Binary quadratic forms and Eichler orders

par Montserrat ALSINA

RÉSUMÉ. Pour tout ordre d'Eichler $\mathcal{O}(D,N)$ de niveau N dans une algèbre de quaternions indéfinie de discriminant D, il existe un groupe Fuchsien $\Gamma(D,N)\subseteq \mathrm{SL}(2,\mathbb{R})$ et une courbe de Shimura X(D,N). Nous associons à $\mathcal{O}(D,N)$ un ensemble $\mathcal{H}(\mathcal{O}(D,N))$ de formes quadratiques binaires ayant des coefficients semi-entiers quadratiques et developpons une classification des formes quadratiques primitives de $\mathcal{H}(\mathcal{O}(D,N))$ pour rapport à $\Gamma(D,N)$. En particulier nous retrouvons la classification des formes quadratiques primitives et entières de $\mathrm{SL}(2,\mathbb{Z})$. Un domaine fondamental explicite pour $\Gamma(D,N)$ permet de caractériser les $\Gamma(D,N)$ formes réduites.

ABSTRACT. For any Eichler order $\mathcal{O}(D,N)$ of level N in an indefinite quaternion algebra of discriminant D there is a Fuchsian group $\Gamma(D,N)\subseteq \mathrm{SL}(2,\mathbb{R})$ and a Shimura curve X(D,N). We associate to $\mathcal{O}(D,N)$ a set $\mathcal{H}(\mathcal{O}(D,N))$ of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to $\Gamma(D,N)$, for primitive forms contained in $\mathcal{H}(\mathcal{O}(D,N))$. In particular, the classification theory of primitive integral binary quadratic forms by $\mathrm{SL}(2,\mathbb{Z})$ is recovered. Explicit fundamental domains for $\Gamma(D,N)$ allow the characterization of the $\Gamma(D,N)$ -reduced forms.

1. Preliminars

Let $H = \begin{pmatrix} a,b \\ \mathbb{Q} \end{pmatrix}$ be the quaternion \mathbb{Q} -algebra of basis $\{1,i,j,ij\}$, satisfying $i^2 = a, j^2 = b, ji = -ij, \ a,b \in \mathbb{Q}^*$. Assume H is an indefinite quaternion algebra, that is, $H \otimes_{\mathbb{Q}} \mathbb{R} \simeq M(2,\mathbb{R})$. Then the discriminant D_H of H is the product of an even number of different primes $D_H = p_1 \cdots p_{2r} \geq 1$ and we can assume a > 0. Actually, a discriminant D determines a quaternion algebra H such that $D_H = D$ up to isomorphism. Let us denote by $n(\omega)$ the reduced norm of $\omega \in H$.

Fix any embedding $\Phi: H \hookrightarrow M(2,\mathbb{R})$. For simplicity we can keep in mind the embedding given at the following lemma.

The author was partially supported by MCYT BFM2000-0627.

Lemma 1.1. Let $H = \begin{pmatrix} a,b \\ \mathbb{Q} \end{pmatrix}$ be an indefinite quaternion algebra with a > 0. An embedding $\Phi : H \hookrightarrow M(2,\mathbb{R})$ is obtained by:

$$\Phi(x+yi+zj+tij) = \begin{pmatrix} x+y\sqrt{a} & z+t\sqrt{a} \\ b(z-t\sqrt{a}) & x-y\sqrt{a} \end{pmatrix}.$$

Given $N \geq 1$, gcd(D, N) = 1, let us consider an Eichler order of level N, that is a \mathbb{Z} -module of rank 4, subring of H, intersection of two maximal orders. By Eichler's results it is unique up to conjugation and we denote it by $\mathcal{O}(D, N)$.

Consider $\Gamma(D, N) := \Phi(\{\omega \in \mathcal{O}(D, N)^* \mid n(\omega) > 0\}) \subseteq SL(2, \mathbb{R})$ a group of quaternion transformations. This group acts on the upper complex half plane $\mathcal{H} = \{x + \iota y \in \mathbb{C} \mid y > 0\}$. We denote by X(D, N) the canonical model of the Shimura curve defined by the quotient $\Gamma(D, N) \setminus \mathcal{H}$, cf. [Shi67], [AAB01].

For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R})$ we denote by $\mathcal{P}(\gamma)$ the set of fixed points in \mathbb{C} of the transformation defined by $\gamma(z) = \frac{az+b}{cz+d}$.

Let us denote by $\mathcal{E}(H,F)$ the set of embeddings of a quadratic field F into the quaternion algebra H. Assume there is an embedding $\varphi \in \mathcal{E}(H,F)$. Then, all the quaternion transformations in $\Phi(\varphi(F^*)) \subset \mathrm{GL}(2,\mathbb{R})$ have the same set of fixed points, which we denote by $\mathcal{P}(\varphi)$. In the case that F is an imaginary quadratic field it yields to complex multiplication points, since $\mathcal{P}(\varphi) \cap \mathcal{H}$ is just a point, $z(\varphi)$.

