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Average order in cyclic groups

par JOACHIM VON ZUR GATHEN, ARNOLD KNOPFMACHER,
FLORIAN LUCA, LUTZ G. LUCHT et IGOR E. SHPARLINSKI

RÉSUMÉ. Pour chaque entier naturel n, nous déterminons l’ordre
moyen 03B1(n) des éléments du groupe cyclique d’ordre n. Nous mon-
trons que plus de la moitié de la contribution à 03B1(n) provient des
~(n) éléments primitifs d’ordre n. Il est par conséquent intéressant
d’étudier également la fonction 03B2(n) = 03B1(n)/~(n). Nous détermi-
nons le comportement moyen de 03B1, 03B2, 1/03B2 et considérons aussi
ces fonctions dans le cas du groupe multiplicatif d’un corps fini.

ABSTRACT. For each natural number n we determine the average
order 03B1(n) of the elements in a cyclic group of order n. We show
that more than half of the contribution to 03B1(n) comes from the
~(n) primitive elements of order n. It is therefore of interest to

study also the function 03B2(n) = 03B1(n)/~(n). We determine the
mean behavior of 03B1, 03B2, 1/03B2, and also consider these functions in
the multiplicative groups of finite fields.

Section 1. Introduction

For a positive integer n, we determine the average order a(n) of the
elements in the additive cyclic group Zn of order n. The major contribution
to a(n) is from the cp(n) primitive elements in Zn , each of order n. We show
that, in fact, the other elements never contribute more than the primitive
ones do.

More precisely, we consider the relative version f3(n) = With

yvehaveforn&#x3E;2:

We also determine the mean behavior of a, {3, and and discuss the

average order of elements in the multiplicative groups of finite fields. The
lower bounds for 0 are different for even and for odd characteristic.

Manuscrit reçu le 19 avril 2002.



108

The original motivation for this research was the usage of groups in
cryptography. Here one looks for cyclic groups of large order (preferably a
prime number). If we take a finite field and pick a random element from
it, how large can we expect its order to be? Intuition says that one should
avoid fields whose multiplicative group order is largely made up from small
prime factors. The results of this paper put this intuition on a firm basis.

Section 2. The average order

For a E Z, we denote by ord(a) its order in the additive group 
Then ord(a) divides n, and for each divisor d of n, there are exactly 
elements in Zn of order d. Thus the average order in Zn is

The main contribution is the term with d = n, and we normalize by it:

Since 1/n and cp(n) are multiplicative functions of n, so is their Dirichlet
convolution a(n) (see Apostol 1976, Theorem 2.14), and also We first
determine their values in the case of a prime power.

Lemma 2.1. Let p be a prime and k &#x3E; 1 an integer. Then

Proof. We have

Theorem 2.2. For an integer n &#x3E; 2, we have the following inequalities.
" - I I - "
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Proof. We have

Claim (i) now follows from the multiplicativity of (3 and the lemma. For
(ii), we clearly have 1  ~3(n)  A for all n &#x3E; 2. When n ranges through
the primes, then 3(n) = 1 tends to 1, and when nk is the product

, n(n-1)
of the first k primes, then = A. D

FIGURE 2.1. Relative average order 3(n) for n  1000.

Figure 2.1 shows the behavior of 3(n) for n  1000. The visible bands
at 1 = (3(1), 1.5 = 0(2), 1.17 ~ fl(3) , for example, are created by numbers
of the form n = kp with small k and p either prime or having only large
prime factors, namely k = 1, 2, 3 for the bands mentioned.
We have seen that a(n) is firmly wedged between cp(n) and A ~ p(n).

Since lim = 0, we also have

Theorem 4.4 below shows that this lower limit is even obtained on subse-

quences corresponding to the multiplicative groups of finite fields.
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Our upper limit A occurs in several other contexts. Kendall &#x26; Rankin

(1947), Section 3, consider the number of divisors of n that are divisible
by the squarefree part of n, and show that its asymptotic mean value is
A. Knopfmacher (1973) gives a more precise description of the mean value,
and Knopfmacher (1972), Theorem 3.1 (vi), presents a generalization. The
moments of this function are studied in Knopfmacher &#x26; Ridley (1974),
Theorem 4.4. LeVeque (1977), Problem 6.5, determines A as the sum given
in (3.7) below, and shows that the asymptotic mean of is Ax-1Iogx.
The constant A also appears in Bateman (1972), Montgomery (1970), and
Riesel &#x26; Vaughan (1983).

Throughout the paper, log x is the natural logarithm of x.

Section 3. The mean average order

In this section, we determine the mean of the averaging functions a and
{3, and of 7 = 1/{3. A pleasant feature, due to double averaging, is that the
error terms become rather small. We denote the average of an arithmetic

function g by g-not to be confused with complex conjugation:

for x &#x3E; 1. There is a well-developed theory with many general results
about the existence of means of arithmetic functions, see Elliott (1985);
Indlekofer (1980, 1981); Postnikov (1988). However, those general results
do not imply the specific statements of this work.
The average d is connected to the constant

Theorem 3.1. The mean a of a satisfies

Proof. We have
1 -

Walfisz (1963), Chapter IV, proves via exponential sum estimates that

with some constant c. Now from
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we obtain

Montgomery (1987) has shown that the error in the estimate for lp(x) is
not O((loglogx)1/2), and conjectured that its maximum order is loglogx.
We also have an explicit but worse error bound, both for g and for a.

