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On the generalized principal ideal theorem of

complex multiplication

par REINHARD SCHERTZ

Dedicated to Michael Pohst on his 60th birthday

RESUME. Dans le p™-iéme corps cyclotomique Q,n, p un nombre
premier, n € N, le premier p est totalement ramifié, I’idéal au
dessus de p dans Qp» étant engendré par w, = (» — 1 avec
une racine primitive p"-ieme de I'unité (,n = e . De plus ces
nombres constituent un ensemble qui vérifie la relation de norme
NQpn_'_lQpn (Wn+1) = wp. Le but de cet article est d’établir un ré-
sultat analogue pour les corps de classes de rayon Ky~ de conduc-
teur p” d’un corps quadratique imaginaire K, ou p” est une puis-
sance d’un idéal premier dans K. Un tel résultat est obtenu en
remplacant la fonction exponentielle par une fonction elliptique
convenable.

ABSTRACT. In the p"-th cyclotomic field Qp,», p a prime number,
n € N, the prime p is totally ramified and the only ideal above p is
generated by w, = (p» — 1, with the primitive p"-th root of unity
Cpn = ¢ . Moreover these numbers represent a norm coherent
set, i.e. NQanrl/Qp” (Wnt+1) = wy. It is the aim of this article to
establish a similar result for the ray class field K,» of conductor
p™ over an imaginary quadratic number field K where p™ is the
power of a prime ideal in K. Therefore the exponential function
has to be replaced by a suitable elliptic function.

1. Introduction and results

Let K be an imaginary quadratic number field, { an integral ideal in K
and Kj the ray class field modulo f over K. In particular Ky is the Hilbert

class field of K. The generalized Principle Ideal Theorem [Sch2], [Sch3] !
says that for any power of a prime ideal p™ there is an element m,, € Kyn

Manuscrit regu le 22 novembre 2004.

I [Sch3] the following has to be corrected:
1) The prime ideal q in the definition of Hg(z) must have the additional property gcd(q,q) = 1,
2) Hy(1) has to be replaced by Hq(w) with w =1 mod ¢, w =0 mod q.
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1

associated to p 5" )]

. 1
T~ P [Kpn K1) .

The element 7, can be viewed as the elliptic analogue of the cyclotomic
unit
2mi
wp=€er" —1
for the power p™ of a prime p. As an element of the p”-th cyclotomic field
Qp~ the element wy, has the factorisation

1

Wy, ~ (p) ([Qpn:Q] .

Moreover w,, has the following nice properties that can easily be verified:
27i
e w, = e,(1) with the p" periodic function e,(z) =1 —e»"~.
e Let Cpnz denote the field of p" periodic meromorphic functions on
C, then we have the norm relation for n > 0

en(2) = NC 11, /Cpnz (€nt1(2)) = 11 ent1(2 +§).
¢epnz mod prt1z
e For z = 1 the last relation becomes a norm relation between number
fields, if n > 1:

wn = Ng 41 /Qun (Wnt1) = II eni1(1+€)
¢epnZ mod prtlz

e and
eo(2)
e1(z—1)
It is the aim of this article to give a construction of m,, having the same
nice properties. For a complex lattice I' we therefore consider the Klein
normalization of the Weierstrass o-function

p(20) = e~ 5 o(2|T) ¥/A(D),

where A(I") is the discriminant of the theory of elliptic functions. Herein
z* is defined for a complex number z by

z=1

2" = 7w + 2w3,

with the real coordinates z1, zo from the representation z = zjwi + zowo by
a basis wi,ws of I and the quasiperiods w; = 2{(%|I") of the Weierstrass

(-function. The first factor ef%a(z\lj) in the definition of p(z|I") is clearly
independent of the choice of basis w1, ws of I'. To fix the 12-th root /A(T)

we use the identity
2 12 wy 24
2= () (5)
wo wo
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for a basis of I' oriented by <& ( ) > 0 and set

w1
w2

211 w1\ 2
o= (S (E)
O={2, )"
So the value p(z|I") is only well defined up to a 12-th root of unity depend-
ing on the basis chosen for its definition. However products where all the

Y/ A(T)-factors cancel out are independent of the choice of basis choosing
the same basis for each factor.