Now, we take in account the arithmetic of the orders. Let us consider the set of optimal embeddings of quadratic orders Λ into quaternion orders \mathcal{O} ,

$$\mathcal{E}^*(\mathcal{O}, \Lambda) := \{ \varphi \mid \varphi : \Lambda \hookrightarrow \mathcal{O}, \, \varphi(F) \cap \mathcal{O} = \varphi(\Lambda) \}.$$

Any group $G \leq \text{Nor}(\mathcal{O})$ acts on $\mathcal{E}^*(\mathcal{O}, \Lambda)$, and we can consider the quotient $\mathcal{E}^*(\mathcal{O}, \Lambda)/G$. Put $\nu(\mathcal{O}, \Lambda; G) := \sharp \mathcal{E}^*(\mathcal{O}, \Lambda)/G$. We will also use the notation $\nu(D, N, d, m; G)$ for an Eichler order $\mathcal{O}(D, N) \subseteq H$ of level N and the quadratic order of conductor m in $F = \mathbb{Q}(\sqrt{d})$, which we denote $\Lambda(d, m)$.

Since further class numbers in this paper will be related to this one, we include next theorem (cf. [Eic55]). It provides the well-known relation between the class numbers of local and global embeddings, and collects the formulas for the class number of local embeddings given in [Ogg83] and [Vig80] in the case $G = \mathcal{O}^*$. Consider ψ_p the multiplicative function given by $\psi_p(p^k) = p^k(1 + \frac{1}{p})$, $\psi_p(a) = 1$ if $p \nmid a$. Put h(d, m) the ideal class number of the quadratic order $\Lambda(d, m)$.

Theorem 1.2. Let $\mathcal{O} = \mathcal{O}(D, N)$ be an Eichler order of level N in an indefinite quaternion \mathbb{Q} -algebra H of discriminant D. Let $\Lambda(d, m)$ be the quadratic order of conductor m in $\mathbb{Q}(\sqrt{d})$. Assume that $\mathcal{E}(H, \mathbb{Q}(\sqrt{d})) \neq \emptyset$

and gcd(m, D) = 1. Then,

$$\nu(D,N,d,m;\mathcal{O}^*) = h(d,m) \prod_{p \mid DN} \nu_p(D,N,d,m;\mathcal{O}^*).$$

The local class numbers of embeddings $\nu_p(D, N, d, m; \mathcal{O}^*)$, for the primes p|DN, are given by

- (i) If p|D, then $\nu_p(D, N, d, m; \mathcal{O}^*) = 1 \left(\frac{D_F}{p}\right)$.
- (ii) If $p \parallel N$, then $\nu_p(D, N, d, m; \mathcal{O}^*)$ is equal to $1 + \left(\frac{D_F}{p}\right)$ if $p \nmid m$, and equal to 2 if $p \mid m$.
- (iii) Assume $N = p^r u_1$, with $p \nmid u_1$, $r \geq 2$. Put $m = p^k u_2$, $p \nmid u_2$.
 - (a) If $r \geq 2k + 2$, then $\nu_p(D, N, d, m; \mathcal{O}^*)$ is equal to $2\psi_p(m)$ if $\left(\frac{D_F}{p}\right) = 1$, and equal to 0 otherwise. (b) If r = 2k + 1, then $\nu_p(D, N, d, m; \mathcal{O}^*)$ is equal to $2\psi_p(m)$ if
 - (b) If r = 2k + 1, then $\nu_p(D, N, d, m; \mathcal{O}^*)$ is equal to $2\psi_p(m)$ if $\left(\frac{D_F}{p}\right) = 1$, equal to p^k if $\left(\frac{D_F}{p}\right) = 0$, and equal to 0 if $\left(\frac{D_F}{p}\right) = -1$
 - (c) If r = 2k, then $\nu_p(D, N, d, m; \mathcal{O}^*) = p^{k-1} \left(p + 1 + \left(\frac{D_F}{p} \right) \right)$.
 - (d) If $r \leq 2k-1$, then $\nu_p(D,N,d,m;\mathcal{O}^*)$ is equal to $p^{k/2} + p^{k/2-1}$ if k is even, and equal to $2p^{k-1/2}$ if k is odd.

2. Classification theory of binary forms associated to quaternions

Given $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2, \mathbb{R})$, we put $f_{\alpha}(x, y) := cx^2 + (d - a)xy - by^2$. It is called the binary quadratic form associated to α .

For a binary quadratic form $f(x,y) := Ax^2 + Bxy + Cy^2 = (A,B,C)$, we consider the associated matrix $A(f) = \begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}$, and the determinants $\det_1(f) = \det A(f)$ and $\det_2(f) = 2^2 \det A(f) = -(B^2 - 4AC)$. Denote by $\mathcal{P}(f)$ the set of solutions in $\mathbb C$ of $Az^2 + Bz + C = 0$. If f is (positive or negative) definite, then $\mathcal{P}(f) \cap \mathcal{H}$ is just a point which we denote by $\tau(f)$.

