
Tim SANTENS

Integral points on affine quadric surfaces
Tome 34, no 1 (2022), p. 141-161.

https://doi.org/10.5802/jtnb.1196

© Les auteurs, 2022.

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE.
http://creativecommons.org/licenses/by-nd/4.0/fr/

L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux »
(http://jtnb.centre-mersenne.org/) implique l’accord avec les conditions générales
d’utilisation (http://jtnb.centre-mersenne.org/legal/).

C EN T R E
MER S ENN E

Le Journal de Théorie des Nombres de Bordeaux est membre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/

https://doi.org/10.5802/jtnb.1196
http://creativecommons.org/licenses/by-nd/4.0/fr/
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/


Journal de Théorie des Nombres
de Bordeaux 34 (2022), 141–161

Integral points on affine quadric surfaces

par Tim SANTENS

Résumé. Il est bien connu que le principe de Hasse est valable pour les hyper-
surfaces quadratiques. Le principe de Hasse échoue pour les points entiers sur
les hypersurfaces quadratiques lisses de dimension 2, mais cet échec peut être
complètement expliqué par l’obstruction de Brauer–Manin. Nous étudions à
quelle fréquence la famille d’hypersurfaces quadratiques ax2 + by2 + cz2 = n
a une obstruction de Brauer–Manin, où a, b, c, n sont des entiers. Nous amé-
liorons les éstimations précédentes de Mitankin [7].

Abstract. It is well-known that the Hasse principle holds for quadric hy-
persurfaces. The Hasse principle fails for integral points on smooth quadric
hypersurfaces of dimension 2 but the failure can be completely accounted for
by the Brauer–Manin obstruction. We investigate how often the family of
quadric hypersurfaces ax2 + by2 + cz2 = n has a Brauer–Manin obstruction
where a, b, c, n are integers. We improve previous bounds of Mitankin [7].

1. Introduction
One of the oldest questions in number theory is whether a particular poly-

nomial equation has a solution in the integers or in the rational numbers.
The general problem of finding an algorithm which can decide for every
polynomial f ∈ Z[X1, . . . , Xn] whether it has an integral zero is known as
Hilbert’s 10th problem. It was shown to be impossible in the second half of
the twentieth century by Matiyasevich [6], building upon work of Robinson,
Davis and Putnam. The analogous question for rational zeros is still open
but is also expected to be unsolvable. A slight generalization in which we
allow systems of polynomial equations can be restated in a more modern
terminology as follows. Given a Q-variety X and an integral model X , the
question is whether X(Q) = X (Q) 6= ∅? Respectively whether X (Z) 6= ∅?
Note that the second question is only interesting if X is not proper (and
thus not projective) since if it were proper, then because of the valuative cri-
terion of properness X (Z) = X (Q). Necessary conditions for the existence
of rational or integral points are that X(Qp) 6= ∅ for all prime numbers p
and X(R) 6= ∅, respectively that X (Zp) 6= ∅ for all prime numbers p and
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X (R) 6= 0. Here Qp are the p-adic numbers and Zp are the p-adic inte-
gers. If these conditions are also sufficient we say that X satisfies the Hasse
principle, respectively that X satisfies the integral Hasse principle.

The simplest example of varieties, those defined by a system of linear
equations, satisfy the Hasse principle and the integral Hasse principle by
linear algebra and Euclid’s algorithm. The first non-trivial examples are
quadrics. Both projective and affine quadrics satisfy the Hasse principle [9,
§4: Theorem 8], this was proved by Minkowski. Sadly, this does not gen-
eralize to their integral models. The situation depends on the dimension
of the variety. We may assume that the associated quadratic form is non-
degenerate, equivalently that the corresponding variety is smooth. If its
dimension is greater or equal to 3 and the set of real points is unbounded,
then they satisfy the integral Hasse principle, [1, Theorem 6.1]. This was
originally proved by Kneser [5]. Note that the unboundedness assumption
is necessary due to counterexamples like 4x2 + 4y2 + 4z2 + 9t2 = 1. On the
other hand if the real points are bounded then whether there are integral
points can checked with a finite computation. This theorem fails when the
rank of the quadratic form is less than 4. In the case when the rank is
3 the failure of the integral Hasse principle can be completely explained
by the Brauer–Manin obstruction [1, Theorem 6.3] which was proved by
Colliot-Thélène and Xu. The dimension 1 case is the rich subject of inte-
gers represented by binary quadratic forms which lies outside the scope of
this article.

A natural question is then: what is the amount of surfaces that actually
have a Brauer–Manin obstruction? This question was investigated in work
by Mitankin [7]. To be precise, for a fixed non-zero integer n consider the
family Fn of surfaces Xa,b,c : ax2 + by2 + cz2 = n where a, b, c ∈ Z such
that ax2 + by2 + cz2 is indefinite and non-degenerate. The first question is
how often this family has integral solutions everywhere locally. To study
this one introduces the height function H(a, b, c) = max(|a|, |b|, |c|) and
considers the following quantity as B > 0 varies:

Nloc(B) = |{Xa,b,c ∈ Fn : H(a, b, c) ≤ B,Xa,b,c(AZ) 6= ∅}|.

Here AZ are the integral adeles. Then Mitankin proves [7, Theorem 1.1] that
there exist a non-zero constant cn such that Nloc(B) ∼ cnB3. So a positive
proportion of such surfaces have integral solutions everywhere locally. The
second quantity they consider is

NBr(B) = |{Xa,b,c ∈ Fn : H(a, b, c) ≤ B,Xa,b,c(AZ) 6= ∅, Xa,b,c(Z) = ∅}|.

For this quantity it is proven that [7, Theorem 1.2, Corollary 1.4]:

B
3
2 (logB)−

1
2 �n NBr(B)�n B

3
2 (logB)3.
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So in particular 0% of these surfaces have a Brauer–Manin obstruction. In
this paper we improve both of these bounds.

Theorem 1.1. The following bounds hold

B
3
2 (logB)

1
2 �n NBr(B)�n B

3
2 (logB)

3
2 .
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Structure. This paper is organized as follows, in the first section we give
an introduction to the integral Brauer–Manin obstruction and in particular
describe the case of integral affine quadrics. In the second section we give
a proof of Theorem 1.1, first of the lower and then the upper bound.

2. Brauer–Manin obstruction
2.1. The general Brauer–Manin obstruction. We will first give an
overview of the (integral) Brauer–Manin obstruction. For more details on
the Brauer–Manin obstruction we refer the reader to [10, §5.2] and for the
integral Brauer–Manin obstruction [1, §1].

