lagrange (see for instance [16]) yields that
$c_{m}=\frac{1}{m!} \frac{\partial^{m-1}}{\partial q^{m-1}}\left(\frac{\partial}{\partial q}\left(g_{1}^{-k}\right)\left(q g_{2}^{-1}\right)^{m}\right)_{q=0}=\frac{-k}{m}\left(\right.$ coeff. of q^{m-1} in $\left.\left(g_{1}^{\prime} / g_{1}\right) / f_{1}\right)$
with $f_{1}=\left(q^{-1} g_{2}\right)^{m} g_{1}^{k}$. Using the product expansion of g_{1} and g_{2} above we get

$$
f_{1}=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)^{k}\left(1+q^{d(2 j-1)}\right)^{2 k-s(N) m}
$$

Since

$$
g_{1}^{\prime} / g_{1}=\sum_{d \mid N} \frac{\frac{\partial}{\partial q} \theta_{3}(d z)}{\theta_{3}(d z)}
$$

is alternating as a sum of alternating power series, the series $P:=g_{1}^{\prime} / g_{1} / f_{1}$ is alternating, if $2 k-s(N) m \geq 0$. In this case all coefficients of P are nonzero, since all even powers of q occur in $\left(1-q^{2}\right)^{-1}$ and g_{1}^{\prime} / g_{1} has a non-zero coefficient at q^{1}. Otherwise write

$$
P=g_{1}^{\prime} \prod_{d \mid N} \prod_{j=1}^{\infty} \frac{\left(1+q^{d(2 j-1)}\right)^{s(N) m-2 k-2}}{\left(1-q^{2 d j}\right)^{k+1}}
$$

If $2 k-s(N) m<-2$ then P is a positive power series in which all q-powers occur. Hence $c_{m}<0$ in this case. If the minimum μ is odd then this implies that $b_{\sigma}<0$ and hence the nonexistence of an s-extremal lattice of odd minimum for $s(N) m-2>2 k$. Assume now that $2 k-s(N) m=-2$, i.e. $k=s(N) m / 2-1$. By the bound in [13] one has

$$
m+1 \leq 2\left\lfloor\frac{k}{s(N)}\right\rfloor+2=2\left\lfloor\frac{m}{2}-\frac{1}{s(N)}\right\rfloor+2
$$

This is only possible if m is odd. Since g_{1}^{\prime} has a non-zero constant term, P contains all even powers of q. In particular the coefficient of q^{m-1} is positive. The last case is $2 k-s(N) m=-1$. Then clearly m and $s(N)$ are
odd and $P=G H^{(m-1) / 2}$ where

$$
G=g_{1}^{\prime} \prod_{d \mid N} \prod_{j=1}^{\infty}\left(1+q^{d(2 j-1)}\right)^{-1}\left(1-q^{2 d j}\right)^{-(s(N)+1) / 2}
$$

and

$$
H=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)^{-s(N)}
$$

If m is odd then the coefficient of P at q^{m-1} is

$$
\int_{1+i y_{0}}^{-1+i y_{0}} e^{-(m-1) \pi i z} G\left(e^{\pi i z}\right) H\left(e^{\pi i z}\right)^{(m-1) / 2} d z
$$

which may be estimated by the saddle point method as illustrated in $[8$, Lemma 1]. In particular this coefficient grows like a constant times

$$
\frac{c^{(m-1) / 2}}{m^{1 / 2}}
$$

where $c=F\left(y_{0}\right), F(y)=e^{2 \pi y} H\left(e^{-2 \pi y}\right)$ and y_{0} is the first positive zero of F^{\prime}. Since $c>0$ and also $F^{\prime \prime}\left(y_{0}\right)>0$ and the coefficient of P at q^{m-1} is positive for the first few values of m (we checked 10000 values), this proves that $b_{\sigma}>0$ also in this case.

To treat the even $N \in \mathcal{L}$, we need two easy (probably well known) observations:

Lemma 2.1. Let

$$
f(q):=\prod_{j=1}^{\infty}\left(1+q^{2 j-1}\right)\left(1+q^{2(2 j-1)}\right)
$$

Then the q-series expansion of $1 / f$ is alternating with non zero coefficients at q^{a} for $a \neq 2$.

Proof.
$1 / f=\prod_{j=1}^{\infty}\left(1+q^{2 j-1}+q^{2(2 j-1)}+q^{3(2 j-1)}\right)^{-1}=\prod_{j=1}^{\infty} \sum_{\ell=0}^{\infty} q^{4 \ell(2 j-1)}-q^{(4 \ell+1)(2 j-1)}$
is alternating as a product of alternating series. The coefficient of q^{a} is non-zero, if and only if a is a sum of numbers of the form $4 \ell(2 j-1)$ and $(4 \ell+1)(2 j-1)$ with distinct ℓ. One obtains 0 and 1 with $\ell=0$ and $j=1$ and $3=1(2 \cdot 2-1)$ and $6=1+5$. Since one may add arbitrary multiples of 4, this shows that the coefficients are all non-zero except for the case that $a=2$.

Lemma 2.2. Let $g_{1}:=g_{1}^{(N)}$ for even N such that $N / 2$ is odd and denote by g_{1}^{\prime} the derivative of g_{1} with respect to q. Then $\frac{g_{1}^{\prime}}{g_{1}}$ is an alternating series with non-zero coefficients for all q^{a} with $a \not \equiv 1(\bmod 4)$. The coefficients for q^{a} with $a \equiv 1(\bmod 4)$ are zero.