The proof of the following lemma is straightforward.

Lemma 2.1. Let $\alpha \in M(2, \mathbb{R})$.

- (i) For all $\lambda, \mu \in \mathbb{Q}$, we have $f_{\lambda\alpha} = \lambda f_{\alpha}$ and $f_{\alpha+\mu \operatorname{Id}} = f_{\alpha}$; in particular, $\mathcal{P}(f_{\lambda\alpha+\mu\operatorname{Id}}) = \mathcal{P}(f_{\alpha})$.
- (ii) $z \in \mathbb{C}$ is a fixed point of α if and only if $z \in \mathcal{P}(f_{\alpha})$, that is, $\mathcal{P}(f_{\alpha}) = \mathcal{P}(\alpha)$.
- (iii) Let $\gamma \in GL(2,\mathbb{R})$. Then $A(f_{\gamma^{-1}\alpha\gamma}) = (\det \gamma^{-1})\gamma^t A(f_{\alpha})\gamma$; in particular, if $\gamma \in SL(2,\mathbb{R})$, $z \in \mathcal{P}(f_{\alpha})$ if and only if $\gamma^{-1}(z) \in \mathcal{P}(f_{\gamma^{-1}\alpha\gamma})$.

Definition 2.2. For a quaternion $\omega \in H^*$, we define the binary quadratic form associated to ω as the binary quadratic form $f_{\Phi(\omega)}$.

Given a quaternion algebra H denote by H_0 the pure quaternions. By using lemma 2.1 it is enough to consider the binary forms associated to pure quaternions:

$$\mathcal{H}(a,b) = \{ f_{\Phi(\omega)} : \omega \in H_0 \}, \quad \mathcal{H}(\mathcal{O}) = \{ f_{\Phi(\omega)} : \omega \in \mathcal{O} \cap H_0 \}.$$

Definition 2.3. Let \mathcal{O} be an order in a quaternion algebra H. We define the denominator $m_{\mathcal{O}}$ of \mathcal{O} as the minimal positive integer such that $m_{\mathcal{O}} \cdot \mathcal{O} \subseteq \mathbb{Z}[1, i, j, ij]$. Then the ideal $(m_{\mathcal{O}})$ is the conductor of \mathcal{O} in $\mathbb{Z}[1, i, j, ij]$.

Properties for these binary forms are collected in the following proposition, easy to be verified.

Proposition 2.4. Consider an indefinite quaternion algebra $H = \begin{pmatrix} a,b \\ \overline{\mathbb{Q}} \end{pmatrix}$, and an order $\mathcal{O} \subseteq H$. Fix the embedding Φ as in lemma 1.1. Then:

- (i) There is a bijective mapping $H_0 \to \mathcal{H}(a,b)$ defined by $\omega \mapsto f_{\Phi(\omega)}$. Moreover $\det_1(f_{\Phi(\omega)}) = \mathrm{n}(\omega)$.
- (ii) $\mathcal{H}(a,b) = \{ (b(\lambda_2 + \lambda_3 \sqrt{a}), \lambda_1 \sqrt{a}, -\lambda_2 + \lambda_3 \sqrt{a}) \mid \lambda_1, \lambda_2, \lambda_3 \in \mathbb{Q} \}$

$$= \{ (b\beta', \alpha, -\beta) \mid \alpha, \beta \in \mathbb{Q}(\sqrt{a}), \operatorname{tr}(\alpha) = 0 \}.$$

(iii) the binary quadratic forms of $\mathcal{H}(\mathcal{O})$ have coefficients in $\mathbb{Z}\left[\frac{1}{m_{\mathcal{O}}}, \sqrt{a}\right]$

Given a quaternion order \mathcal{O} and a quadratic order Λ , put

$$\mathcal{H}(\mathcal{O}, \Lambda) := \{ f \in \mathcal{H}(\mathcal{O}) : \det_1(f) = -D_{\Lambda} \}.$$

Remark that an imaginary quadratic order yields to consider definite binary quadratic forms, and a real quadratic order yields to indefinite binary forms.

Given $\omega \in \mathcal{O} \cap H_0$, consider $F_{\omega} = \mathbb{Q}(\sqrt{d})$, $d = -\mathrm{n}(\omega)$. Then $\varphi_{\omega}(\sqrt{d}) = \omega$ defines an embedding $\varphi_{\omega} \in \mathcal{E}(H, F_{\omega})$. By considering $\Lambda_{\omega} := \varphi_{\omega}^{-1}(\mathcal{O}) \cap F_{\omega}$, we have $\varphi_{\omega} \in \mathcal{E}^*(\mathcal{O}, \Lambda_{\omega})$. Therefore, by construction, it is clear that $\mathcal{P}(f_{\Phi(\omega)}) = \mathcal{P}(\Phi(\omega)) = \mathcal{P}(\varphi_{\omega})$. In particular, if we deal with quaternions of positive norm, we obtain definite binary forms, imaginary quadratic fields and a unique solution $\tau(f_{\Phi(\omega)}) = z(\varphi_{\omega}) \in \mathcal{H}$. The points corresponding to these binary quadratic forms are in fact the complex multiplication points.