For an arbitrary scheme X its Brauer group is Br(X) = H2
ét(X,Gm).

We refer the reader to [4] for an introduction to the Brauer group. Let K
be a number field, ΩK the set of equivalence classes of places of K and for
v ∈ ΩK we let Kv be the completion of K with respect to the place v. From
local class theory we know that for every place v there exists an injective
map invv : Br(Kv)→ Q/Z. Let X be a K-variety, AK be the ring of adeles
of K and X(AK) the set of adelic points of X. There is then a pairing

X(AK)× Br(X) −→ Q/Z :

((xv)v, α) 7−→
∑
v∈Ωv

invv(α(xv)).(2.1)

The left kernel of this pairing is called the Brauer–Manin set X(AK)Br

and the set of rational points X(K) injects into it. The right kernel of this
pairing contains Br(K). We remark that the quotient Br(X)/Br(K) is often
finite. If X(AK) 6= ∅ but X(AK)Br = ∅, then X(K) has to be empty, thus
X fails the Hasse principle. We say that X has a Brauer–Manin obstruction
to the Hasse principle.

Let now X be an integral model of X, it is separated so we can iden-
tify X (OKv) with a subset of X (Kv) = X(Kv) and thus form a similar
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obstruction for integral points by considering the pairing

X (AOK )× Br(X) −→ Q/Z :

((xv)v, α) 7−→
∑
v∈Ωv

invv(α(xv)).(2.2)

Here AOK is the ring of integral adeles and X (AOK ) is the set of integral
adelic points. The left kernel of this pairing is called the Brauer–Manin set
X (AOK )Br and the set of integral points X (OK) injects into it. It is clear
from the definitions that X (AOK )Br = X (AOK )∩X(AK)Br. If X (AOK ) 6= ∅
but X (AOK )Br = ∅ we say that X has a Brauer–Manin obstruction to the
integral Hasse principle.

2.2. The case of affine integral quadric surfaces. We now come to
the case of interest for this paper. Let q be a non-degenerate indefinite
integral quadratic form of rank 3 and n a non-zero integer. The question
we want to answer is whether there exist integers x, y, z ∈ Z such that
q(x, y, z) = n. Let X be the affine surface defined over Q by this equation
and let X be the obvious integral model of it. It is then shown by Colliot-
Thélène and Xu in [1, Theorem 6.3] that the Brauer–Manin obstruction
is the only obstruction to the integral Hasse principle, i.e. if X (AZ)Br 6= ∅
then X (Z) 6= 0. It is also shown that if X(Q) 6= ∅ and d = −disc(q)n
is not a square, then Br(X)/Br(Q) ∼= Z/2Z and if d is a square then
Br(X)/Br(Q) = 0. An explicit algorithm to find a generator of this group
is given in Section 5.8 of [1]. We now give a description of this algorithm.

Consider first the projectivization X of X, concretely X ⊆ P3 is the
projective surface defined by q(x, y, z) = nt2 for [x : y : z : t] ∈ P3. Then
choose a Q-point M on X. Let `1 = `1(x, y, z, t) be the linear form defining
the tangent plane of X at M . Then by [9, §IV: Proposition 3’] there exist
linearly independent linear forms `2, `3, `4 and c ∈ Q∗ such that

q(x, y, z)− nt2 = `1`2 + c(`23 − d`24).

Conversely, if we have such linear forms then `1 defines a plane tangent to
X. Consider the quaternion algebra α = ( `1t , d) ∈ Br(Q(X)) = Br(Q(X)).
By the identity in the li we get in Br(Q(X)) that

α =
(
`2
t
, d

)(
`1`2
t2

, d

)
=
(
`2
t
, d

)
(c, d)

(
`23 − d`24

t2
, d

)
=
(
`2
t
, d

)
(c, d).

So α is defined on U1 = {t`1 6= 0} and on U2 = {t`2 6= 0}. By Grothendieck
purity [4, III: Theorem 6.1] this implies that α comes from the Brauer group
of {t 6= 0} = X since {`1 = 0 = `2} is at least of codimension 2.
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3. The proof of Theorem 1.1
We recall that the statement of Theorem 1.1 is the following inequalities:

B
3
2 (logB)

1
2 �n NBr(B)�n B

3
2 (logB)

3
2 .

3.1. The lower bound. It suffices to do the case n = 1 since the surfaces
ax2 + by2 + cz2 = 1 and anx2 + bny2 + cnz2 = n are the same. We first
construct a family with a Brauer–Manin obstruction. For this fix a prime
q ≡ 1 mod 8, e.g. q = 17. For a, c, d, e ∈ Z\{0} with c, d, e pairwise coprime
consider the family of integral surfaces Ya;c,d,e : aq2c2x2 − ad2y2 + e2qz2 =
1. We start with a lemma showing when this family has a local solution
everywhere, clearly we always have Ya;c,d,e(R) 6= ∅. From now on p is always
a prime number. From now on, except for a single clearly marked exception,
we will use the notation (a, b) without a subscript to mean the greatest
common divisor of a and b. On the other hand (a, b)p with a subscript will
be the Hilbert symbol.

Lemma 3.1. Ya;c,d,e(Zp) 6= ∅ for all primes p if and only if (a, eq) = 1,
(d, q) = 1 and for all odd primes p | a we have ( qp) = 1.

Proof. The only if part is clear by looking modulo p, the other part we do
by case analysis.

• If p - 2aq, then the associated equation has a smooth point modulo
p which lifts to a Zp-point by Hensel’s lemma.
• If p | a and if p is odd, then by assumption q is a non-zero square
modulo p which implies we can write q = α−2 for α ∈ Zp. Similarly,
if p = 2 and 2 - e, then since q ≡ 1 (mod 8) we can also write
q = α−2 for α ∈ Z∗2. In both cases e must be invertible in Zp since
(a, e) = 1. So (0, 0, αe−1) ∈ Ya;c,d,e(Zp).
• If p = q, then we can factorize a =

∏
i p
αi
i where the pi are prime

numbers. Then (aq ) =
∏
i(
pi
q )αi = 1. Indeed, by our assumption and

quadratic reciprocity (piq ) = ( qpi ) = 1 if pi is odd. If pi = 2 then also
(2
q ) = 1 since q ≡ 1 (mod 8). So a = β−2 for some β ∈ Z∗q . Then