Proof. Using the product expansion

$$
g_{1}=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1-q^{2 j d}\right)\left(1+q^{(2 j-1) d}\right)^{2}
$$

we calculate

$$
\begin{aligned}
& g_{1}^{\prime} / g_{1}= \sum_{d \left\lvert\, \frac{N}{2}\right.} \sum_{j=1}^{\infty} \frac{2(2 j-1) d q^{d(2 j-1)-1}}{1-q^{d(2 j-1)}}-\frac{2 d j q^{2 d j-1}}{1-q^{2 d j}}-\frac{4 d j q^{4 d j-1}}{1-q^{4 d j}} \\
& \quad+\frac{2(4 j-2) d q^{d(4 j-2)-1}}{1-q^{d(4 j-2)}} \\
&=\sum_{d \left\lvert\, \frac{N}{2}\right.} \sum_{j=1}^{\infty} \frac{(4 j-2) d q^{(2 j-1) d-1}}{1+q^{(2 j-1) d}}-\frac{8 d j q^{4 d j-1}}{1-q^{4 d j}} \\
& \quad+\frac{(4 j-2) d\left(q^{(4 j-2) d-1}-3 q^{(8 j-4) d-1}\right.}{1-q^{(8 j-4) d}} \\
&=\sum_{d \left\lvert\, \frac{N}{2}\right.} \sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty}-8 j d q^{4 j d \ell-1}-3(4 j-2) d q^{(8 j-4) d \ell-1} \\
& \quad+(4 j-2) d q^{(2 j-1) d(4 \ell-2)-1}-(-1)^{\ell}(4 j-2) d q^{(2 j-1) d \ell-1}
\end{aligned}
$$

Hence the coefficient of q^{a} is positive if a is even and negative if $a \equiv-1$ $(\bmod 4)$. The only cancellation that occurs is for $a \equiv 1(\bmod 4)$. In this case the coefficient of q^{a} is zero.

Theorem 2.2. Let $N \in \mathcal{L}$ be even and let L be a strongly N-modular lattice in the genus of C_{N}^{k}. Let $\sigma:=\operatorname{smin}(L)$ and let $\mu:=\min (L)$. Then

$$
\sigma+\mu \leq k \frac{\sigma_{1}(N / 2)}{2}+1
$$

unless $k=s(N)$ and $\mu=3$ where this bound has to be increased by 1. In these cases L is the unique lattice $L=O^{(N)}$ (from [13, Table 1]) of minimum 3 described in [9, Theorem 3].

Proof. As in the proof of Theorem 2.1 let $g_{1}:=g_{1}^{(N)}$ and $g_{2}:=g_{2}^{(N)}$, $m:=\mu-1$ and assume that $\sigma+\mu \geq k \frac{\sigma_{1}(N / 2)}{2}+1$. Again all coefficients c_{i} in (2.2) and (2.1) are uniquely determined by the conditions that $\operatorname{smin}(L) \geq$ $k \frac{\sigma_{1}(N / 2)}{4}-m$ and $\Theta_{L} \equiv 1\left(\bmod q^{m+1}\right)$. The number of vectors of norm
$k \frac{\sigma_{1}(N / 2)}{2}-m$ in $S=\sqrt{N} S(L)$ is $c_{m}(-1)^{m} 2^{\sigma_{0}(N) k / 2-m s(N)}$. As in the proof of Theorem 2.1 the formula of Bürmann-Lagrange yields that

$$
c_{m}=\frac{-k}{m}\left(\text { coeff. of } q^{m-1} \text { in }\left(g_{1}^{\prime} / g_{1}\right) / f_{1}\right)
$$

with f_{1} as in the proof of Theorem 2.1. We have

$$
f_{1}=\prod_{d \left\lvert\, \frac{N}{2}\right.} f(d q)^{2 k-s(N) m} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)^{k}\left(1-q^{4 d j}\right)^{k}
$$

where f is as in Lemma 2.1. If $2 k-s(N) m>0$ then $1 / f_{1}$ is alternating by Lemma 2.1 and $\frac{g_{1}^{\prime}}{g_{1}}$ is alternating (with a non-zero coefficient at q^{3}) by Lemma 2.2 and we can argue as in the proof of Theorem 2.1. Since $k>0$ all even coefficients occur in the product

$$
\prod_{j=1}^{\infty}\left(1-q^{2 j}\right)^{-k}
$$

hence all coefficients in $\left(g_{1}^{\prime} / g_{1}\right) / f_{1}$ are non-zero. If $2 k-s(N) m=0$ similarly the only zero coefficient in $\left(g_{1}^{\prime} / g_{1}\right) / f_{1}$ is at q^{1} yielding the exception stated in the Theorem. Now assume that $2 k-s(N) m<0$ and write

$$
P=\left(g_{1}^{\prime} / g_{1}\right) / f_{1}=g_{1}^{\prime} \prod_{d \left\lvert\, \frac{N}{2}\right.} \frac{f(d q)^{s(N) m-2 k-2}}{\prod_{j=1}^{\infty}\left(\left(1-q^{2 d j}\right)\left(1-q^{4 d j}\right)\right)^{k+1}}
$$

If $2 k-s(N) m<-2$ then P is a positive power series in which all q powers occur and hence $c_{m}<0$. If the minimum μ is odd then this implies that $b_{\sigma}<0$ and hence the nonexistence of an s-extremal lattice of odd minimum for $s(N) m-2>2 k$. Assume now that $2 k-s(N) m=-2$, i.e. $k=s(N) m / 2-1$. Then again m is odd and since g_{1}^{\prime} has a non-zero constant term P contains all even powers of q. In particular the coefficient of q^{m-1} is positive. The last case is $2 k-s(N) m=-1$ and dealt with as in the proof of Theorem 2.1.