Theorem 4.53 in [AB04] states a bijective mapping \mathfrak{f} from the set $\mathcal{E}(\mathcal{O}, \Lambda)$ of embeddings of a quadratic order Λ into a quaternion order \mathcal{O} onto the set $\mathcal{H}(\mathbb{Z}+2\mathcal{O},\Lambda)$ of binary quadratic forms associated to the orders $\mathbb{Z}+2\mathcal{O}$ and Λ . By using optimal embeddings, a definition of primitivity for the forms in $\mathcal{H}(\mathbb{Z}+2\mathcal{O},\Lambda)$ was introduced. We denote by $\mathcal{H}^*(\mathbb{Z}+2\mathcal{O},\Lambda)$ the corresponding subset of (\mathcal{O},Λ) -primitive binary forms. Then equivalence of embeddings yields to equivalence of forms.

Corollary 2.5. Given orders \mathcal{O} and Λ as above, for any $G \subseteq \mathcal{O}^*$ consider $\Phi(G) \subseteq \operatorname{GL}(2,\mathbb{R})$. There is a bijective mapping between $\mathcal{E}^*(\mathcal{O},\Lambda)/G$ and $\mathcal{H}^*(\mathbb{Z}+2\mathcal{O},\Lambda)/\Phi(G)$.

Fix $\mathcal{O} = \mathcal{O}(D,N)$, $\Lambda = \Lambda(d,m)$ and $G = \mathcal{O}^*$. We use the notation $h(D,N,d,m) := \sharp \mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(D,N),\Lambda(d,m))/\Gamma_{\mathcal{O}^*}$. Thus, $h(D,N,d,m) = \nu(D,N,d,m;\mathcal{O}^*)$, which can be computed explicitly by Eichler results (cf. theorem 1.2).

3. Generalized reduced binary forms

Fix an Eichler order $\mathcal{O}(D, N)$ in an indefinite quaternion algebra H. Consider the associated group $\Gamma(D, N)$ and the Shimura curve X(D, N).

For a quadratic order $\Lambda(d, m)$, consider the set $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(2p, N), \Lambda)$ of binary quadratic forms. As above, for a definite binary quadratic form $f = Ax^2 + Bxy + Cy^2$, denote by $\tau(f)$ the solution of $Az^2 + Bz + C = 0$ in \mathcal{H} .

Definition 3.1. Fix a fundamental domain $\mathcal{D}(D,N)$ for $\Gamma(D,N)$ in \mathcal{H} . Make a choice about the boundary in such a way that every point in \mathcal{H} is equivalent to a unique point of $\mathcal{D}(D,N)$. A binary form $f \in \mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(D,N),\Lambda)$ is called $\Gamma(D,N)$ -reduced form if $\tau(f) \in \mathcal{D}(D,N)$.

Theorem 3.2. The number of positive definite $\Gamma(D, N)$ -reduced forms in $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(D, N), \Lambda(d, m))$ is finite and equal to h(D, N, d, m).

Proof. We can assume d < 0, in order $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(D, N), \Lambda(d, m))$ consists on definite binary forms. By lemma 2.1 (iii), we have that $\Gamma(D, N)$ -equivalence of forms yields to $\Gamma(D, N)$ -equivalence of points. Note that $\tau(f) = \tau(-f)$, but f is not $\Gamma(D, N)$ -equivalent to -f. Thus, in each class of $\Gamma(D, N)$ -equivalence of forms there is a unique reduced binary form.

Consider $G = \{\omega \in \mathcal{O}^* \mid \mathrm{n}(\omega) > 0\}$ in order to get $\Phi(G) = \Gamma(D, N)$. The group G has index 2 in \mathcal{O}^* and the number of classes of $\Gamma(D, N)$ -equivalence in $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}(D, N), \Lambda(d, m))$ is $2 \mathrm{h}(D, N, d, m)$. In that set, positive and negative definite forms were included, thus the number of classes of positive definite forms is exactly $\mathrm{h}(D, N, d, m)$.

4. Non-ramified and small ramified cases

Definition 4.1. Let H be a quaternion algebra of discriminant D. We say that H is nonramified if D=1, that is $H \simeq \mathrm{M}(2,\mathbb{Q})$. We say H is small ramified if D=pq; in this case, we say it is of type A if D=2p, $p\equiv 3 \mod 4$, and we say it is of type B if $D_H=pq$, $q\equiv 1 \mod 4$ and $\binom{p}{q}=-1$. It makes sense because of the following statement.

Proposition 4.2. For $H = \left(\frac{p,q}{\mathbb{Q}}\right)$, p,q primes, exactly one of the following statements holds:

- (i) H is nonramified.
- (ii) H is small ramified of type A.
- (iii) H is small ramified of type B.

We are going to specialize above results for reduced binary forms for each one of these cases.