We fix an arbitrary prime ideal p in K and an integral auxiliary ideal
q 12 that is prime to p and satisfies

ged(q,9) = 1.
For n € N we define

oz —Yalap™) @ (2 + valgp™)
Enlz) = 22 (2 ap")

with a solution ~, of the congruences

Yn = 0 mod p",
Yo = 1 mod q,
Y = 0 mod q.

Note that E,(z) is well defined because all A-factors are canceling out
if we choose the same basis of gqp™ for every p-value. Using the identity
p(u) — plv) = —%, we can express E, by the Weierstrass -

function:

o 2 ny [(©(zlap™) o (Yalap™)
En(2) w(vnqp)<€/w W)

and we can conclude that FE, is elliptic with respect to the lattice qp”.
Moreover F,, satisfies the following norm relation:

Theorem 1. Let Cypn denote the field of elliptic functions with respect
to qp", n > 0. Then Cypni1/Cypn is a Galois extension, the Galois group
consisting of all substitutions

9(2) = g(z +€), € € ap” mod gp" "
Jor g € Cpn+1 and we have the norm relation
Ey(z) = Nqun+1/qun (Ent1(2)) = H Epi1(z+¢).
g¢eqpm mod gpr+!

For the singular values F,, (1) we obtain:
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Theorem 2. Let p and q be as above and let ® denote the Euler function
in K. Then

(1) E,(1) € Kgpn forn >0,
1
(2) En(1) ~p2G™ forn>1,
(3) En() = Ni_ e (BoriD) = T Eusa(1+8) for
£ € gp™ mod gpm Tt

n>1,
Bo(2) _ _ pltmlnetla? 1w/ A@
@) metn |, = New/ke (B1D) = 2 5agi et | s ~ P

To obtain the analogous result for the extension Kynt1/Kyn that we were
alming at, we have to get rid of the auxiliary ideal q. Therefore we need
the following (well known)

Lemma. For any integral ideal a in K
gcd{N(q) — 1 | q prime ideal in K, q12q a} = wg,
where wy denotes the number of roots of unity in K.

So we can choose finitely many prime ideals q;, ¢ = 1,..., s of degree 1
that are prime to N(p) and integers z; € Z so that

1(N(q1) — 1) + ... + 25(N(qs) — 1) = wg.
For each q; we define a set of functions E, ;(z) as above with parameters

Yn,i- Taking relative norms we obtain

N(g3)—1

Ninp“/Kpn (Enﬂ(l)) ~p e

for n > 1. Hence

S

Tn = H (NK%P”/KP" (E”’Z(l)»zz

=1
is an element in Kp» having the factorisation

wge
T ~ p‘p@n) .

This is what we were aiming at because

we") & pn
Kpn : K] = P
[Kpn = K1) e (»"),
where w(p™) denotes the number of roots of unity in K that are congruent
to 1 mod p"™. This implies
w(p™)

Ty ™~ p [Kpn:K(l)]

where

w(p”) =1
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except for the cases
(i) p |2, n <2, where w(p™) € {1,2}, if dx # —4 and w(p™) € {1,2,4}
if dK == —4;
(ii) p|3,n =1,dxg = —3, where w(p") = 2.