From the proof of Theorem 2.1 and 2.2 we obtain the following bound on the minimum of an s-extremal lattice which is sometimes a slight improvement of the bound (1.1).

Corollary 2.1. Let L be an s-extremal strongly N-modular lattice in the genus of C_{N}^{k} with odd minimum $\mu:=\min (L)$. Then

$$
\mu<\frac{2 k+2}{s(N)}+1
$$

3. S-extremal lattices of even minimum.

In this section we use the methods of [8] to show that there are only finitely many s-extremal lattices of even minimum. The first result generalizes the bound on the dimension of an s-extremal lattice of even minimum that is obtained in [6] for unimodular lattices. In particular such s-extremal lattices are automatically extremal. Now [12, Theorem 5.2] shows that there are only finitely many extremal strongly N-modular lattices which also implies that there are only finitely many such s-extremal lattices with even minimum. To get a good upper bound on the maximal dimension of an sextremal strongly N-modular lattice, we show that the second (resp. third) coefficient in the shadow theta series becomes eventually negative.

Theorem 3.1. Let $N \in \mathcal{L}$ and let L be an s-extremal strongly N-modular lattice in the genus of C_{N}^{k}. Assume that $\mu:=\min (L)$ is even. Then

$$
s(N)(\mu-2) \leq 2 k<\mu s(N)
$$

Proof. The lower bound follows from (1.1). As in the proof of Theorem 2.1 we obtain the number a_{μ} of minimal vectors of L as

$$
a_{\mu}=\frac{k}{\mu-1}\left(\text { coeff. of } q^{\mu-1} \text { in }\left(g_{1}^{\prime} / g_{1}\right) / f_{2}\right)
$$

with

$$
f_{2}=\left(q^{-1} g_{2}\right)^{\mu} g_{1}^{k}
$$

If N is odd, then

$$
f_{2}=\prod_{d \mid N} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)^{k}\left(1+q^{d(2 j-1)}\right)^{2 k-s(N) \mu}
$$

and for even N we obtain

$$
f_{2}=\prod_{d \left\lvert\, \frac{N}{2}\right.} f(d q)^{2 k-s(N) \mu} \prod_{j=1}^{\infty}\left(1-q^{2 d j}\right)^{k}\left(1+q^{4 d j}\right)^{k}
$$

where f is as in Lemma 2.1. If $2 k-s(N) \mu \geq 0$ then in both cases $\left(g_{1}^{\prime} / g_{1}\right) / f_{2}$ is an alternating series and since $\mu-1$ is odd the coefficient of $q^{\mu-1}$ in this series is negative. Therefore a_{μ} is negative which is a contradiction.

We now proceed as in [8] and express the first coefficients of the shadow theta series of an s-extremal N-modular lattice.

Lemma 3.1. Let $N \in \mathcal{L}, s_{1}:=s_{1}^{(N)}$ and $s_{2}:=s_{2}^{(N)}$. Then $s_{1}^{k} \sum_{i=0}^{m} c_{i} s_{2}^{i}$ starts with $(-1)^{m} 2^{\sigma_{0}(N)(k-m s(N) / 2)} q^{k \sigma_{1}(N) / 4-2 m}$ times

$$
c_{m}-\left(2^{s(N) \sigma_{0}(N) / 2} c_{m-1}+(s(N) m-k) c_{m}\right) q^{2}
$$

if N is odd, and with $(-1)^{m} 2^{\sigma_{0}(N) k / 2-m s(N) \sigma_{0}(N) / 4} q^{k \sigma_{1}(N / 2) / 2-m}$ times

$$
\begin{aligned}
& c_{m}-\left(2^{s(N) \sigma_{0}(N) / 4} c_{m-1}+(s(N) m-2 k) c_{m}\right) q \\
& +\left(2^{s(N) \sigma_{0}(N) / 2} c_{m-2}+2^{s(N) \sigma_{0}(N) / 4}(s(N)(m-1)-2 k) c_{m-1}\right. \\
& \left.+\left(s(N)^{2} \frac{m(m-1)}{2}-2 k m s(N)+2 k(k-1)+2^{s(N) \sigma_{0}(N) / 4} \frac{m(s(N)+1)}{4}\right) c_{m}\right) q^{2}
\end{aligned}
$$

if N is even.
Proof. If N is odd then

$$
\begin{aligned}
& s_{1}=2^{\sigma_{0}(N)} q^{\sigma_{1}(N) / 4}\left(1+q^{2}\right)+\ldots \\
& s_{2}=2^{-s(N) \sigma_{0}(N) / 2}\left(-q^{-2}+s(N)\right)+\ldots
\end{aligned}
$$

and for even N

$$
\begin{aligned}
& s_{1}=2^{\sigma_{0}(N) / 2} q^{\sigma_{1}(N / 2) / 2}\left(1+2 q+0 q^{2}+\right) \ldots \\
& s_{2}=2^{-s(N) \sigma_{0}(N) / 4}\left(-q^{-1}+s(N)\right)-\frac{s(N)+1}{4} q+\ldots
\end{aligned}
$$

Explicit calculations prove the lemma.
We now want to use [8, Lemma 1] to show that the coefficients c_{m} and c_{m-1} determined in the proof of Theorem 2.1 for the theta series of an s-extremal lattice satisfy $(-1)^{j} c_{j}>0$ and c_{m} / c_{m-1} is bounded.