(0, βd−1, 0) ∈ Ya;c,d,e(Zp).
• If p = 2 but 2 | e, then by assumption 2 - a, c, d. A direct com-
putation shows that the quadratic form x′2 − y′2 takes all values
in (Z/8Z)∗, letting it take the value a−1 and setting z = 0, x =
q−1c−1x′, y = d−1y′ gives a solution to aq2c2x2− ad2y2 + e2qz2 = 1
modulo 8 which lifts to Z2 by Hensel’s lemma. �

From now on let a, c, d, e be as in the above lemma. We want to know
when Ya;c,d,e has no integral point. By [1, Theorem 6.3] this only happens
if there is a Brauer–Manin obstruction. In this case Br(Ya;c,d,e)/Br(Q) ∼=
Z/2Z since −(aq2c2)(−ad2)(e2q) = q ∈ Q∗/Q∗2 is not a rational square as
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in Section 2.2. We use the procedure in that section to find a representative
of the generator of this group. The projectivization of Ya;c,d,e is given by
the equation aq2c2X2 − ad2Y 2 + qe2Z2 = T 2 with [X : Y : Z : T ] ∈ P3.
This variety has a rational point [d : −qc : 0 : 0]. The tangent plane
to this point is defined by the equation 2aq2c2dX + 2ad2qcY = 0 so a
representative for the generator of the group is given by the quaternion
algebra (qcXT + dYT , q) = (qcx+ dy, q).

We now need to find what the values of this Brauer element are when
evaluated at points of Ya;c,d,e(Zp). Since the evaluation function is continu-
ous we can restrict our attention to the dense open subset U = {qcx+dy 6=
0}. That is, we will only consider points in Ya;c,d,e(Zp) ∩ U(Qp). We split
this computation into the following cases:

• If p=∞ or 2, then (qcx+dy, q)p = 1 since q is a square in R and Z2.
• If p - 2q then the following equality follows from the computation
of the Hilbert symbol [9, §III: Theorem 1].

(qcx+ dy, q)p =
(
q

p

)vp(qcx+dy)
.

We may assume that ( qp) = −1 since the other case is trivial, thus
(a, p) = 1. If p | qcx+dy, then p | q2c2x2−d2y2 so by looking at the
defining equation modulo p we see that e2qz2 ≡ 1 (mod p) which
contradicts that ( qp) = −1.
• If p = q, then by looking at the defining equation modulo q we get
ad2y2 ≡ 1 (mod q) which shows that y is non-zero modulo q. Then
(qcx + dy, q)q = (dyq ) because of the computation of the Hilbert
symbol. So it is equal to 1 if and only if dy is a square modulo q.
Again looking at the defining equation modulo q we see that this
happens if and only if −a is a non-zero fourth power modulo q.
Because q ≡ 1 (mod 8) this is true if and only if a is a non-zero
fourth power modulo q.

Combining all this we get that Ya;c,d,e(Z) = ∅ if and only if a is not a
fourth power modulo q. On the other hand we already assumed that a was
a square modulo q so the residue of a modulo q has to be an element of

(3.1) S = (Z/qZ)∗2 \ (Z/qZ)∗4.

The group isomorphism (Z/qZ)∗ ∼= Z/(q − 1)Z and the fact that q ≡ 1
(mod 8) imply that the set S is non-empty and has size q−1

4 .
We now want to count the amount of such equations with coefficients

smaller than B, namely N ′Br(B) =

(3.2) |{Ya;c,d,e : H(aq2c2, ad2, qe2)≤B, Ya;c,d,e(AZ) 6=∅ and Ya;c,d,e(Z)=∅}|
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We will first introduce some notation to encode the conditions above. First
of all we will denote the indicator function of S by 1a∈S , we can encode
this in the standard way as a sum of characters

(3.3) 1a∈S = 1
q − 1

∑
s∈S

∑
χ mod q

χ(s)χ(a).

Note that we used that s ∈ S if and only if s−1 ∈ S to simplify the
notation. We will also use α(a) to denote the indicator function of the set
{a ∈ Z : p | a ⇒ (pq ) = 1}. Similarly we use the notation β(c, d, e) for the
indicator function of the condition c, d, e pairwise coprime.

Since the sign of a is immaterial we have

(3.4) N ′Br(B) = 2
∑
a≤ B

q2

α(a)1a∈S
∑

c≤
√
B

q
√
a

∑
d≤
√

B
a

(d,q)=1

∑
e≤
√

B
q

(e,a)=1

β(c, d, e).

Note in particular that if q|a then the associated term in this sum is zero.
To remove the condition (a, e) = 1 we can use that its indicator function
is given by

∑
f |(a,e) µ(f). We can then swap the order of the summation

so (3.4) turns into

N ′Br(B) = 2
∑

f≤
√

B
q

µ(f)
∑

a≤ B
q2f

α(af)1af∈S
∑

c≤
√
B

q
√
af

∑
d≤
√

B
af

(d,q)=1

∑
e≤
√
B√
qf

β(c, d, fe).

We will denote the triple sum over c, d, e by V (B, a, f). Note that by defi-
nition β(c, d, fe) = β(c, d, e) if (f, cd) = 1 and equal to 0 otherwise. So we
can also write this quantity as

(3.5) V (B, a, f) =
∑

c≤
√
B

q
√
af

(c,f)=1

∑
d≤
√

B
af

(d,qf)=1

∑
e≤
√
B√
qf

β(c, d, e).

It also follows from the definition of α that α(af) = α(a)α(f). Using this
and (3.3) we obtain that N ′Br(B) is equal to

2
q − 1

∑
s∈S

∑
χ mod q

χ(s)
∑

f≤
√

B
q

α(f)χ(f)µ(f)
∑

a≤ B
q2f

α(a)χ(a)V (B, a, f).

We now introduce the following intermediary quantities for which we will
find asympotic formulas one by one. First of all the sum over a is denoted by

(3.6) Wχ(B, f) =
∑

a≤ B
q2f

α(a)χ(a)V (B, a, f).
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We will also consider the sum over f :

(3.7) Uχ(B) =
∑

f≤
√

B
q

α(f)χ(f)µ(f)Wχ(B, f).

With this notation the quantity which we have to compute is

(3.8) N ′Br(B) = 2
q − 1

∑
s∈S

∑
χ mod q

χ(s)Uχ(B).

We begin by evaluating V (B, a, f). Let k, `,m be non-zero integers and let
X,Y, Z ≥ 1. We will start by investigating the following sum.

Lk,`,m(X,Y, Z) =
∑
x≤X

(x,k)=1

∑
y≤Y

(y,`)=1

∑
z≤Z

(z,m)=1

β(x, y, z).