4.1. Nonramified case. Consider $H = M(2, \mathbb{Q})$ and take the Eichler order

$$\mathcal{O}_0(1,N) := \left\{ \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \mid a,b,c,d \in \mathbb{Z} \right\}.$$

Then $\Gamma(1,N) = \Gamma_0(N)$ and the curve X(1,N) is the modular curve $X_0(N)$. To unify results with the ramified case, it is also interesting to work with the Eichler order $\mathcal{O}(1,N) := \mathbb{Z}\left[1,\frac{j+ij}{2},N\frac{(-j+ij)}{2},\frac{1-i}{2}\right]$ in the nonramified quaternion algebra $\left(\frac{1,-1}{\mathbb{Q}}\right)$.

Proposition 4.3. Consider the Eichler order $\mathcal{O} = \mathcal{O}_0(1, N) \subseteq M(2, \mathbb{Q})$ and the quadratic order $\Lambda = \Lambda(d, m)$. Then:

- (i) $\mathcal{H}^*(\mathbb{Z}+2\mathcal{O},\Lambda)\simeq\{f=(Na,b,c)\mid a,b,c\in\mathbb{Z},\, \det_2(f)=-D_\Lambda\}.$
- (ii) The (\mathcal{O}, Λ) -primitivity condition is gcd(a, b, c) = 1.
- (iii) If d < 0, the number of $\Gamma_0(N)$ -reduced positive definite primitive binary quadratic forms in $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}, \Lambda)$ is equal to h(1, N, d, m).

For N=1, the well-known theory on reduced integer binary quadratic forms is recovered. In particular, the class number of $\mathrm{SL}(2,\mathbb{Z})$ -equivalence is h(d,m).

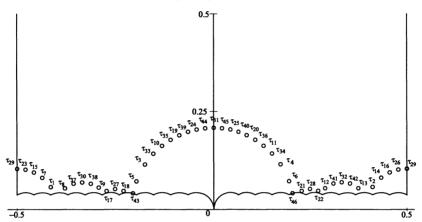
For N > 1, a general theory of reduced binary forms is obtained. For N equal to a prime, let us fix the symmetrical fundamental domain

$$\mathcal{D}(1, N) = \left\{ z \in \mathcal{H} \mid |\operatorname{Re}(z)| \le 1/2, \left| z - \frac{k}{N} \right| > \frac{1}{N}, \ k \in \mathbb{Z}, \ 0 < |k| \le \frac{N-1}{2} \right\}$$

given at [AB04]; a detailed construction can be found in [Als00]. Then a positive definite binary form $f=(Na,b,c),\ a>0$, is $\Gamma_0(N)$ -reduced if and only if $|b|\leq Na$ and $|\tau(f)-\frac{k}{N}|>\frac{1}{N}$ for $k\in\mathbb{Z},\ 0<|k|\leq\frac{N-1}{2}$. Figure 4.1 shows the 46 points corresponding to reduced binary forms in $\mathcal{H}^*(\mathbb{Z}+2\mathcal{O}_0(1,23),\Lambda)$ for $D_{\Lambda}=7,11,19,23,28,43,56,67,76,83,88,91,92$, which occurs in an special graphical position. In fact these points are exactly the special complex multiplication points of X(1,23), characterized by the existence of elements $\alpha\in\Lambda(d,m)$ of norm DN (cf. [AB04]). The table describes the n=h(1,23,d,m) inequivalent points for each quadratic order $\Lambda(d,m)$.

Note that for these symmetrical domains it is easy to implement an algorithm to decide if a form in this set is reduced or not, by using isometric circles.

FIGURE 4.1. The points $\tau(f)$ for some f reduced binary forms corresponding to quadratic orders $\Lambda(d,m)$ in a fundamental domain for X(1,23).