Lemma 3.2. For x &#x3E; l, we have
I "I I

Proof. It is easily verified that (i) holds for 1  x  2. We let x &#x3E; 2,
and observe that 

I ~ II I"W8 I

1, see (Apostol 1976, Theorem 3.12). It follows that

Hence

with
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By inserting the estimates

weseethatforx&#x3E;2

This shows (i), and (ii) follows by inserting (i) into the proof of Theorem 3.1.
D

For two arithmetic functions f, g: N 2013~ C, f * g is their Dirichlet con-
volution, with

for all n. Furthermore, we denote by 1 the constant function on N with
value 1, and 1L is the M6bius function.

Lemma 3.3. Let f and g be arithmetic functions with f = 1 * g, and
consider the Dirichlet series

(i) If g(s) is absolutely convergent for Rs &#x3E; 0, then the mean of f is

and more precisely

for

(ii) If f is multiplicative and converges absolutely for some s with
Rs &#x3E; 0, then can be written as the Euler product

The absolute convergence of g(s) is equivalent to
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Proof. 1, we have

which implies (i).
If f is multiplicative, then so is g = p * f, and g(pk) = J(pk) - 

for all primes p and k e N . Now the Euler product representation of
follows from the unique factorization theorem. If is absolutely

convergent, then so is the partial series E g(pk)p-ks taken over all prime
powers pk. Conversely, absolute convergence of the latter series implies that
for any x &#x3E; 1

Thus 9(s) converges absolutely, which finishes the proof of (ii).

The mean of fl is connected to the constant

Theorem 3.4. The average value fl of fl equals C~ + O(x-1), and more
precisely

, . - ,

for x &#x3E; 1.

Proof. We use Lemma 3.3 with f = {3 and g = p * ,0. Thus
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for a prime p and an 1. Due to

the series taken over all prime powers pk converges for
0, and Lemma 3.3 (ii) implies the absolute convergence of the Dirichlet

series g(s). In particular, we obtain

Finally, Lemma 3.3 combined with (3.5) yields

which completes the proof. D

It is interesting to compare the behavior of ~(3)~(4)~~(8) with
its naive "prediction" ((3), see Theorem 3.1 and Lemma 3.2.
We have ((4)/((8) ~ 1.0779281367.

Figure 3.1 shows the behavior of

for integer x  1000. Theorem 3.4 says that this quantity is absolutely
smaller than 1.
We can also express our constants A and C,~ as sums of Dirichlet series

via the Euler product decomposition

which is valid for a multiplicative function f in the case of absolute con-
vergence. Now



115

FIGURE 3.1. The average of ~3 normalized as in (3.6).

imply that

Both series seem to converge much slower than the product representations.
The mean of the function 7 = 1//3 = cp/a is connected to the constant

Theorem 3.8. The mean 1 of, = Cy + O(x-1), and more
precisely,

for a constant D which is explicitly given in the proof below.

Proof. Again, we use Lemma 3.3, with the multiplicative function f = 1.
For a prime p 1, we have



116

by Lemma 2.1. For the multiplicative function g = ~, * f we find

Thus the Dirichlet series is absolutely convergent for 0. We have

For a prime p, the factor in this product equals

Lemma 3.3 now implies that

and the claim follows from the absolute convergence of ~(0). A numerical
evaluation of the error term gives

We have C(3 . Cq = 1.03848 90929.

Section 4. Finite fields

Our original motivation for this work was to study the average order
in the (cyclic) multiplicative group lF9 = Fq)(0) of a finite field IFQ. We
first show that for the two families q = 2~ and q a prime, a(q - 1)/(q - 1)
is on average between two positive constants, and also exhibit subfamilies
for which this quotient tends to zero. We also obtain several results for
(3(q - 1).

Theorem 4.1. There are two absolute constants A2 &#x3E; A, &#x3E; 0 such that
for all K &#x3E; 1

- 

,__ _,
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Proof. We use the asymptotic formula from Shparlinski (1990)

with 77 given by the absolutely convergent series

where td is the multiplicative order of 2 modulo d. The claim follows from
(4.2) and Theorem 2.2. D

The proof of Theorem 4.1 implies that for any constant c  q, a(2k-1) &#x3E;
c ~ (2k - 1) for infinitely many integers k. We may, of course, take A2 = 1
in Theorem 4.1; it is not clear whether Theorem 4.1 holds with a smaller
value of A2. We also see that for any E &#x3E; 0 and sufficiently large values of
K, Theorem 4.1 holds with 