A similar sum is the subject of [12], in particular if X = Y = Z and
k = ` = m the following lemma is a special case of the main theorem
of [12].

Lemma 3.2. There exists a non-zero constant Ck,`,m =
∏
pCp only de-

pending on k, `,m such that

Lk,`,m(X,Y, Z) = Ck,`,mXY Z

+O

((
τ(k)(logX)2

X
+ τ(`)(log Y )2

Y
+ τ(m)(logZ)2

Z

)
XY Z

)
.

For any prime p the constant Cp depends on how many of the k, `,m
are divisible by the prime p. If p divides exactly i of them, then Cp =
(1− 1

p)2(1 + 2−i
p ).

In the proof of this lemma we will require the notion of a multivariable
multiplicative function. A survey of this notion is the subject of [13].

Proof. We will first encode the conditions x, y, z pairwise coprime in a more
useful way. Note that β(x, y, z) is multiplicative. We can encode this con-
dition as

(3.9) β(x, y, z) =
∑

t|(x,y,z)

∑
u|(x,y)

∑
v|(x,z)

∑
w|(y,z)

µ(uvwt)µ(t)τ(t).

Indeed the right hand side is also multiplicative. It thus suffices to check
the equality in the case where x, y, z are prime powers and this is a simple
computation.

Use this encoding (3.9) of β in the definition of Lk,`,m(X,Y, Z). Since
the terms are non-zero unless t, u, v, w are pairwise coprime we can switch
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the order of summation and get that

(3.10) Lk,`,m(X,Y, Z)

=
∑

uvt≤X, (uvt,k)=1
uwt≤Y, (uwt,`)=1
vwt≤Z, (vwt,m)=1

µ(uvwt)µ(t)τ(t)
∑
x≤ X

uvt
(x,k)=1

∑
y≤ Y

uwt
(y,`)=1

∑
z≤ Z

vwt
(z,m)=1

1.

Now for the inner sums use the standard fact that∑
x≤X

(x,k)=1

1 =
∑
x≤X

∑
d|(x,k)

µ(d) =
∑
d|k

(
µ(d)X
d

+O(1)
)

= φ(k)X
k

+O(τ(a)).

Applying this and the trivial inequality
∑

x≤X
(x,k)=1

1� X if X ≤ τ(k) thrice

one finds that∑
x≤ X

uvt
(x,k)=1

∑
y≤ Y

uwt
(y,`)=1

∑
z≤ Z

vwt
(z,m)=1

1 = XY Z

u2v2w2t3

(
φ(k)φ(`)φ(m)

k`m

+O

(
τ(k)uvt
X

+ τ(`)uwt
Y

+ τ(m)vwt
Z

))
.

If we apply this to (3.10) and use trivial inequalities for the sums over the
error terms we get that

Lk,`,m(X,Y, Z) = Kk,`,m(X,Y, Z)XY Z
(
φ(k)φ(`)φ(m)

k`m

+O

(
τ(k)(logX)2

X
+ τ(`)(log Y )2

Y
+ τ(m)(logZ)2

Z

))
,

where

(3.11) Kk,`,m(X,Y, Z) =
∑

uvt≤X, (uvt,k)=1
uwt≤Y, (uwt,`)=1
vwt≤Z, (vwt,m)=1

µ(uvwt)µ(t)τ(t)
u2v2w2t3

.

We now show that Kk,`,m(X,Y, Z) converges as X,Y, Z →∞ and decide
its speed of convergence. For this we have to bound the size of∣∣∣∣∣ ∑

uvt≥X, (uvt,k)=1
or uwt≥Y, (uwt,`)=1
or vwt≥Z, (vwt,m)=1

µ(uvwt)µ(t)τ(t)
u2v2w2t3

∣∣∣∣∣ ≤∑
t

τ(t)
t3

∑
uv≥X

t

or uw≥Y
t

or vw≥Z
t

1
u2v2w2 .
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We can bound this inner sum as a sum over the three regions uv ≥ X
t ,

uw ≥ Y
t and uv ≥ X

t . Since the sums over each region are analogous we
only do the region uv ≥ X

t . By putting n = uv we can bound this sum as

∑
t

τ(t)
t3

∑
w

1
w2

∑
n≥X

t

τ(n)
n2 �

∑
t

τ(t)
t3

∑
w

1
w2

t log(Xt )
X

� logX
X

.

Here we have used partial summation and the classical fact [11, §I.3.2] that∑
n≤X

τ(n) = X logX +O(X).

This gives a total error term of size O( logX
X + log Y

Y + logZ
Z ).

It thus only remains to compute the value of the completed sum

(3.12)
∑

u,v,w,t
(uvt,k)=(uwt,`)=(vwt,m)=1

µ(uvwt)µ(t)τ(t)
u2v2w2t3

.

Because the terms are multiplicative in u, v, w, t, [13, Proposition 11] implies
that this sum converges to the Euler product

∏
pC
′
p. Fix a prime p and let

i be the number of elements of {k, `,m} divisible by p.
• If i = 0 then C ′p = 1− 3

p2 + 2
p3 = (1− 1

p)2(1 + 2
p).

• If i = 1 then C ′p = 1− 1
p2 = (1− 1

p)(1 + 1
p)

• If i = 2, 3 then C ′p = 1.

It remains to prove that Ck,`,m = φ(k)φ(`)φ(m)
k`m

∏
pC
′
p. This is clearly true

since Cp = C ′p(1− 1
p)i. This completes the proof. �

From this lemma it now follows by taking X =
√
B

q
√
af
, Y =

√
B√
af
, Z =

√
B√
qf

and k = f, ` = qf,m = 1 that

(3.13) V (B, a, f) = B
3
2

q
3
2af2

(
Cf+O

(
τ(f)√
B

(
f(logB)2+

√
af

(
log B

a

)2
)))

,

where

Cf = q + 1
q + 2

∏
p|f

(
1 + 2

p

)−1∏
p

(
1− 3

p2 + 2
p3

)
.