If L is an s-extremal lattice of even minimum $\mu=m+1$ in the genus of C_{N}^{k}, then Theorem 3.1 yields that

$$
k=\frac{s(N)}{2}(m-1)+b \text { for some } 0 \leq b<s(N)
$$

Let

$$
\psi:=\psi^{(N)}:=\prod_{j=1}^{\infty} \prod_{d \mid N}\left(1-q^{2 j d}\right) \text { and } \varphi:=\varphi^{(N)}:=\prod_{j=1}^{\infty} \prod_{d \mid N}\left(1+q^{(2 j-1) d}\right)
$$

Then

$$
\begin{aligned}
c_{m-\ell} & =\frac{-k}{m-\ell} \text { coeff. of } q^{m-\ell-1} \text { in } g_{1}^{\prime} \psi^{-k-1} \varphi^{s(N)(m-\ell)-2(k+1)} \\
& =\frac{-k}{m-\ell} \text { coeff. of } q^{m-\ell-1} \text { in } G_{\ell}^{(b)} H^{m-\ell-1}
\end{aligned}
$$

where

$$
G_{\ell}^{(b)}=g_{1}^{\prime} \psi^{-b-1-\ell s(N) / 2} \varphi^{-2 b-2+(1-\ell) s(N)}=G_{\ell}^{(0)}\left(\psi^{-1} \phi^{-2}\right)^{b}
$$

and

$$
H=\psi^{-s(N) / 2}=1+\frac{s(N)}{2} q^{2}+\ldots
$$

In particular the first two coefficients of H are positive and the remaining coefficients are nonnegative. Since also odd powers of q arise in $G_{\ell}^{(b)}$ the coefficient $\beta_{m-\ell-1}$ of $q^{m-\ell-1}$ in $G_{\ell}^{(b)} H^{m-\ell-1}$ is by Cauchy's formula

$$
\beta_{m-\ell-1}=\frac{1}{2} \int_{-1+i y}^{1+i y} e^{-\pi i(m-\ell-1) z} G_{\ell}^{(b)}\left(e^{\pi i z}\right) H^{m-\ell-1}\left(e^{\pi i z}\right) d z
$$

for arbitrary $y>0$.
Put $F(y):=e^{\pi y} H\left(e^{-\pi y}\right)$ and let y_{0} be the first positive zero of F^{\prime}. Then we check that $d_{1}:=F\left(y_{0}\right)>0$ and $d_{2}:=F^{\prime \prime}\left(y_{0}\right) / F\left(y_{0}\right)>0$. Now H has two saddle points in $\left[-1+i y_{0}, 1+i y_{0}\right]$ namely at $\pm 1+i y_{0}$ and $i y_{0}$. By the saddle point method (see [1, (5.7.2)]) we obtain

$$
\begin{aligned}
\beta_{m-\ell-1} \sim & d_{1}^{m-\ell-1}\left(G_{\ell}^{(b)}\left(e^{-\pi y_{0}}\right)+(-1)^{m-\ell-1} G_{\ell}^{(b)}\left(-e^{-\pi y_{0}}\right)\right) \\
& \times\left(2 \pi(m-\ell-1) d_{2}\right)^{-1 / 2}
\end{aligned}
$$

as m tends to infinity. In particular

$$
c_{m} \sim d_{1} \frac{G_{0}^{(b)}\left(e^{-\pi y_{0}}\right)+(-1)^{m-1} G_{0}^{(b)}\left(-e^{-\pi y_{0}}\right)}{G_{1}^{(b)}\left(e^{-\pi y_{0}}\right)+(-1)^{m} G_{1}^{(b)}\left(-e^{-\pi y_{0}}\right)} c_{m-1}
$$

Lemma 3.2. For $N \in \mathcal{L}$ and $b \in\{0, \ldots, s(N)-1\}$ let $k:=\frac{s(N)}{2}(m-1)+b=$ $j s(N)+b, G_{\ell}^{(b)}, d_{1}, d_{2}, y_{0}$ be as above where $m=2 j+1$ is odd. Then $c_{2 j+1} / c_{2 j}$ tends to

$$
Q(N, b):=d_{1} \frac{G_{0}^{(b)}\left(e^{-\pi y_{0}}\right)+G_{0}^{(b)}\left(-e^{-\pi y_{0}}\right)}{G_{1}^{(b)}\left(e^{-\pi y_{0}}\right)-G_{1}^{(b)}\left(-e^{-\pi y_{0}}\right)} \in \mathbb{R}_{<0}
$$

if j goes to infinity.
By Lemma 3.1 the second coefficient $b_{\sigma+2}$ in the shadow theta series of a putative s-extremal strongly N-modular lattice of even minimum $\mu=m+1$ in the genus of $C_{N}^{k}\left(k=\frac{s(N)}{2}(m-1)+b\right.$ as above $)$ is a positive multiple of

$$
\begin{aligned}
& 2^{s(N) \frac{\sigma_{0}(N)}{2}} c_{m-1}+(s(N) m-k) c_{m} \\
& \sim\left(2^{s(N) \frac{\sigma_{0}(N)}{2}}+Q(N, b) \frac{s(N)(m+1)-2 b}{2}\right) c_{m-1}
\end{aligned}
$$

when m tends to infinity. In particular this coefficient is expected to be negative if

$$
\mu=m+1>B(N, b):=\frac{2}{s(N)}\left(b+\frac{2^{s(N) \sigma_{0}(N) / 2}}{-Q(N, b)}\right) .
$$

Since all these are asymptotic values, the actual value $\mu_{-}(N, b)$ of the first even minimum μ where $b_{\sigma+2}$ becomes negative may be different. In all cases, the second coefficient of the relevant shadow theta series seems to remain negative for even minimum $\mu \geq \mu_{-}(N, b)$.

