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Rational Equivalences on Products of Elliptic
Curves in a Family

par Jonathan LOVE

Résumé. Si E1 et E2 sont deux courbes elliptiques sur un corps k, nous avons
une application naturelle CH1(E1)0 ⊗ CH1(E2)0 → CH2(E1 × E2). Quand k
est un corps de nombres, une conjecture due à Bloch et Beilinson prédit que
l’image de cette application est finie. Nous construisons une famille de courbes
elliptiques à deux paramètres qui peut être utilisée pour produire des exemples
de couples E1, E2 pour lesquels cette image est finie. La famille est définie pour
garantir l’existence d’une courbe rationnelle passant par un point spécifié de
la surface de Kummer de E1 × E2.

Abstract. Given a pair of elliptic curves E1, E2 over a field k, we have a
natural map CH1(E1)0 ⊗ CH1(E2)0 → CH2(E1 × E2), and a conjecture due
to Bloch and Beilinson predicts that the image of this map is finite when k is
a number field. We construct a 2-parameter family of elliptic curves that can
be used to produce examples of pairs E1, E2 where this image is finite. The
family is constructed to guarantee the existence of a rational curve passing
through a specified point in the Kummer surface of E1 × E2.

1. Introduction
Given a smooth irreducible projective variety X over a field k, we define

CHr(X) to be the Chow group of cycles of codimension r on X modulo ra-
tional equivalence (see for example [9]). If X has dimension d, let CHd(X)0
denote the subgroup of CHd(X) consisting of zero-cycles of degree 0.

If E1 and E2 are elliptic curves over k, we have an Abel–Jacobi map

(1.1)
AJ : CH2(E1 × E2) −→ (E1 × E2)(k)∑

ai[Ri] 7−→
∑

aiRi.

(Some care is needed if the points Ri are not defined over k; see Section 2.)
A celebrated conjecture independently due to Bloch [3] and Beilinson [1]
predicts that ker AJ is finite when k is a number field. To this date, there
is very little concrete evidence for this conjecture. See Section 2 for further
discussion.
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We will prove an implication of this conjecture for a family of curves.
Consider the following map:

(1.2)
Φ : CH1(E1)⊗ CH1(E2) −→ CH2(E1 × E2)

[P1]⊗ [P2] 7−→ [(P1, P2)].
In terms of the projection maps πi : E1 × E2 → Ei and the intersection
product on E1×E2, we can equivalently write Φ(D1⊗D2) = π∗1(D1)·π∗2(D2).
Within the domain of this map is the subgroup CH1(E1)0⊗CH1(E2)0, which
is isomorphic to E1(k) ⊗ E2(k) and is therefore infinite when E1 and E2
both have positive rank. We can check (see Section 2) that Φ maps this
subgroup into the kernel of AJ, and so Beilinson’s conjecture predicts that
the image of this subgroup should be finite. We summarize this situation
with the following definition.
Definition 1.1. We say that the product E1 × E2 is clean if the image
under Φ of CH1(E1)0⊗CH1(E2)0 is finite. In this case we also say that E1
and E2 form a clean pair.

In this language, Bloch and Beilinson’s conjecture implies that all pairs
of elliptic curves over a number field are clean.

We will construct a family of elliptic curves which can be used to produce
nontrivial (i.e. positive rank) clean pairs. Let E be the elliptic curve over
k(S, T ) given by
(1.3) E : y2 = x3 − 3T 2x+ 2T 3 + (1− S − 3T )2 S,

and let Es,t denote the specialization of E obtained by substituting s, t ∈ k
for the indeterminates S and T .
Theorem 1.2. Let k be an infinite field with char k 6= 2, 3, and assume
that |E(k)tors| is uniformly bounded for all elliptic curves E over k. There
is a nonempty Zariski-open subset U of A2

k such that for all (s, t1), (s, t2) ∈
U(k), if Es,t1 and Es,t2 are rank 1 elliptic curves, then Es,t1×Es,t2 is clean.
Remark 1.3. The curve E has a specified rational point
(1.4) P := (1− S − 2T, 1− S − 3T ) ∈ E (k(S, T )).
The Zariski-open subset U of Theorem 1.2 is the locus where E has good
reduction and the reduction of P has infinite order. So for all (s, t) ∈ U(k),
Es,t is a positive rank elliptic curve.