Moreover we will show now that this element can be written analogously
to the cyclotomic case. We therefore observe that by reciprocity law the
conjugates of the singular values E,, ;(1) over Kyn are given by

E, Z,(1)0()\) _ ' ()‘ - 'Yn,i)\’ Clipn) © ()\ + ’)/n,y;)\| qip”) ’
’ ©* (Al qip™)
where () denotes the Frobenius automorphism of Kqpn/Kyn of the ideal
(A), A =1 mod p"™. So we define the function

T
i} s N(g:)-1 w(2+(>\§f})—1)—%,i>\§f}) qm”)so(z+(/\§f})—1)+vn,i/\§f}) qip”)
En(z) =11 II (n)
i=1 j=1 2 Z+()‘i3 71)‘%%3")
where for fixed 7 and n the numbers
MY, j =1, N(g) — 1

are a complete system of prime residue classen mod g; satisfying
(n) _
Aij =1 mod p".
Herewith we can prove the following two Theorems:

Theorem 3. Letp andq=q1----- qs with q; as above. Then the functions
E;(z) are in Cqpn for n > 0 and satisfy the Normrelation

En(z) = NqunH/qun (E;;H(Z)) = H E;+1(2 +£).
¢eqpr mod gpnt!

Theorem 4. Let p and q = q1 - -+ - qs with q; as above and let ® denote
the Fuler function in K. Then

(1) Ex(1) € Kpn forn >0,

w(p™)
(2) E(1) ~plSm ol forn > 1,
w(p™
(3) Ex(1) = Nigyop1 i (B ()77 =TT Eia(1+6)
mOdq;an

form > 1,
(4) N, /Ky (B (1)) ~ po0"),

Remark: The constructions of the above theorems can clearly be gener-
alized to any integral ideal a prime to q instead of p™ with obvious norm
relations for two ideals a, b with a | b. Of course for a composite ideal a
the singular values will be units.
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2. Proofs
Proposition. Let I' = [w,1], [ = [nil,n%] be complex lattices, J(w) >

0, ni,n2 € N. We consider the following system of representatives for f/F
Tw oy

E=—+—, z=0,..,n1—1, y=0,..n0 — 1.
niy no

Expressing A by the n-function, A = (2mi)*2n?*, we define the 12-th roots
of A(T") and A(T) by

/AT = (2ri)n(w)?, YA = (2ri)n(52) ne

and we set
Ir(z,€) = 2mi(z162 — 2261).
Then
[Te 2790 (= + €I0) = Go(=ID)
13
with

(= _CfszrnlCém_l)(nz_l)

(Cn = e%). Furthermore, dividing both sides of the product formula by
o(z|T), the limit for z — 0 yields

YA
1Lt =y

Proof. The assertion of the Proposition is obtained by multiplying the ¢-
expansions of the functions involved. Using the notations

. 1 .
Qw :eZTWwa Q’gf :eﬂ—zwa q:Qwa q:an?J
1

the g-expansions of ¢(w|T) and ¢(z|T) are given by

Lte 1 L1 n no—
oz +€0) = Q21 T(Q2 e — Q1 2)a™ [[(1 - " Qo) (1 — Q1)
n=1

o niz 1 AL = N _
SO(Z’F) anzl 1(@72122 - anz q12 H 1—4¢ Qngz annglz)'
So the product in the Proposition is of the form

Hewlr oz +€0) = fifofs
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with
27 (0 (24€) (21 4+€1) — 2124 2261)
f]_ = e x,y b

fo = TLa™ Q2 — Q2.

I7y

fs= 1T TI = a"Qere)(1 — ¢ Q).

n=12z,y

m—1 m—1
Using the formulas Y. k = m(";_l) and Y k% = M we then

k=1 k=1
obtain
1 1) Mo (m=1)(ng—1) R ny
fi = ¢ Q. sz g 1z, q=qm
no—1
Further, using the identity Ho (@ —b¢Y,) = a™ —b"™ we can write fo in
y:
the form
nina2+n -t Nt —mnl_l ~
Jo=—C T Qnoz? ¢ i I (1= 6" Qny)
x=1

and in the same way

f3= (ﬁ (1_qu7’L22 ) (H 1 _qunzz ) :
k=ny k=1

Now, putting together the identities for fi, fs, f3 we can easily derive our
assertion. g