For odd $N \in \mathcal{L}$ the values of $B(N, b)$ and $\mu_{-}(N, b)$ are given in the following tables:

$N=1$	$b=0$	$b=1$	$b=2$	$b=3$	$b=4$	$b=5$	$b=6$	$b=7$	$b=8$
$\mathrm{Q}(1, \mathrm{~b})$	-380	-113	-43.8	-18.4	-8	-3.53	-1.57	-0.71	-0.33
$\mathrm{~B}(1, \mathrm{~b})$	0.9	3.1	7.96	18.8	43	97.1	217.4	480.4	1036.6
$\mu_{-}(1, b)$	6	6	12	20	44	96	216	478	1032
$k_{-}(1, b)$	48	49	122	219	508	1133	2574	5719	12368

$N=1$	$b=9$	$b=10$	$b=11$	$b=12$	$b=13$	$b=14$	$b=15$
$\mathrm{Q}(1, \mathrm{~b})$	-0.16	-0.08	-0.05	-0.04	-0.03	-0.027	-0.026
$\mathrm{~B}(1, \mathrm{~b})$	2131.3	4012.4	6597.4	9240.4	11239.4	12433.6	13049.1

$N=1$	$b=16$	$b=17$	$b=18$	$b=19$	$b=20$	$b=21$	$b=22$	$b=23$
$\mathrm{Q}(1, \mathrm{~b})$	-0.026	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025
$\mathrm{~B}(1, \mathrm{~b})$	13342	13477	13538	13565	13577	13582	13585	13586

$N=3$	$b=0$	$b=1$	$b=2$	$b=3$	$b=4$	$b=5$
$\mathrm{Q}(3, \mathrm{~b})$	-15.6	-2	-0.45	-0.2	-0.16	-0.15
$\mathrm{~B}(3, \mathrm{~b})$	1.36	11	47.6	107.13	137.07	144.34
$\mu_{-}(3, b)$	6	12	44	100	126	130
$k_{-}(3, b)$	12	31	128	297	376	389

$N=5$	$b=0$	$b=1$	$b=2$	$b=3$	$N=7$	$b=0$	$b=1$	$b=2$
$\mathrm{Q}(5, \mathrm{~b})$	-5	-0.73	-0.31	-0.25	$\mathrm{Q}(7, \mathrm{~b})$	-2.88	-0.51	-0.32
$\mathrm{~B}(5, \mathrm{~b})$	1.6	11	27	33.5	$\mathrm{~B}(7, \mathrm{~b})$	1.85	11	17.8
$\mu_{-}(5, b)$	6	12	22	24	$\mu_{-}(7, b)$	6	10	12
$k_{-}(5, b)$	8	21	42	47	$k_{-}(7, b)$	6	13	17

$N=11$	$b=0$	$b=1$	$N=15$	$b=0$	$N=23$	$b=0$
$\mathrm{Q}(11, \mathrm{~b})$	-1.72	-0.45	$\mathrm{Q}(15, \mathrm{~b})$	-2.03	$\mathrm{Q}(23, \mathrm{~b})$	-1.08
$\mathrm{~B}(11, \mathrm{~b})$	2.33	9.8	$\mathrm{~B}(15, \mathrm{~b})$	3.93	$\mathrm{~B}(23, \mathrm{~b})$	3.69
$\mu_{-}(11, b)$	6	6	$\mu_{-}(15, b)$	6	$\mu_{-}(23, b)$	6
$k_{-}(11, b)$	4	5	$k_{-}(15, b)$	2	$k_{-}(23, b)$	2

For even $N \in \mathcal{L}$ the situation is slightly different. Again $k=b+$ $\frac{s(N)}{2}(m-1)$ for some $0 \leq b<s(N)$. From Lemma 3.1 the second coefficient $b_{\sigma+1}$ in the s-extremal shadow theta series is a nonzero multiple of $2^{s(N) \sigma_{0}(N) / 4} c_{m-1}+(s(N)-2 b) c_{m}$ and in particular its sign is asymptotically independent of m. Therefore we need to consider the third coefficient $b_{\sigma+2}$, which is by Lemma 3.1 for odd m a positive multiple of

$$
\begin{aligned}
-a^{2} c_{m-2}+a(2 k- & s(m-1)) c_{m-1} \\
& +\left(2 k m s-s^{2} \frac{m(m-1)}{2}-2 k(k-1)-a m \frac{s+1}{4}\right) c_{m}
\end{aligned}
$$

where for short $a:=2^{s \sigma_{0}(N) / 4}$ and $s:=s(N)$. For $k=\frac{s(N)}{2}(m-1)+b$ this becomes

$$
-a^{2} c_{m-2}+2 a b c_{m-1}+\left(m\left(2 b(b-1-s)-a \frac{s+1}{4}+s \frac{s+2}{2}\right)+\frac{2 s+s^{2}}{2}\right) c_{m}
$$

Since the quotients c_{m-1} / c_{m-2} and c_{m} / c_{m-2} are bounded, there is an explicit asymptotic bound $B(N, b)$ for $\mu=m+1$ after which this coefficient should become negative. Again, the true values $\mu_{-}(N, b)$ differ and the results are displayed in the following table.