The proof of Theorem 1.2 will be given in Sections 3 and 4. When k is a
number field, Merel proved that the torsion subgroup of E(k) is uniformly
bounded [11], so we obtain the following corollary.
Corollary 1.4. Let k be a number field. There is a nonempty Zariski-open
subset U of A2

k such that for all (s, t1), (s, t2) ∈ U(k), if Es,t1 and Es,t2 are
rank 1 elliptic curves, then Es,t1 × Es,t2 is clean.
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For any nonzero s ∈ k, let Es be the restriction of E to S = s; that is, Es

is the curve over k(T ) defined by

(1.5) Es : y2 = x3 − 3T 2x+ 2T 3 + (1− s− 3T )2 s.

By Theorem 1.2, any two rank 1 specializations of Es subject to a certain
Zariski-open condition will form a clean pair. We would like to understand
how many elliptic curves that satisfy these conditions.

Corollary 1.5. Let k be an infinite field with char k 6= 2, 3, and assume
that Es does not have elevated rank for any nonzero s ∈ k. Let E be any rank
1 elliptic curve over k of the form y2 = x3− 3t2x+ b, such that there is no
torsion point in E(k) with x-coordinate equal to t. Then there is an infinite
collection of elliptic curves E′ over k, no two of which are isomorphic over
k, such that E × E′ is clean.

Corollary 1.5 will be proven in Section 5. The conditions on E are to
guarantee that E is isomorphic to a specialization of Es for an appropriate
choice of s.

Remark 1.6. For a definition of elevated rank, see Definition 5.1. We dis-
cuss the elevated rank hypothesis of Corollary 1.5 in Section 5. In particular,
the assumption that Es does not have elevated rank is used to conclude that
Es,t has the same rank as Es for infinitely many t ∈ k. We are not able to
prove this hypothesis for any Es, but it seems likely to always hold when k
is a number field (Remark 5.2).

Despite not being able to prove unconditionally that these collections
are infinite, we can easily use these families to generate many clean pairs of
curves, as will be discussed in Section 6. In particular, we compute a list of
rank 1 curves over U(Q) with S = 1, from which we obtain approximately
7 · 108 nontrivial clean pairs of rank 1 curves.

Acknowledgments. The author thanks Akshay Venkatesh for drawing
his attention to this problem, for providing many potential strategies to try,
and for pointing him to the prior work of Kartik Prasanna and Vasudevan
Srinivas, which inspired his work on this problem. The specific strategy of
looking for rational curves in the Kummer surface developed out of conver-
sations with Ravi Vakil. Many thanks also to the anonymous reviewers for
catching errors and providing suggestions to improve the exposition.

2. Context
Let X be a surface over k. The Chow group CH2(X) depends quite

strongly on the field k; in general, CH2(X) can be extremely unwieldy. This
was first shown by Mumford, who proved that ifX is defined over k = C and
has a nonzero holomorphic 2-form (this includes for example X = E1×E2),
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then CH2(X) is “infinite-dimensional;” that is, for any positive integer n,
if a subvariety of Symn(X) is sent to a single point under the map

(2.1)
Symn(X) −→ CH2(X)

{Pi} 7−→
∑

i

[Pi],

then this subvariety must have codimension at least n [12, Corollary].
When the field of definition is a number field, it is believed CH2(X)

is much more well-behaved. Letting Alb(X) denote the Albanese variety
of X and fixing a base point P0 ∈ X(k),1 we have a natural surjection
AJ : CH2(X) → Alb(X)(k), defined as follows. Given a closed point R
of X, its residue field k(R) is a finite extension of k. If k(R) = k, simply
define AJ([R]) = R − P0. Otherwise, R splits over its residue field: R ⊗k

k(R) = {R(1), . . . , R(m)}, where R(1), . . . , R(m) ∈ X(k(R)) are conjugate
under Gal(k(R)/k). The sum R(1) + · · · + R(m) −mP0 ∈ Alb(X)(k(R)) is
Galois-invariant, and hence descends to a point AJ(R) ∈ Alb(X)(k). The
map AJ can then be extended to CH2(X) by linearity.