Stephens (1969) shows in his Lemma 1 that

where

is Artin’s constant and D &#x3E; 1 is arbitrary. The sum does not change by
much if we replace p by p - 1 in the denominator, since

Using the bounds of Theorem 2.2 on fl = the fact that p - 1 is even
for p &#x3E; 3, and /3(2) = 3/2, we find that

for any E &#x3E; 0 and sufficiently large x.
Thus there is an infinite sequence of fields of characteristic 2, and also one

of prime fields, in which the average order is close to its largest possible
value. Now we show that a(2k - 1) and a(p - 1) infinitely often take
relatively small values, just as cp(2k - 1) and cp(p - 1) do.
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Theorem 4.4. For infinitely many integers k &#x3E; 3 and for infinitely many
primes p, we have

Proof. Let pi denote the ith prime. For an integer r &#x3E; 1, we put

Then mr divides 2kr - 1, and therefore

Using the bound

(see Hardy &#x26; Wright (1962), Theorem 328) and I~T  mr, we obtain the
first statement.
To prove the second bound, we select qr as the smallest prime number

in the arithmetic progression 1 mod mr. Then

From Linnik’s Theorem on the smallest prime number in an arithmetic
progression, we have log qr = O(log mr) , and the result follows. D

In particular,

Open (auestion. Obtain analogs of (4.2) and (4.3) for the sums

In the above we considered only a(2~ - 1). Similar results also hold for
a(pk - 1) for any fixed p and growing k.
The convergence to zero of as above seems rather slow.

For the largest known "primorial prime" q = 7233 237 + 1, where as before
nk is the product of the first k primes (see Caldwell &#x26; Gallot 2000), with
169 966 digits and the largest prime factor p33 237 = 392113 of q - 1, we
have a(q - 1)/(q - 1) ~ 0.0847. Also, fl(q - 1) ~ 1.94359 608 is close to A.

Concerning lower bounds for 3, the situation is quite different between
characteristic 2 and odd characteristic.
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In a finite field of characteristic 2, the group of units’ is cyclic with
2~ - 1 elements. For a Mersenne prime Mk = 2~ - 1, we have 
1 + (Mk - If there are infinitely many of them, then lim inf 0(2k -
1) = 1. For the current world record k = 69 72593 (see Chris Caldwell’s
web site http : //www. utm. edu/research/primes), we have 1 +

~.52 ~ 10-4197919.
For a field Fq of odd characteristic, 2 divides q - 1 = and thus

j3(q - 1) &#x3E; 4/3, by Lemma 2.1. For a prime q = m2k + 1 with m odd, we
have

n / 1 B

As an example, with the prime m = 10500 + 961 and = 3103, q is indeed
prime (Keller 2000), and

We now prove the limits indicated by these experimental results.

Theorem 4.5. We have

Proof. To show that the limit in (i) is at least 4/3, we notice that if

p &#x3E; 3, then p - 1 = 2km with some k &#x3E; 1 and some odd integer m, and
therefore

For the equality in (i), we use a theorem of Chen (see Chen (1973), or
Lemma 1.2 in Ford (1999), or Chapter 11 of Halberstam &#x26; Richert (1974))
which says that for each even natural number n there exists xo such that
for every x &#x3E; xo there exists a prime number p E (x/2, x~ with p - 1 mod n
such that (p-1)/n has at most two prime factors, and each of them exceeds
x1/10.
We now choose a positive integer k and apply Chen’s Theorem with

n = 2k to conclude that there exist infinitely many prime numbers p such
that p - 1 = where m has at most two prime factors, and each of
them exceeds p1/10. For such prime numbers p, we have
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If m is prime, then

if m = r2 is a square of a prime, we have

while if m = rs is a product of two distinct primes, then

by Lemma 1. At any rate, with k fixed and p tending to infinity through

prime numbers of the above form, we get that the number 4 (1 + 22k+i )3 22k+l
is a cluster point for the set B = 1) : p prime}. Since this is true for
all positive integers k, we get that 4/3 is also a cluster point for B, which
takes care of (i).

For (ii), Theorem 1 says that the limit in (ii) is at most A. To show

equality, we let x be a large positive real number, write

and let q~ be the smallest prime number in the arithmetic progression
Px +1 mod P~ , which exists by Dirichlet’s Theorem, since Pp -f-1 is coprime
to P~ . We 1 - Px mod P2 and may write

where each prime factor of ?7~ is larger than x. Thus

We now consider the prime factorization

-.L -n,

of mx where PI, ... , &#x3E; x are distinct primes and e1, ... , ek are positive
integers. Then
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Now (4.6) and (4.7) imply that

which takes care of (ii). To prove (iii), we show that

If d and n are positive integers with d dividing n, then  Hence

-1-- -1--

Let p be any prime number and consider the prime factorization

of 2P - 1. For any i  k, we have 2P =- 1 mod p2, so that the order of
2 modulo pi divides p. Since p is prime, it equals this order, and hence
pi = 1 mod p. In particular, pi &#x3E; p, and therefore

so that k  p/ 1092 p. Thus

which proves (4.8). D
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