$N=2$	$b=0$	$b=1$	$b=2$	$b=3$	$b=4$	$b=5$	$b=6$	$b=7$
$\mathrm{~B}(2, \mathrm{~b})$	-4.9	10	52.5	170.1	382.6	575.9	677.7	725.7
$\mu_{-}(2, b)$	16	22	54	166	374	564	666	716
$k_{-}(2, b)$	56	81	210	659	1492	2253	2662	2863

$N=6$	$b=0$	$b=1$	$N=14$	$b=0$
$\mathrm{~B}(6, \mathrm{~b})$	1	33.58	$\mathrm{~B}(14, \mathrm{~b})$	2
$\mu_{-}(6, b)$	10	28	$\mu_{-}(14, b)$	10
$k_{-}(6, b)$	8	27	$k_{-}(14, b)$	4

3.1. Explicit classifications. In this section we classify the s-extremal strongly N-modular lattices $L_{N}(\mu, k)$ rational equivalent to C_{N}^{k} for certain N and even minimum μ. For $N \in\{11,14,15,23\}$ a complete classification is obtained. For convenience we denote the uniquely determined modular form that should be the theta series of $L_{N}(\mu, k)$ by $\theta_{N}(\mu, k)$ and its shadow by $\sigma_{N}(\mu, k)$.

Important examples are the unique extremal even strongly N-modular lattices $E^{(N)}$ of minimum 4 and with $k=s(N)$ from [13, Table 1]. For odd
N, these lattices are s-extremal since $2 \mu+\sigma=8=s(N) \sigma_{1}(N) / 4+2$ and hence $E^{(N)}=L_{N}(4, s(N))$.

Theorem 3.1 suggests to write $k=\frac{s(N)(\mu-2)}{2}+b$ for some $0 \leq b \leq s(N)-1$ and we will organize the classification according to the possible b. Note that for every b the maximal minimum μ is bounded by $\mu_{-}(N, b)$ above.

If $N=14,15$ or 23 , then $s(N)=1$ and hence Theorem 3.1 implies that $k=\frac{\mu-2}{2}$. For $N=15,23$ the only possibility is $k=1$ and $\mu=4$ and $L_{N}(4,1)=E^{(N)}$. The second coefficient of $\sigma_{14}(4,1)$ and $\sigma_{14}(8,3)$ is negative, hence the only s-extremal strongly 14 -modular lattice with even minimum is $L_{14}(6,2)$ of minimum 6 . The series $\sigma_{14}(6,2)$ starts with $8 q^{3}+$ $8 q^{5}+16 q^{6}+\ldots$. Therefore the even neighbour of $L_{14}(6,2)$ in the sense of [13, Theorem 8] is the unique even extremal strongly 14-modular lattice of dimension 8 (see [14, p. 160]). Constructing all odd 2-neighbours of this lattice, it turns out that there is a unique such lattice $L_{14}(6,2)$. Note that $L_{14}(6,2)$ is an odd extremal strongly modular lattice in a jump dimension and hence the first counterexample to conjecture (3) in the Remark after [13, Theorem 2].

For $N=11$ and $b=0$ the only possibility is $\mu=4$ and $k=2=s(N)$ whence $L_{11}(4,2)=E^{(11)}$. If $b=1$ then either $\mu=2$ and $L_{11}(2,1)=\binom{21}{16}$ or $\mu=4$. An explicit enumeration of the genus of C_{11}^{3} with the Kneser neighbouring method [7] shows that there is a unique lattice $L_{11}(4,3)$.

Now let $N=7$. For $b=0$ again the only possibility is $k=s(N)$ and $L_{7}(4,3)=E^{(7)}$. For $b=1$ and $b=2$ one obtains unique lattices $L_{7}(2,1)$ (with Grammatrix $\binom{21}{14}$) $L_{7}(4,4)$ and $L_{7}(4,5)$. There is no contradiction for the existence of lattices $L_{7}(6,7), L_{7}(6,8), L_{7}(8,10), L_{7}(8,11)$, though a complete classification of the relevant genera seems to be difficult. For the lattice $L_{7}(6,8)$ we tried the following: Both even neighbours of such a lattice are extremal even 7 -modular lattices. Starting from the extremal 7-modular lattice constructed from the structure over $\mathbb{Z}[\sqrt{2}]$ of the Barnes-Wall lattice as described in [14], we calculated the part of the Kneser 2-neighbouring graph consisting only of even lattices of minimum 6 and therewith found 126 such even lattices 120 of which are 7 -modular. None of the edges between such lattices gave rise to an s-extremal lattice. The lattice $L_{7}(10,14)$ does not exist because $\theta_{7}(10,14)$ has a negative coefficient at q^{13}.

Now let $N:=6$. For $k=\mu-2$ the second coefficient in the shadow theta series is negative, hence there are no lattices $L_{6}(\mu, \mu-2)$ of even minimum μ. For $k=\mu-1<27$ the modular forms $\theta_{6}(\mu, \mu-1)$ and $\sigma_{6}(\mu, \mu-1)$ seem to have nonnegative integral coefficients. The lattice $L_{6}(2,1)$ is unique and already given in [9]. For $\mu=4$ the even neighbour of any lattice $L_{6}(4,3)$ (as defined in [13, Theorem 8]) is one of the five even extremal strongly

6 -modular lattices given in [14]. Constructing all odd 2-neighbours of these lattices we find a unique lattice $L_{6}(4,3)$ as displayed below.