A far-reaching set of conjectures due to Beilinson [1] and Bloch [3] imply
that when k is a number field, CH2(X) is finitely generated, with rank equal
to the rank of Alb(X)(k) (this implication is described in the case k = Q
in [2, Lemma 5.1]). That is, AJ is conjecturally an isomorphism modulo a
finite kernel. These conjectures were made with little concrete evidence (as
Beilinson notes immediately after [2, Conjecture 5.0]), and since then there
are still very few cases for which the conjecture is known to be true. Bloch
gives examples of rational surfaces satisfying the conjecture [4, Chapter 7],
but the author is not aware of any non-rational surfaces that are known to
satisfy the conjecture.

Now we return to the special case X = E1 ×E2; note that Alb(X) = X
becauseX is an abelian variety. The Chow group CH2(E1×E2) is generated
by closed points of E1×E2; these points may not be defined over k, and one
major difficulty in studying the Chow group comes from relations involving
high-degree points. However, even the question of which cycles supported
at k-points are rationally equivalent to zero is not fully understood, and this
is the question this paper addresses. All cycles of this form lie in the image
of the map Φ defined above: given any k-point (P1, P2) ∈ (E1×E2)(k), the
corresponding zero-cycle is Φ([P1]⊗ [P2]).

Within the domain of Φ is the subgroup CH1(E1)0⊗CH1(E2)0 generated
by elements of the form ([P1]− [Q1])⊗ ([P2]− [Q2]) for P1, Q1 ∈ E1(k) and

1For simplicity, we only consider the case that X(k) is nonempty.
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P2, Q2 ∈ E2(k), and we have

(2.2) (AJ ◦Φ)(([P1]− [Q1])⊗ ([P2]− [Q2]))
= (P1, P2)− (P1, Q2)− (Q1, P2) + (Q1, Q2) = 0.

Hence Φ(CH1(E1)0 ⊗ CH1(E2)0) is a subgroup of ker AJ and is therefore
conjecturally finite; if this holds, we say that E1 × E2 is clean. Intuitively,
this says that given any relation among points in (E1×E2)(k), some nonzero
multiple of this relation can be expressed as a rational equivalence.

Prior to this work, Prasanna and Srinivas developed a technique using
Heegner points on a modular curve to prove that certain pairs of rank 1
curves are clean [13]. Their technique requires E1 and E2 to have the same
conductor, and must be applied on a case-by-case basis (their preprint
proves cleanliness of two pairs of curves). Our contribution is to provide a
two-parameter family of curves for which there is a simple test for clean
pairs: if two curves are contained in a certain Zariski-open, have rank 1,
and share a common value for the first parameter, then the pair of curves
is clean. Note that this makes modest progress towards providing evidence
for Bloch and Beilinson’s conjectures, but is still far from providing any
example demonstrating the truth of the conjectures, because (as discussed
above) ker AJ is generated by points of arbitrarily large degree over k.

3. A Pencil of Cubic Curves in the Kummer Surface
We henceforth assume char k 6= 2, 3, so every elliptic curve over k has a

short Weierstrass form.
Let E1 and E2 be elliptic curves over k, with respective identity points

O1 and O2. The product E1 × E2 has an involution ι given by negation,
which acts freely away from the 2-torsion points of E1×E2. We can form the
quotient by ι, called the Kummer surface K of E1 × E2 (see, for example,
[8, Section 10.3]), and we have a degree 2 morphism π : E1×E2 → K with
π = π ◦ ι. The Kummer surface has sixteen singularities, corresponding to
the fixed points of ι; blowing up these sixteen points gives a smooth surface
K̂. Since K and K̂ are birationally equivalent, π induces a rational map
π̂ : E1 × E2 99K K̂, defined away from the fixed points of ι.