This formula holds since q - f which is true since f |a and (q, a) = 1. We
will now compute Wχ(B, f). Using the formula (3.13) in the definition of



Integral points on affine quadric surfaces 151

Wχ(B, f) (3.6) we find that

(3.14) Wχ(B, f) = B
3
2Cf

q
3
2 f2

∑
a≤ B

q2f

χ(a)α(a)
a

+O

τ(f)B(logB)2

f

∑
a≤ B

q2f

α(a)
a

+ B

f
3
2

∑
a≤ B

q2f

α(a)
a

1
2

(
log B

a

)2

 .
To compute the main term we will first compute

∑
a≤ B

q2f
χ(a)α(a) and

then apply partial summation. We will evaluate this sum using the Selberg–
Delange method. See [11, II.5 Theorem 3] for a precise statement of the
Selberg–Delange method and the preceding Section II.5.3 for the definition
of type T .
Lemma 3.3. Let χ be a character modulo q and let ψ be the character ( ·q ).
Then we have the following. If χ = ψ or if χ is principal, then∑

a≤x
χ(a)α(a) = Dx(log x)−

1
2 +O(x(log x)−

3
2 ),

where D = π−
1
2 (1− 1

q )
1
2
∏
p(1− 1

p)−
ψ(p)

2 . Otherwise,∑
a≤x

χ(a)α(a) = O(xe−d1
√

log x)

for some constant d1 > 0.
Proof. We first do the case χ = ψ or χ is principal. If χ = ψ, then the
only terms in the sum for which α(a) is non-zero, are by definition the ones
such that for all primes p|a we have ψ(p) = 1. Since ψ is multiplicative this
implies that ψ(a) = 1. Now look at the associated Dirichlet series of this
sum

F (s) =
∑
n

α(n)n−s =
∏
p

ψ(p)=1

(1− p−s)−1

=
(

1− 1
qs

) 1
2
ζ(s)

1
2L(ψ, s)

1
2

∏
p

ψ(p)=−1

(1− p−2s)
1
2 .

We were able to write the above as this Euler product since α is totally
multiplicative. In the following we write K(s) =

∏
p,ψ(p)=−1(1−p−2s)

1
2 . We

will use the classical notation s = σ+ it. For σ > 1
2 we have the inequalities∏

p
ψ(p)=−1

|(1− p−2s)
1
2 | ≤

∏
p

(1 + p−2σ)
1
2 ≤

∏
p

(1− p−2σ))−
1
2 = ζ(2σ)

1
2 .
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So K is holomorphic and bounded by ζ(3
2)

1
2 in the region Reop(s) > 3

4 . It
is known [2, Chapter 14] that there exists a constant c0 > 0 such that for
every character χ modulo q the Dirichlet series L(χ, s) has no zeroes in the
region

σ ≥ 1− c0
1 + log(1 + |t|) ,

One can get rid of the possible Siegel zero by taking a smaller c0. We will
also require the bound L(σ+ it, ψ) ≤ ( q|σ+it|

2π )
3−2σ

4 ζ(3
2) ≤ ( q

2π )(1 + |t|)
1
2 ζ(3

2)
for 1

2 ≤ σ ≤ 1, which is the case η = 1
2 of [8, Theorem 3]. Here we used

the fact that q > 2π. Let c1 = min(c0,
1
4), then the preceding discussion

implies that F (s) is of type T (1
2 ,

1
2 , c1,

3
4 , (1+ 1

q
3
4

)
1
2 ( q

2π )
1
2 ζ(3

2)). The Selberg–
Delange method immediately implies the desired asymptotic formula. For
the other characters χ we use the Selberg–Delange method once again. The
associated Dirichlet series is

F (s) =
∑
n

χ(n)α(n)n−s =
∏
p

ψ(p)=1

(1− χ(p)p−s)−1

= L(ψ, s)
1
2L(χψ, s)

1
2

∏
p

ψ(p)=−1

(1− p−2s)
1
2 .

So for similar reasons as before F (s) is of type T (0, 1
2 , c1,

1
2 ,

q
2π ζ(3

2)
3
2 ) which

by the Selberg–Delange method implies the desired bound. �

To bound the error terms in (3.14) we proceed as follows. the first sum
is bounded trivially and gives an error term of

O

(
Bτ(f)
f

(logB)3
)
.

For the second sum we first use that (log B
a )2 � (Ba )

1
4 . We can then apply

the lemma for the case of the principal character and partial summation to
see that this contributes an error of size

O

(
B

3
2 τ(f)
f2 (logB)−

1
2

)
.

We then apply this lemma and partial summation to the sum over a in
the main term of (3.14). Combining this with the error above gives us that
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Wχ(B, f) is equal to

(3.15) Wχ(B, f) = δχCf2D B
3
2

q
3
2 f2

(logB)
1
2

+O

(
Bτ(f)
f

(logB)3 + B
3
2 τ(f)
f2 (logB)−

1
2

)
.

Where δχ = 1 if χ is principal or ( ·q ) and zero otherwise.
The next step is to compute Uχ(B). If we use (3.15) in its definition (3.7)

and bound the sum over the error terms using the divisor bound τ(f) �ε

f ε [11, Corollary I.5.1.1] with e.g. ε = 1
4 and the trivial bounds

|µ(f)χ(f)α(f)| ≤ 1 we find that

(3.16) Uχ(B) = δχ
2D
q

3
2
B3/2 ∑

f≤
√

B
q

µ(f)Cf
f2

(
log B

f

) 1
2
α(f)χ(f)

+O
(
B

3
2 (logB)−

1
2
)
.

Note that the only relevant cases are when χ is principal or ( ·q ) since other-
wise δχ = 0. In both cases the only non-zero terms are when α(f) = 1, i.e.
when for every prime p|f , one has (pq ) = 1. In this case (fq ) = 1 so in both
cases χ(f) = 1. By the definition of Cf we have Cf =

∏
p|f (1 + 2

p)−1C1

with C1 = q+1
q+2

∏
p(1 − 3

p2 + 2
p3 ), i.e. Cf for f = 1. Using trivial bounds

we see that the sum
∑
f≤
√

B
q

µ(f)
f2

∏
p|f (1 + 2

p)−1α(f) converges to its Euler

product

(3.17)
∑

f≤
√

B
q

µ(f)
f2

∏
p|f

(
1 + 2

p

)−1
α(f)

=
∏
p

ψ(p)=1

(
1− 1

p(p+ 2)

)
+O(B−

1
2 ).

We then apply partial summation to the sum (3.16) and by (3.17) we
get

(3.18) Uχ(B) = δχ
2C1D

q
3
2

∏
p

ψ(p)=1

(
1− 1

p(p+ 2)

)
B

3
2 (logB)

1
2

+O
(
B

3
2 (logB)−

1
2
)
.
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Let us write E = 2C1D

q
3
2

∏
p

ψ(p)=1
(1− 1

p(p+2)) to simplify the notation. It then

only remains to apply this formula to (3.8), this gives

N ′Br(B) = 2E
q − 1

∑
s∈S

(
1 +

(
s

q

))
B

3
2 (logB)

1
2 +O(B

3
2
(
logB)−

1
2
)
.