(d,m)	n	au(f)
(-7, 1)	2	$\left\{ au_1 = rac{-19+\sqrt{7}\iota}{46}, au_2 = rac{19+\sqrt{7}\iota}{46} ight\}$
(-7, 2)	2	$\left\{ au_3=rac{-4+\sqrt{7}\iota}{23}, au_4=rac{4+\sqrt{7}\iota}{23} ight\}$
(-11, 1)	2	$\left\{ au_5=rac{-9+\sqrt{11}\iota}{46}, au_6=rac{9+\sqrt{11}\iota}{46} ight\}$
(-14, 1)	8	$\left\{ \tau_7 = \frac{-20 + \sqrt{14}\iota}{46}, \tau_8 = \frac{-26 + \sqrt{14}\iota}{69}, \tau_9 = \frac{-20 + \sqrt{14}\iota}{69}, \tau_{10} = \frac{-3 + \sqrt{14}\iota}{23}, \right.$ $ \tau_{11} = \frac{3 + \sqrt{14}\iota}{23}, \tau_{12} = \frac{20 + \sqrt{14}\iota}{69}, \tau_{13} = \frac{26 + \sqrt{14}\iota}{69}, \tau_{14} = \frac{20 + \sqrt{14}\iota}{46} \right\}$
(-19, 1)	2	$\left\{ au_{15} = rac{-21+\sqrt{19}\iota}{46}, au_{16} = rac{21+\sqrt{19}\iota}{46} ight\}$
(-19, 2)	6	$egin{aligned} \left\{ au_{17} = rac{-25+\sqrt{19}\iota}{92}, \ au_{18} = rac{-21+\sqrt{19}\iota}{92}, \ au_{19} = rac{-2+\sqrt{19}\iota}{23}, \end{aligned} ight. \ au_{20} = rac{2+\sqrt{19}\iota}{23}, \ au_{21} = rac{21+\sqrt{19}\iota}{92}, \ au_{22} = rac{25+\sqrt{19}\iota}{92} \end{aligned}$
(-22, 1)	4	$\left\{ au_{23} = rac{-22+\sqrt{22}\iota}{46}, \ au_{24} = rac{-1+\sqrt{22}\iota}{23}, \ au_{25} = rac{1+\sqrt{22}\iota}{23}, \ au_{26} = rac{22+\sqrt{22}\iota}{46} ight\}$
(-23, 1)	3	$\left\{ au_{27} = rac{-23+\sqrt{23}\iota}{92}, \ au_{28} = rac{23+\sqrt{23}\iota}{92}, \ au_{29} = rac{-23+\sqrt{23}\iota}{46} \sim rac{23+\sqrt{23}\iota}{46} ight\}$
(-23, 2)	3	$\left\{ au_{30} = rac{-23+\sqrt{23}\iota}{69}, \ au_{31} = rac{\sqrt{23}\iota}{23}, \ au_{32} = rac{23+\sqrt{23}\iota}{69} ight\}$
(-43, 1)	2	$\left\{ au_{33} = rac{-7+\sqrt{43}\iota}{46}, \ au_{34} = rac{7+\sqrt{43}\iota}{46} ight\}$
(-67, 1)	2	$\left\{ au_{35} = rac{-5+\sqrt{67}\iota}{46}, au_{36} = rac{5+\sqrt{67}\iota}{46} ight\}$
(-83, 1)	6	$\left\{ \tau_{37} = \frac{-49 + \sqrt{83}\iota}{138}, \ \tau_{38} = \frac{-43 + \sqrt{83}\iota}{138}, \ \tau_{39} = \frac{-3 + \sqrt{83}\iota}{46}, \\ \tau_{40} = \frac{3 + \sqrt{83}\iota}{46}, \ \tau_{41} = \frac{43 + \sqrt{83}\iota}{138}, \ \tau_{42} = \frac{49 + \sqrt{83}\iota}{138} \right\}$
(-91, 1)	4	$\left\{\tau_{43} = \frac{-47 + \sqrt{91}\iota}{230}, \ \tau_{44} = \frac{-1 + \sqrt{91}\iota}{46}, \ \tau_{45} = \frac{1 + \sqrt{91}\iota}{46}, \ \tau_{46} = \frac{47 + \sqrt{91}\iota}{230}\right\}$

4.2. Small ramified case of type A. Let us consider $H_A(p) := \left(\frac{p,-1}{\mathbb{Q}}\right)$ and the Eichler order $\mathcal{O}_A(2p,N) := \mathbb{Z}\left[1,i,Nj,\frac{1+i+j+ij}{2}\right]$, for $N \mid \frac{p-1}{2},N$ square-free. The elements in the group $\Gamma_A(2p,N)$ are $\gamma = \frac{1}{2} \begin{pmatrix} \alpha & \beta \\ -\beta' & \alpha' \end{pmatrix}$ such that $\alpha,\beta \in \mathbb{Z}[\sqrt{p}], \ \alpha \equiv \beta \equiv \alpha\sqrt{p} \mod 2, \ \det \gamma = 1, \ N \mid \left(\operatorname{tr}(\beta) - \frac{\beta-\beta'}{\sqrt{p}}\right)$. We denote by $X_A(2p,N)$ the Shimura curve of type A defined by $\Gamma_A(2p,N)$.

Proposition 4.4. Consider the Eichler order $\mathcal{O}_A(2p, N)$ and the quadratic order $\Lambda = \Lambda(d, m)$.

(i) The set $\mathcal{H}(\mathbb{Z} + 2\mathcal{O}_A(2p, N), \Lambda)$ of binary forms is equal to

$$\{f = (a + b\sqrt{p}, 2c\sqrt{p}, a - b\sqrt{p}) : a, b, c \in \mathbb{Z}, a \equiv b \equiv c \mod 2, \\ N \mid (a + b), \det_1(f) = -D_{\Lambda}\}.$$

- (ii) The $(\mathcal{O}_A(2p, N), \Lambda)$ -primitivity condition for these binary quadratic forms is $\gcd\left(\frac{c+b}{2}, \frac{a+b}{2N}, b\right) = 1$.
- (iii) If d < 0, the number of $\Gamma_A(2p, N)$ -reduced positive definite primitive binary forms in $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}_A(2p, N), \Lambda)$ is equal to h(2p, N, d, m).