Let E1 and E2 have Weierstrass forms y2
1 = f(x1) and y2

2 = g(x2) re-
spectively. The hypersurface in A3(x1, x2, r) defined by

(3.1) f(x1) = r2g(x2)

is an affine model for K̂, with the rational map π̂ given in these coordinates
by (x1, y1, x2, y2) 7→ (x1, x2, y1/y2). The map

(3.2)
K̂ −→ P1

(x1, x2, r) 7−→ r
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E1

E2
E1 × E2

K̂

π̂

t2

t1

(P1, P2)

(−P1,−P2)

Cr

Figure 3.1. The curves Cr : f(x1) = r2g(x2) form a fibra-
tion of K̂. If f ′(t1) = 0 and g′(t2) = 0, a curve Cr passing
through a point of the form (t1, t2, r) will be singular.

gives K̂ the structure of an elliptic surface; the fiber over a point r ∈ P1(k)
is a cubic curve Cr. This fibration is known as Inose’s pencil [17]. In general,
the fiber Cr will be a genus 1 curve, but if Cr has a singularity then it will
be a rational curve (or a union of rational curves).

Now suppose E1 and E2 are rank 1 curves. If the image of a point
(P1, P2) ∈ (E1 × E2)(k) lies on Cr, then we will be able to generate ra-
tional equivalences on E1 ×E2 involving (P1, P2) by pulling back principal
divisors on Cr. If we can guarantee Cr is singular (see Figure 3.1), then ev-
ery degree 0 divisor not containing the singularity will be principal, giving
us the flexibility we need to prove that E1 × E2 is clean.

This idea is made precise in Proposition 3.2. We first state and prove a
lemma that we will use to construct divisors.

Lemma 3.1. For any r ∈ k\{0}, let Cr ⊆ K denote the image of Cr under
the normalization map K̂ → K, and let A ⊆ Cr denote the image of the
affine subset Cr ∩ A3. Then Cr \A consists of the single point π(O1, O2).

Proof. The closed morphism E1×E2 → P1×P1 given by (x1, y1, x2, y2) 7→
(x1, x2) factors through the surjective map π, and so we have a closed
morphism ψ : K → P1 × P1. The curve Cr is closed because it is a fiber
over a closed point of P1, and the normalization map K̂ → K is closed, so
ψ(Cr) is closed in P1 × P1.
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On the other hand, the image of A under ψ is the affine curve defined by
f(x1) = r2g(x2). This is not closed in P1×P1, so Cr \A is nonempty. Since
r 6= 0, the closure of ψ(A) in P1×P1 contains no points at infinity other than
(∞,∞). Hence Cr \A is contained in ψ−1({(∞,∞)}) = {π(O1, O2)}. �

Proposition 3.2. Let E1 and E2 be rank 1 elliptic curves with Weierstrass
equations y2

1 = f(x1) and y2
2 = g(x2) respectively, and let t1, t2 ∈ k satisfy

f ′(t1) = g′(t2) = 0. Suppose there exist non-torsion points P1 ∈ E1(k) and
P2 ∈ E2(k) with f(t1)/y1(P1)2 = g(t2)/y2(P2)2. Then E1×E2 is clean (i.e.
Φ(CH1(E1)0 ⊗ CH1(E2)0) is finite).

Proof. Let r = y1(P1)/y2(P2). Since we have r2 = y1(P1)2/y2(P2)2 =
f(t1)/g(t2), the curve Cr : f(x1) = r2g(x2) in K̂ contains both π̂(P1, P2)
and (t1, t2, r). Since f ′(t1) = g′(t2) = 0, the point (t1, t2, r) is a singular-
ity of Cr. Hence Cr, the image of Cr in K, is a rational curve containing
π(P1, P2) and π(O1, O2). The cycle [π(P1, P2)] − [π(O1, O2)] is therefore a
principal divisor (h) for some h in the function field of Cr; explicitly, in
the setup of Lemma 3.1, we can take a rational function on the singular
affine cubic ψ(A) that has no zeroes or poles aside from a simple zero at
(x1(P1), x2(P2)), and pull this back along ψ to obtain h. Pulling back h
along π, we obtain a rational function on π−1(Cr).