For $N=5$ the lattice $L_{5}(4,4)=E^{(5)}$ is is the only s-extremal lattice of even minimum μ for $k=2(\mu-2)$, because $\mu_{-}(5,0)=6$. For $k=$ $2(\mu-2)+1$ the shadow series $\sigma_{5}(2,1), \sigma_{5}(4,5)$ and $\sigma_{5}(6,9)$ have non integral respectively odd coefficients so the only lattices that might exist here are $L_{5}(8,13)$ and $L_{5}(10,17)$. The s-extremal lattice $L_{5}(2,2)=\binom{21}{13} \perp\binom{21}{13}$ is unique. The theta series $\theta_{5}(2,3)$ starts with $1+20 q^{3}+\ldots$, hence $L_{5}(2,3)=$ $S^{(5)}$ has minimum 3. The genus of C_{5}^{6} contains 1161 isometry classes, 3 of which represent s-extremal lattices of minimum 4 and whose Grammatrices $L_{5}(4,6)_{a, b, c}$ are displayed below. For $k=7$ a complete classification of the genus of C_{5}^{k} seems to be out of range. A search for lattices in this genus that have minimum 4 constructs the example $L_{5}(4,7)_{a}$ displayed below of which we do not know whether it is unique. For the remaining even minima $\mu<\mu_{-}(5, b)$ we do not find a contradiction against the existence of such s-extremal lattices.

For $N=3$ and $b=0$ again $E^{(3)}=L_{3}(4,6)$ is the unique s-extremal lattice. For $k=3(\mu-2)+1$, the theta series $\theta_{3}(8,19)$ and $\theta_{3}(10,25)$ as well as their shadows seem to have integral non-negative coefficients, whereas $\sigma_{3}(4,7)$ and $\sigma_{3}(6,13)$ have non-integral coefficients. The remaining thetaseries and their shadows again seem to have integral non-negative coefficients. The lattices of minimum 2 are already classified in [9]. In all cases $L_{3}(2, b)(2 \leq b \leq 5)$ is unique but $L_{3}(2,5)=S^{(3)}$ has minimum 3 .

Now let $N:=2$. For $b=0$ and $b=1$ the second coefficient in $\sigma_{2}(\mu, 4(\mu-$ $2)+b$) is always negative, proving the non-existence of such s-extremal lattices. The lattices of minimum 2 are already classified in [9]. There is a unique lattice $L_{2}(2,2) \cong D_{4}$, no lattice $L_{2}(2,3)$ since the first coefficient of $\sigma_{2}(2,3)$ is 3 , unique lattices $L_{2}(2, b)$ for $b=4,5$ and 7 and two such lattices $L_{2}(2,6)$.

For $N=1$ we also refer to the paper [6] for the known classifications. Again for $b=0$, the Leech lattice $L_{1}(4,24)=E^{(1)}$ is the unique s-extremal lattice. For $\mu=2$, these lattices are already classified in [5]. The possibilities for $b=k$ are $8,12,14 \leq b \leq 22$. For $\mu=4$, the possibilities are either $b=0$ and $k=24$ or $8 \leq b \leq 23$ whence $32 \leq k \leq 47$ since the other shadow series have non-integral coefficients. The lattices $L_{1}(4,32)$ are classified in [3]. For $\mu=6$ no such lattices are known. The first possible dimension is 56 , since the other shadow series have non-integral coefficients.

Since for odd N the value $\mu_{-}(N, 0)=6$ and the s-extremal lattices of minimum 4 with $k=s(N)$ are even and hence isometric to $E^{(N)}$ we obtain the following theorem.

Theorem 3.2. Let L be an extremal and s-extremal lattice rational equivalent to C_{N}^{k} for some $N \in \mathcal{L}$ such that k is a multiple of $s(N)$. Then $\mu:=\min (L)$ is even and $k=s(N)(\mu-2) / 2$ and either $\mu=4, N$ is odd and $L=E^{(N)}$ or $\mu=6, N=14$ and $L=L_{14}(6,2)$.

For $N \in\{11,14,15,23\}$ the complete classification of s-extremal strongly N-modular lattices in the genus of C_{N}^{k} is as follows:

N	23	15	14	11	11	11
min	4	4	6	2	4	4
k	1	1	2	1	2	3
lattice	$E^{(23)}$	$E^{(15)}$	$E^{(14)}$	$L_{11}(2,1)$	$E^{(11)}$	$L_{11}(4,3)$

For the remaining $N \in \mathcal{L}$, the results are summarized in the following tables. The last line, labelled with \# displays the number of lattices, where we display - if there is no such lattice, ? if we do not know such a lattice, + if there is a lattice, but the lattices are not classified. We always write $k=\ell s(N)+b$ with $0 \leq b \leq s(N)-1$ such that $\mu=\min (L)=2 \ell+2$ by Theorem 3.1 and $\operatorname{dim}(L)=k \sigma_{0}(N)$.

$N=7, s(N)=3, k=\ell s(N)+b$												
b	0		1					2				
ℓ	1	≥ 2	0	1	2	3	≥ 4	0	1	2	3	≥ 4
min	4	≥ 6	2	4	6	8	≥ 10	3	4	6	8	≥ 10
\#	1	-	1	1	?	?	-	1	1	?	?	-

$N=6, s(N)=2, k=\ell s(N)+b$

b	0	1			
ℓ	≥ 1	0	1	$2 \leq \ell \leq 12$	≥ 13
\min	≥ 4	2	4	$6 \leq \mu \leq 26$	≥ 28
$\#$	-	1	1	$?$	-