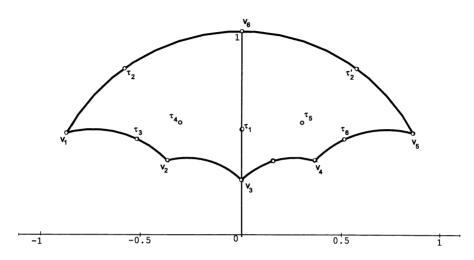
For example, consider the fundamental domain $\mathcal{D}(6,1)$ for the Shimura curve $X_A(6,1)$ in the Poincaré half plane defined by the hyperbolic polygon of vertices $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ at figure 4.2 (cf. [AB04]). The table contains the corresponding reduced binary quadratic forms $f \in \mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}_A(6,1), \Lambda(d,1))$ and the associated points $\tau(f)$ for $\det_1(f) = 4, 3, 24, 40$, that is d = -1, -3, -6, -10. Since the vertices are elliptic points of order 2 or 3, they are the associated points to forms of determinant 4 or 3, respectively. We put n = h(6, 1, d, 1) the number of such reduced forms for each determinant.

4.3. Small ramified case of type B. Consider $H_B(p,q) := \binom{p,q}{\mathbb{Q}}$ and the Eichler order $\mathcal{O}_B(pq,N) := \mathbb{Z}\left[1,Ni,\frac{1+j}{2},\frac{i+ij}{2}\right]$, where $N|\frac{q-1}{4}$, N square-free and $\gcd(N,p)=1$. Then the group of quaternion transformations is

$$\Gamma_B(pq,N) = \left\{ \gamma = \frac{1}{2} \begin{pmatrix} \alpha & \beta \\ q\beta' & \alpha' \end{pmatrix} : \ \alpha,\beta \in \mathbb{Z}[\sqrt{p}], \quad \alpha \equiv \beta \mod 2, \\ N \mid \frac{\alpha - \alpha' - \beta + \beta'}{2\sqrt{p}}, \ \det \gamma = 1 \right\}.$$

We denote by $X_B(pq, N)$ the corresponding Shimura curve of type B.

FIGURE 4.2. Reduced binary forms in a fundamental domain for $X_A(6,1)$.



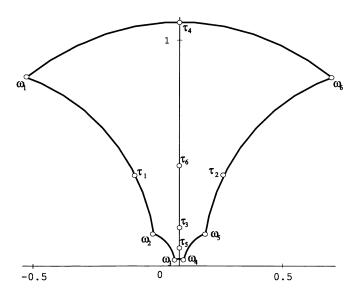
$\det_1(f)$	n	f	au(f)
3	2	$(3+\sqrt{3})x^2 + 2\sqrt{3}xy + (3-\sqrt{3})y^2$	$v_2 = \frac{1-\sqrt{3}}{2}(1-\iota)$
		$(3+\sqrt{3})x^2 - 2\sqrt{3}xy + (3-\sqrt{3})y^2$	$v_4 = \frac{-1+\sqrt{3}}{2}(1-\iota)$
4	2	$4x^2+4\sqrt{3}xy+4y^2$	$v_1 = \frac{-\sqrt{3}+\iota}{2} \sim v_3 \sim v_5$
		$2x^2 + 2y^2$	$v_6 = \iota$
24	2	$(6+2\sqrt{3})x^2-(-6+2\sqrt{3})y^2$	$ au_1 = rac{(\sqrt{6}-\sqrt{2})\iota}{2}$
		$6x^2 - 4\sqrt{3}xy + 6y^2$	$ au_2=rac{-\sqrt{3}+\sqrt{6}\iota}{3}\sim au_2'$
40	4	$(10 + 2\sqrt{3})x^2 + 8\sqrt{3}xy - (-10 + 2\sqrt{3})y^2$	$ au_3 = \frac{3 - 5\sqrt{3}}{11} + \frac{5\sqrt{10} - \sqrt{30}}{22}\iota$
		$(8+2\sqrt{3})x^2+4\sqrt{3}xy-(-8+2\sqrt{3})y^2$	$\tau_4 = \frac{\frac{11}{3 - 4\sqrt{3}}}{\frac{13}{3}} + \frac{\frac{22}{4\sqrt{10} - \sqrt{30}}}{\frac{22}{30}} \iota$
		$(8+2\sqrt{3})x^2 - 4\sqrt{3}xy - (-8+2\sqrt{3})y^2$	$\tau_5 = \frac{-3+4\sqrt{3}}{12} + \frac{4\sqrt{10-\sqrt{30}}}{22}\iota$
		$(10 + 2\sqrt{3})x^2 - 8\sqrt{3}xy - (-10 + 2\sqrt{3})y^2$	$ au_6 = rac{-3+5\sqrt{3}}{11} + rac{5\sqrt{10}-\sqrt{30}}{22}\iota$

Proposition 4.5. Consider the Eichler order $\mathcal{O}_B(pq, N)$ in $H_B(p,q)$ and the quadratic order $\Lambda = \Lambda(d, m)$.