But by the definition of S (3.1) we know that ( sq ) = 1 for s ∈ S and that
|S| = q−1

4 so we can conclude that

(3.19) N ′Br(B) = EB
3
2 (logB)

1
2 +O

(
B

3
2 (logB)−

1
2
)
.

Since N ′Br(B) ≤ NBr(B) this implies the desired bound

B
3
2 (logB)

1
2 �n NBr(B).

Remark 3.4. One might try to prove a better lower bound by considering
multiple such families for varying primes q and adding all of these together.
This will give no improvement since as q varies, C1 and

∏
p

ψ(p)=1
(1− 1

p(p+2))

are bounded and D goes up to L(( ·q ), 1)
1
2 � log q [11, II.8 Theorem 6].

3.2. The upper bound. To find an upper bound we will use the following
lemma from [7].

Lemma 3.5. Let a, b, c ∈ Z, if there exists an odd prime p such that vp(a)
is odd and p - bcn then Xa,b,c : ax2 + by2 + cz2 = n has no integral Brauer–
Manin obstruction.

We can thus bound NBr(B) by the amount of triples (a, b, c) ∈ Z3 ∩
[−B,B]3 such that for all prime divisors p | a the integer vp(a) is even or
p | bcn and such that ax2 + by2 + cy2 = n has local solutions everywhere.
Similarly, for b and c. Such a triple can be written as

a = vauabuacwabwacw
2
baw

2
caa

2
1,

b = vbuabubcwbawbcw
2
abw

2
cbb

2
1,

c = vcuacubcwcawcbw
2
acw

2
bcc

2
1.

Here the vi have only prime factors dividing 2n and the uij and wk` are
positive squarefree. The uij and wk` are jointly pairwise coprime and each
of them is coprime to 2n. Note first that the existence of local solutions
implies that if a prime p|(a, b, c) then p|2n. Such a decomposition can then
be found as follows:

• The number va is the product of all the prime factors, counted with
multiplicity, of a dividing 2n. It also has the same sign as a. The
numbers vb, vc are analogous.
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• The positive squarefree number uab is the product of the primes
p|(a, b), not counted with multiplicity, such that vp(a) and vp(b) are
both odd and (p, 2n) = 1. Completely analogous for uac, ubc.
• The positive squarefree number wab is the product of the prime
numbers p|(a, b), also not counted with multiplicity, such that vp(a)
is odd but vp(b) is even and (p, 2n) = 1. The other wk` are analo-
gous.
• The products of the prime factors that are left are squares because
of the conditions coming from Lemma 3.5 and can thus be written
as a2

1, b
2
1, c

2
1.

Because the equation ax2 + by2 + cy2 = n needs to have solutions locally
everywhere we see that for p | uab we need (vcuacubcwcawcbnp ) = 1 by looking
modulo p. We also have analogous conditions for uac, ubc. Let now ε(v) be
the indicator function of the set {v ∈ Z : p | v ⇒ p | 2n} and δ(u; v) be the
indicator function of the set

(3.20)
{
u ∈ Z : u squarefree, and p | u⇒

(
v

p

)
= 1

}
.

In particular if u and v are not coprime then δ(u; v) = 0. The signs of a, b, c
are immaterial in these conditions so we can assume that a, b, c ≥ 0 and
uab, uac, ubc ≥ 1. Summing over a1, b1, c1 and using that there are O(B

1
2 )

squares less than B we get the following upper bound for NBr(B):

(3.21) � B
3
2
∑
vi≤B

ε(vi)

v
1
2
i

∑
wk`≤B

1

w
3
2
k`

T (B; vawabwacn, vbwbawbcn, vcwcawcbn).

Where i, k, ` range over {a, b, c} and k 6= `. We have gotten rid of the
coprimality and squarefree conditions on the wk` by trivial bounds. Here
T (B; k, `,m) is the sum

(3.22)
∑ ∑ ∑
uab,uac,ubc≤B

(uabuacubc,2k`m)=1

δ(ubc; kuabuac)δ(uac; `uabubc)δ(uab;muacubc)
uabuacubc

.

We note that the term in this sum is zero unless the uij are pairwise coprime.
To bound T we will first look at the related quantity

(3.23) S(X,Y, Z; k, `,m)

=
∑ ∑ ∑

ubc≤X uac≤Y uab≤Z
(uabuacubc,2k`m)=1

δ(ubc; kuabuac)δ(uac; `uabubc)δ(uab;muacubc).

In particular, we will prove the following lemma.
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Lemma 3.6. For X,Y, Z ≥ 2 and k, `,m ∈ N \ {0} we have the bound

S(X,Y, Z; k, `,m)� (k`m)
1
4XY Z

[
(logX log Y logZ)−

1
2

+ (logX log Y logZ)−2
(
(logX)

5
2 + (log Y )

5
2 + (logZ)

5
2
)]
.

Now assuming this lemma and applying partial summation thrice we get
the inequality

T (B; k, `,m)� (k`m)
1
4 (logB)

3
2 .

Applying this to (3.21) and summing over the wij we find that

NBr(B)�n B
3
2 (logB)

3
2
∑
vi≤B

ε(vi)

v
1
4
i

.

Since all the terms are positive and ε is completely multiplicative we can
complete the sum and write it as a convergent Euler product. We conclude
that

NBr(B)�n B
3
2 (logB)

3
2
∑
vi

ε(vi)

v
1
4
i

= B
3
2 (logB)

3
2
∏
p|2n

(1− p−
1
4 )−3

as desired.
We will now prove Lemma 3.6.

Proof. Note that S(X,Y, Z; k, `,m) does not change if we permute
(X, k), (Y, `), (Z,m). Moreover, we have the trivial inequality
(3.24) S(X,Y, Z; k, `,m) ≤ XY Z.
If max(logX, log Y, logZ) ≥ min(logX log Y, logX logZ, log Y logZ)4,
then we can use the trivial inequality. Let us assume without loss of gener-
ality that X ≥ Y,Z so by assumption logX ≥ (log Y logZ)4. We then find
that

S(X,Y, Z; k, `,m)� XY Z(logX)
1
2 (log Y logZ)−2.

In this case the lemma is true.
We now assume that

(3.25) max(logX, log Y, logZ)
≤ min(logX log Y, logX logZ, log Y logZ)4.

We can rewrite S(X,Y, Z; k, `,m) using the equality

(3.26) δ(u; v) = 1(u,v)=1
µ2(u)
τ(u)

∑
d|u

(
v

d

)
.