Proof of Theorem 1. First we observe that the assertion of the Proposition
is also valid for arbitrary lattices I' C I, arbitrary systems {€} of repre-
sentatives and other normalization of the 12-th root of A, with possibly
another constant ¢. This follows from the homogeneity and the transfor-
mation formula of the p-function:

p(Az|AL) = (z2]D),

o(z +7|0) = (r)ert A p(2|T) for 7 € T

with
1, if re2r,
~1, if 7eT\2L.
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Considering the fact that Ip(z, &) is linear in z we obtain from the general-
ized version of the Proposition just explained:

Z— Yn n Z+ Yn n
1T Foii(z+€) = p(z—~ +1!q210(i|<p(n) Tnt1] qp")
¢eqpr mod gprt! 4 w

Herein on the right 7,41 can be replaced by +, using the transformation
law of ¢, because v,11 = v, mod qp™. This proves the formula of Theorem
1. O

Proof of Theorem 2. By reciprocity law of complex multiplication we know
‘P(5|qpn) S K12N(qpn)2 for 6 € Ok

for every choice of basis in qp™. Further, as can be found in [B-Sch], the
action of a Frobenius automorphism o () of Ky (g2 belonging to an
integral principal ideal (\) of O g prime to 12N (qp™) is of the form

(6lap™) " = € (A |ap™)
with a root of unity € independent of §. This implies

E,(0) € Kian(qpmy2

SA — Al ap™) @ (6A + ynA| gp™)
B (5)°™ = £ for 5 € D \ {0
©) 7 (A ap) MO
with A having the above properties. For A =1+ 7, 7 € qp”, the p-values
in the numerator on the right side can be simplified by the transformation

law of ¢:
© (OXNE YA qp") = @ (X £y £ 77| qp™)
1
= (1 )2 OEMEMT 5 (5) £ 1, | gp™)

with [ = [gyn. So

En(8)°™ = 0nmT B, (5X).
Herein, using the rule l(a, bc) = l(ab, ¢),

Uy YnT) = LYy, T) € 2miZ
because v,7,,, T € qp™, whence

En(6)°N = E, (6)).
Now, considering the fact that E,, is elliptic with respect to qp™, it follows
E,(1)°Y = E,(1) for A = 1 mod qp"

and we can conclude that E,(1) is in Kgpn, because

Gal(K 1oy (gpmy2/Kqpn) = {o(A) | A =1 mod gp" and prime to N(qp)}-
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The third assertion of Theorem 2 is obtained similarly: We have
Gal(Kqpn+1/Kqpn) = {o(1+ &) | £ € qp™ mod qp" '}
and L
En+1(1)0(1+£)) — @l(77l+17n+1:£)En+1(1 +9)

with | = [gynt1, where of course o(1 + ) denotes the Frobenius automor-

phism of Kgyn+1 belonging to (1+¢). Again herein I(yn419n11,§) is in 2miZ

n—l—lﬁnJrl

because £ € qp™ and because v, +17n+1 is even in qp , whence

En+1(1)a(1+§)) = Enn1(1+6),
which proves the third assertion.

Finally, the second assertion of Theorem 2 follows from the factorisation
of the singular ¢-values [Schl]:

1, if o(d,qp™) is composite,
1
prem, if  o(d,qp") =p", r€N

for every choice of basis in qp™. Herein 6 € K \ {0} and o(d, qp™) denotes

the denominator of the ideal q%n' This factorisation implies that the first

©(6|gp™) ~

¢ factor in the numerator of the definition of E, (1) has the factorisation

1
p*Ct™  whereas the other ¢ values are units. g

Proof of Theorem 8 and 4. The proof of Theorem 3 is completely analo-
gous to the proof of Theorem 1. The first and second assertion of Theorem
4 have already been explained. The third assertion can easily be proved
using the same arguments as in the proof of Theorem 2. (|
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