- (i) The set $\mathcal{H}(\mathbb{Z} + 2\mathcal{O}_B(pq, N), \Lambda)$ of binary forms contains precisely the forms $f = (q(a+b\sqrt{p}), 2c\sqrt{p}, -a+b\sqrt{p})$ where $a, b, c \in \mathbb{Z}, 2N|(c-b)$ and $\det_1(f) = -D_{\Lambda}$.
- (ii) The $(\mathcal{O}_B(pq, N), \Lambda)$ -primitivity condition for these binary quadratic forms in (i) is $\gcd(a, b, \frac{c-b}{2N}) = 1$.
- (iii) If d < 0, the number of $\Gamma_B(pq, N)$ -reduced positive definite primitive binary forms in $\mathcal{H}^*(\mathbb{Z} + 2\mathcal{O}_B(pq, N), \Lambda)$ is equal to h(pq, N, d, m).

In figure 4.3 we show a fundamental domain for $\Gamma_B(10,1)$ given by the hyperbolic polygon of vertices $\{w_1, w_2, w_3, w_4, w_5, w_6\}$. All the vertices are elliptic points of order 3; thus they are the associated points to binary

FIGURE 4.3. Reduced binary forms in a fundamental domain for $X_B(10,1)$.



$\det_1(f)$	n	f	au(f)
3	4	$(-5+5\sqrt{2})x^2+2\sqrt{2}xy+(1+\sqrt{2})y^2$	$w_1 = \frac{-\sqrt{2} + \sqrt{3}\iota}{5(-1 + \sqrt{2})} \sim w_3$
		$(5+5\sqrt{2})x^2 + 2\sqrt{2}xy + (-1+\sqrt{2})y^2$	$w_2 = \frac{-\sqrt{2} + \sqrt{3}\iota}{5(1 + \sqrt{2})}$
		$35 + 25\sqrt{2}x^2 - 2\sqrt{2}xy + (-7 + 5\sqrt{2})y^2$	$w_4 = \frac{\sqrt{2} + \sqrt{3}i}{5(7 + 5\sqrt{2})} \sim w_6$
		$(5+5\sqrt{2})x^2 + 2\sqrt{2}xy + (-1+\sqrt{2})y^2$	$w_5 = \frac{\sqrt{2+\sqrt{3}\iota}}{5(1+\sqrt{2})}$
8	2	$5\sqrt{2}x^2 + 2\sqrt{2}xy + \sqrt{2}y^2$	$\tau_1 = \frac{-1+2\iota}{5}$
		$(5\sqrt{2}x^2 + 2\sqrt{2}xy + \sqrt{2}y^2$	$ au_2 = rac{1+2\iota}{5}$
20	2	$(10+10\sqrt{2})x^2+(-2+2\sqrt{2})y^2$	$\tau_3 = \frac{(\sqrt{10} - \sqrt{5})\iota}{5}$
		$(-10+10\sqrt{2})x^2+(2+2\sqrt{2})y^2$	$\tau_4 = \frac{(\sqrt{10} + \sqrt{5})\iota}{5}$
40	2	$(40+30\sqrt{2})x^2+(-8+6\sqrt{2})y^2$	$\tau_5 = \frac{(3\sqrt{5} - 2\sqrt{10})\iota}{5}$
		$10\sqrt{2}x^2 + 2\sqrt{2}y^2$	$ au_6 = rac{\sqrt{5}\iota}{5}$

forms of determinant 3. We also represent the points corresponding to reduced binary quadratic forms f with $\det_1(f) = 40$, which correspond to special complex points. The table also contains the explicit reduced definite positive binary forms and the corresponding points for determinants 8 and 20.

References

- [AAB01] M. ALSINA, A. ARENAS, P. BAYER (eds.), Corbes de Shimura i aplicacions. STNB, Barcelona, 2001.
- [AB04] M. ALSINA, P. BAYER, Quaternion orders, quadratic forms and Shimura curves. CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004.
- [Als00] M. ALSINA, Dominios fundamentales modulares. Rev. R. Acad. Cienc. Exact. Fis. Nat. 94 (2000), no. 3, 309–322.
- [Eic55] M. EICHLER, Zur Zahlentheorie der Quaternionen-Algebren. J. reine angew. Math. 195 (1955), 127–151.
- [Ogg83] A. P. OGG, Real points on Shimura curves. Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 277-307.
- [Shi67] G. SHIMURA, Construction of class fields and zeta functions of algebraic curves. Annals of Math. 85 (1967), 58-159.
- [Vig80] M.F. VIGNERAS, Arithmétique des algèbres de quaternions. Lecture Notes in Math., no. 800, Springer, 1980.

Montserrat Alsina

Dept. Matemàtica Aplicada III EUPM

Av. Bases de Manresa 61-73, Manresa-08240, Catalunya, Spain

E-mail: Montserrat.alsina@upc.edu