By 1(u,v)=1 we mean the indicator function of the set {u ∈ Z : (u, v) = 1}.
This equality is true since both sides are multiplicative in u and it is trivial
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when u is a prime power from the definition (3.20). Then we can write
ubc = d1f1, uac = d2f2, ubc = d3f3 to get that S(X,Y, Z; k, `,m) is equal to

(3.27)
∑

W (X,Y,Z)

µ(d1d2d3f1f2f3)2

τ(d1d2d3f1f2f3)

(
kd2f2d3f3

d1

)(
`d1f1d3f3

d2

)(
md1f1d2f2

d3

)
.

WhereW (X,Y, Z) is the set of tuples (d1, d2, d3, f1, f2, f3) ∈ (N\{0})6 such
that

d1f1 ≤ X, d2f2 ≤ Y, d3f3 ≤ Z and (d1d2d3f1f2f3, 2k`m) = 1
Now by quadratic reciprocity and since the di are odd, the factor(

d2d3
d1

)(
d1d3
d2

)(
d1d2
d3

)
only depends on the classes of d1, d2, d3 modulo 4. We can thus write this
as a sum of characters

(3.28)
(
d2d3
d1

)(
d1d3
d2

)(
d1d2
d3

)
=
∑
ψ1

∑
ψ2

∑
ψ3

aψ1,ψ2,ψ3ψ1(d1)ψ2(d2)ψ3(d3).

Here ψ1, ψ2, ψ3 range over all characters modulo 4 and aψ1,ψ2,ψ3 are some
complex constants. After applying the equality (3.28) to (3.27) and switch-
ing the sums we see that we only have to bound each term correspond-
ing to the characters ψ1, ψ2, ψ3 separately. We put χ1 = ψ1( · )(k· ), χ2 =
ψ2( · )( `· ), χ3 = ψ3( · )(m· ), these are characters modulo 4k, 4`, 4m respec-
tively. The corresponding term is

(3.29)
∑

W (X,Y,Z)

µ(d1d2d3f1f2f3)2

τ(d1d2d3f1f2f3) χ1(d1)
(
f2f3
d1

)
χ2(d2)

(
f1f3
d2

)
χ3(d3)

(
f1f2
d3

)
.

A similar sum but with only 4 variables was investigated in [3]. We will
follow their approach, for this we will need Lemma 1 and 2 from that
paper.
Lemma 3.7. Let αn, βm be complex numbers supported on odd integers of
absolute value ≤ 1. For all real numbers N,M > 1 we have the inequality∑

n≤N
m≤M

αnβm

(
m

n

)
�
(
N

5
6M +NM

5
6
)

(logNM)
7
6 .

Lemma 3.8. Let χ mod q be a Dirichlet character and d an integer such
that (d, q) = 1, then for x ≥ 2 and for all C > 0 we have

∑
n≤x

(n,d)=1

µ(n)2

τ(n) χ(n) = δχc(dq)
x√

log x

{
1 +O

(
(log log 3dq)

3
2

log x

)}

+OC(τ(d)qx(log x)−C).
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Here δχ = 1 if χ is principal, δχ = 0 otherwise and

c(r) = π−
1
2
∏
p

(
1 + 1

2p

)(
1− 1

p

) 1
2 ∏
p|r

(
1 + 1

2p

)−1
.

In particular when d = 1 and χ is principal this gives

(3.30)
∑
n≤x

µ(n)2

τ(n) � x(log x)−
1
2 .

Let now V ≥ 1 be a parameter which will be chosen later as a negative
power of k`m times a large power of logX log Y logZ. We will split the
sum (3.29) into different regions which we will bound separately. Some of
these regions will overlap. Because of inclusion-exclusion it suffices to bound
the intersections of these regions separately. The regions are as follows:

(1) The first regions are those of the form di, fj > V where i 6= j. All of
these sums are analogous so we may assume that i = 1, j = 2. Cer-
tain regions will then be counted twice, to use inclusion-exclusion
we will thus be required to bound regions of the type d1, f2 > V
and some subset of the integers d2, d3, f1, f3 will also have to be
larger than V .

(2) Another type of region we consider is di, dj , fi, fj ≤ V and dk, fk >
V for {i, j, k} = {1, 2, 3}.

(3) The third regions are given by d1, d2, d3 ≤ V and f1, f2, f3 ≤ V .
(4) The regions in (3) overlap so we will have also have to bound the

region d1, d2, d3, f1, f2, f3 ≤ V .
We consider first the regions of the form d1, f2 > V with a possible condition
on d2, d3, f1, f3. Now look at this region in (3.29), move the sum over d1, f2
to the inside and apply trivial bounds to the terms which only depend on
d2, d3, f1, f3, this also removes all the coprimality conditions except those
of d1, f2. Put t = 2k`md2d3f1f3. After doing this we find that this region
is bounded by

�
∑

f1≤XV −1

∑
d2≤Y V −1

∑
d3f3≤Z

∣∣∣∣∣ ∑
V <d1≤ X

f1
(d1,t)=1

∑
V <f2≤ Y

d2
(f2,t)=1

µ(2d1f2)2

τ(d1f2) χ1(d1)
(
f2f3
d1

)∣∣∣∣∣.
Apply Lemma 3.7 to the sum over d1 and f2 with αn = βm = 0 for

n,m ≤ V . We find that the above sum is bounded by

(3.31)
�

∑
f1≤XV −1

∑
d2≤Y V −1

∑
d3f3≤Z

((
X

f1

)5
6 Y

d2
+ X

f1

(
Y

d2

) 5
6
)

(logXY )
7
6

� XY ZV −
1
6 (logX log Y )

13
6 logZ�XY ZV −

1
6 (logX log Y logZ)

13
6 .



Integral points on affine quadric surfaces 159

We can bound the regions di, dj , fi, fj ≤ V and dk, fk > V for {i, j, k} =
{1, 2, 3} via trivial bounds by

(3.32) � V 4(X logX + Y log Y + Z logZ).

The region d1, d2, d3, f1, f2, f3 ≤ V is trivially bounded by

(3.33) V 6.

There remain two regions to be bounded, f1, f2, f3 ≤ V and d1, d2, d3 ≤
V . These are analogous but the first one is slightly more involved due to
the presence of the characters χi so we will only explain the treatment of
that one here. The relevant sum is

∑
W (X,Y,Z)

f1<V,f2<V,f3<V

µ(d1d2d3f1f2f3)2

τ(d1d2d3f1f2f3) χ1(d1)
(
f2f3
d1

)
χ2(d2)

(
f1f3
d2

)
χ3(d3)

(
f1f2
d3

)
.