$N=3, s(N)=6, k=\ell s(N)+b$

b	0		1					2			3	
ℓ	1	≥ 2	1	2	3	4	≥ 5	0	$1 \leq \ell \leq 20$	≥ 21	0	$1 \leq \ell \leq 48$
\min	4	≥ 6	4	6	8	10	≥ 12	2	$4 \leq \ell \leq 42$	≥ 44	2	$4 \leq \mu \leq 98$
$\#$	1	-	-	-	$?$	$?$	-	1	$?$	-	1	$?$

b	3	4			5		
ℓ	≥ 49	0	$1 \leq \ell \leq 61$	≥ 62	0	$1 \leq \ell \leq 63$	≥ 64
\min	≥ 100	2	$4 \leq \mu \leq 124$	≥ 126	3	$4 \leq \mu \leq 128$	≥ 130
$\#$	-	1	$?$	-	1	$?$	-

$$
N=2, s(N)=8, k=\ell s(N)+b
$$

b	0	1	2			3		
ℓ	≥ 1	≥ 1	0	$1 \leq \ell \leq 25$	≥ 26	0	$1 \leq \ell \leq 81$	≥ 82
\min	≥ 4	≥ 4	2	$4 \leq \mu \leq 52$	≥ 54	2	$4 \leq \mu \leq 164$	≥ 166
$\#$	-	-	1	$?$	-	-	$?$	-

b	4			5		
ℓ	0	$1 \leq \ell \leq 185$	≥ 186	0	$1 \leq \ell \leq 280$	≥ 281
\min	2	$4 \leq \mu \leq 372$	≥ 374	2	$4 \leq \mu \leq 562$	≥ 564
$\#$	1	$?$	-	1	$?$	-
b	6			7		
ℓ	0	$1 \leq \ell \leq 331$	≥ 332	0	$1 \leq \ell \leq 356$	≥ 357
\min	2	$4 \leq \mu \leq 664$	≥ 666	2	$4 \leq \mu \leq 714$	≥ 716
$\#$	2	$?$	-	1	$?$	-

Grammatrices of the new s-extremal lattices:

$$
L_{14}(6,2)=\left(\begin{array}{cccccc}
6 & 3 & 0 & 2-3 & 3-1-2 \\
3 & 6 & 3 & 2-3 & 3-3-2 \\
0 & 3 & 6 & 0-3 & 2-2-3 \\
2 & 2 & 0 & 6-2-1 & 1-3 \\
-3-3-3-2 & 6-3 & 3 & 3 \\
3 & 3 & 2-1-3 & 7-4-2 \\
-1-3-2 & 1 & 3-4 & 7-1 \\
-2-2-3-3 & 3-2-1 & 7
\end{array}\right), L_{11}(4,3)=\left(\begin{array}{ccccc}
4 & 0 & 0 & 2-2-1 \\
0 & 4 & 0-1 & 2 & 2 \\
0 & 0 & 4-2-1-2 \\
2-1-2 & 5-1 & 0 \\
-2 & 2-1-1 & 5 & 2 \\
-1 & 2-2 & 0 & 2 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& L_{6}(4,3)=\left(\begin{array}{cccccccccc}
4 & 1 & -2 & 1 & 0 & 1 & 1 & 1 & -2 & 2
\end{array} 0_{-1}-1\right. \\
& L_{5}(4,6)_{b}=\left(\begin{array}{ccccccccccc}
4 & 1 & 1 & 0 & 2 & 0 & -1 & 0 & -1 & -1 & -1 \\
1 & 4 & -1 & 2 & 1 & 1 & -1 & 1 & 0 & 1 & 0
\end{array}\right) \\
& L_{5}(4,7)_{a}=\left(\begin{array}{ccccccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0-2 & 0-2 & 0-2 & 0 & -1 \\
0 & 4 & 0-1 & -2 & 0-2 & 2 & 0 & 0-2 & 0 & 2 & 0 \\
0 & 0 & 4 & 0-2 & 0 & 0 & - & 0 & 1 & 1 & 0
\end{array} 0-1-2\right)
\end{aligned}
$$

References

[1] N.G. De Bruijn, Asymptotic methods in analysis. 2nd edition, North Holland (1961).
[2] J. Cannon et al., The Magma Computational Algebra System for Algebra, Number Theory and Geometry. Published electronically at http://magma.maths.usyd.edu.au/magma/.
[3] J. H. Conway, N. J. A. Sloane, A note on optimal unimodular lattices. J. Number Theory 72 (1998), no. 2, 357-362.
[4] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups. Springer, 3. edition, 1998.
[5] N. D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5, 643-651.
[6] P. Gaborit, A bound for certain s-extremal lattices and codes. Archiv der Mathematik 89 (2007), 143-151.
[7] M. Kneser, Klassenzahlen definiter quadratischer Formen. Archiv der Math. 8 (1957), 241-250.
[8] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68-76.
[9] G. Nebe, Strongly modular lattices with long shadow. J. T. Nombres Bordeaux 16 (2004), 187-196.
[10] G. Nebe, B. Venkov, Unimodular lattices with long shadow. J. Number Theory 99 (2003), 307-317.
[11] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L'Ens. Math. 43 (1997), 55-65.
[12] E.M. Rains, New asymptotic bounds for self-dual codes and lattices. IEEE Trans. Inform. Theory 49 (2003), no. 5, 1261-1274.
[13] E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359-389.
[14] R. Scharlau, R. Schulze-Pillot, Extremal lattices. In Algorithmic algebra and number theory, Herausgegeben von B. H. Matzat, G. M. Greuel, G. Hiss. Springer, 1999, 139-170.
[15] K. Schindelar, Stark modulare Gitter mit langem Schatten. Diplomarbeit, Lehrstuhl D für Mathematik, RWTH Aachen (2006).
[16] E.T. Whittaker, G.N. Watson, A course of modern analysis (4th edition) Cambridge University Press, 1963.

Gabriele Nebe
Lehrstuhl D für Mathematik
RWTH Aachen
52056 Aachen, Germany
E-mail: nebe@math.rwth-aachen.de
URL: http://www.math.rwth-aachen.de/~Gabriele.Nebe/
Kristina Schindelar
Lehrstuhl D für Mathematik
RWTH Aachen
52056 Aachen, Germany
E-mail: schindelar@math.rwth-aachen.de