We will now estimate the inner sum depending on the values of f1, f2, f3.
Note that since the terms are zero unless f1, f2, f3 are pairwise coprime
squarefree integers, fifj is a square for i 6= j only if 1 = fi = fj . The
first case is 1 = f1 = f2 = f3. One can first get rid of the coprimality
conditions and the characters χ1, χ2, χ3 by trivial bounds. After applying∑
n≤x µ(n)2/τ(n) � x(log x)−

1
2 three times to the sums over d1, d2, d3 we

see that the contribution of this part is

(3.34) � XY Z(logX log Y logZ)−
1
2 .

The second part is when exactly two of f1, f2, f3 are equal to 1, we may
assume that f2 = f3 = 1 by symmetry. We first apply trivial bounds to
remove all the coprimality conditions not involving d2 and the characters
χ1, χ3. By applying Lemma 3.8 to the sum over d2 and using that χ2( · )(f1

· )
is a non-principal character of conductor at most 4`f1 since (f1, 2`) = 1 we
get a bound

�C `
∑
f1≤V

f1
τ(f1)

∑
d1≤ X

f1

∑
d3≤Z

µ(d1d3f1)2

τ(d1d3) τ(d1d3k`m)Y (log Y )−C

� τ(k`m)`XY Z
∑
f1≤V

1
τ(f1) � τ(k`m)`V XY Z(log Y )−C

for all C > 0. By instead applying Lemma 3.8 to the sum over d3 we get a
similar bound with (`, Y ) and (m,Z) switched. Bounding by their geometric
mean and finding similar contributions for the other situations when two



160 Tim Santens

of f1, f2, f3 are equal to 1 we get a total bound for this part of

(3.35) �C τ(k`m)V XY Z
(√

k`(logX log Y )−
C
2 +
√
km(logX logZ)−

C
2

+
√
`m(log Y logZ)−

C
2
)
.

The last part is when none of the f1f2, f1f3, f2f3 are equal to 1. We apply
Lemma 3.8 to the sum over d1 where we use that χ1( · )(f2f3

· ) is a non-
principal character of conductor at most 4kf2f3 since (f2f3, 2k) = 1. For
the other sums use trivial bounds to get

�C k
∑

f1,f2,f3≤V

f2f3
τ(f1f2f3)

∑
d2≤ Y

f2
d3≤ Z

f3

µ(d2d3f1f2f3)2

τ(d2d3) τ(f1d2d3k`m)X(logX)−C

� τ(k`m)kV 3XY Z(logX)−C .
By applying Lemma 3.8 instead to the sums over d2, d3 we get similar
bounds so we may bound the sum by their geometric mean

(3.36) �C τ(k`m)(k`m)
1
3V 3XY Z(logX log Y logZ)−

C
3 .

We can now take for example V = (logX log Y logZ)20
√
k`m

and C = 300, we have

assumed that V ≥ 1 but if (logX log Y logZ)20
√
k`m

≤ 1 then we can use the trivial
inequality (3.24) to find that

S(X,Y, Z; k, `,m)� (k`m)
1
4XY Z(logX log Y logZ)−10.

Using this choice we get the desired bound for (3.31), (3.33), (3.34). By
applying the divisor bound and the divisor bound τ(k`m) � (k`m)

1
4 we

get the correct bound in (3.36). If we use the assumption (3.25) to remove
the large log power in the variable with the linear factor we can bound (3.32)
correctly. Lastly, to bound (3.35) we use assumption (3.25) to get rid of the
log powers in the variable with a positive exponent for the logarithm and
apply the divisor bound τ(k`m)� (k`m)

1
4 . �

References
[1] J.-L. Colliot-Thélène & F. Xu, “Brauer–Manin obstruction for integral points of homo-

geneous spaces and representation by integral quadratic forms”, Compos. Math. 145 (2009),
no. 2, p. 309-363, With an appendix by Dasheng Wei and Xu.

[2] H. Davenport, Multiplicative number theory, second ed., Graduate Texts in Mathematics,
vol. 74, Springer, 1980, Revised by Hugh L. Montgomery, xiii+177 pages.

[3] J. Friedlander & H. Iwaniec, “Ternary quadratic forms with rational zeros”, J. Théor.
Nombres Bordeaux 22 (2010), no. 1, p. 97-113.

[4] A. Grothendieck, “Le groupe de Brauer. I, II, III”, in Dix exposés sur la cohomologie des
schémas, Advanced Studies in Pure Mathematics, vol. 3, North-Holland, 1968, p. 1-188.

[5] M. Kneser, “Darstellungsmasse indefiniter quadratischer Formen”, Math. Z. 77 (1961),
p. 188-194.



Integral points on affine quadric surfaces 161

[6] Y. V. Matiyasevich, Hilbert’s tenth problem, Foundations of Computing Series, MIT Press,
1993, Translated from the 1993 Russian original by the author, With a foreword by Martin
Davis, xxiv+264 pages.

[7] V. Mitankin, “Failures of the integral Hasse principle for affine quadric surfaces”, J. Lond.
Math. Soc. 95 (2017), no. 3, p. 1035-1052.

[8] H. Rademacher, “On the Phragmén–Lindelöf theorem and some applications”, Math. Z.
72 (1959/1960), p. 192-204.

[9] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, vol. 7, Springer, 1973,
Translated from the French, viii+115 pages.

[10] A. Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol.
144, Cambridge University Press, 2001, viii+187 pages.

[11] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Stud-
ies in Advanced Mathematics, vol. 46, Cambridge University Press, 1995, Translated from
the second French edition (1995) by C. B. Thomas, xvi+448 pages.

[12] L. Tóth, “The probability that k positive integers are pairwise relatively prime”, Fibonacci
Q. 40 (2002), no. 1, p. 13-18.

[13] ———, “Multiplicative arithmetic functions of several variables: a survey”, in Mathematics
without boundaries, Springer, 2014, p. 483-514.

Tim Santens
Departement Wiskunde
KU Leuven
Celestijnenlaan 200B
3001 Heverlee, Belgium
E-mail: tim.santens@kuleuven.be

mailto:tim.santens@kuleuven.be

	1. Introduction
	Acknowledgements
	Structure

	2. Brauer–Manin obstruction
	2.1. The general Brauer–Manin obstruction
	2.2. The case of affine integral quadric surfaces

	3. The proof of Theorem 1.1
	3.1. The lower bound
	3.2. The upper bound

	References