Likewise, C−r contains both π̂(−P1, P2) and the singularity (t1, t2, −r).
We conclude that the zero-cycles

[(P1, P2)] + [(−P1,−P2)]− 2[(O1, O2)],(3.3)
[(−P1, P2)] + [(P1,−P2)]− 2[(O1, O2)]

are principal divisors on the curves π−1(Cr) and π−1(C−r), respectively.
Their difference,

(3.4) [(P1, P2)]− [(−P1, P2)]− [(P1,−P2)] + [(−P1,−P2)]
= Φ (([P1]− [−P1])⊗ ([P2]− [−P2])) ,

is therefore zero in CH2(E1 × E2).
Now take any D1 ∈ CH1(E1)0 and D2 ∈ CH1(E2)0. Since E1 has rank 1,

there will exist integers n 6= 0 and m such that nD1 = m([P1] − [O1]);
using the rational equivalence [P1]+[−P1]−2[O1] = 0 in CH1(E1), we have
2nD1 = m([P1]− [−P1]). Likewise, 2n′D2 will be a multiple of [P2]− [−P2]
for some nonzero integer n′, and so 4nn′Φ(D1⊗D2) is zero in CH2(E1×E2).
Since CH1(E1)0 ⊗ CH1(E2)0 is finitely generated by elements of the form
D1 ⊗D2, this proves E1 × E2 is clean. �

Although Proposition 3.2 applies as long as t1, t2 ∈ k, from the next
section onward we will assume t1, t2 ∈ k. The following result deals with
the remaining cases.
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Lemma 3.3. Assume the conditions of Proposition 3.2, and further assume
that either t1 or t2 is not in k. Then E1 and E2 are isomorphic over k.
Proof. Letting f(x1) = x3

1 + a1x1 + b1 and g(x2) = x3
2 + a2x2 + b2, the

conditions f ′(t1) = g′(t2) = 0 imply a1 = −3t21 and a2 = −3t22. Letting
r = y1(P1)/y2(P2) ∈ k, the condition r2 = f(t1)/g(t2) then implies

(3.5) 2a1t1
3 + b1 = r2

(2a2t2
3 + b2

)
.

If t1 /∈ k or t2 /∈ k, then we can conclude that k(t1) = k(t2) is a quadratic
extension of k, with a Galois automorphism acting by t1 7→ −t1 and t2 7→
−t2. This means we must have a1t1 = r2a2t2 (which, when squared, implies
a3

1 = r4a3
2) and b1 = r2b2. If we set d = a1

a2r , these equations imply a1 = d4a2
and b1 = d6b2; that is, E1 and E2 are isomorphic over k. �

4. Parametrization
We seek to parameterize pairs of elliptic curves satisfying the conditions

of Proposition 3.2. By the following lemma, we can assume that these curves
have a particular form.
Lemma 4.1. Let E be an elliptic curve with Weierstrass equation y2 =
f(x), t ∈ k such that f ′(t) = 0, and P ∈ E(k) non-torsion. Set s :=
f(t)/y(P )2. Then E is isomorphic to the curve Es,t with Weierstrass equa-
tion
(4.1) y2 = fs,t(x) := x3 − 3t2x+ 2t3 + (1− s− 3t)2 s.

Further, we have f ′s,t(t) = 0, and the point Ps,t := (1− s− 2t, 1− s− 3t) ∈
Es,t(k) is a non-torsion point satisfying s = fs,t(t)/y(Ps,t)2.
Proof. Note that f is uniquely determined by t and P :
(4.2) f(x) = x3 − 3t2x+ (y(P )2 − x(P )3 + 3t2x(P )).
If x(P ) = t, then −2P = (−2x(P ), y(P )) is again a non-torsion point, and
t and −2P determine the same curve and the same value of s as t and
P . So replacing P with −2P if necessary, we may assume without loss of
generality that x(P ) 6= t.

For any nonzero d ∈ k, the substitution (x, y) 7→ (d2x, d3y) results in
an isomorphic curve, determined by d2t and (d2x(P ), d3y(P )), and s is
preserved. By setting d = x(P )−t

y(P ) , we can assume without loss of generality
that y(P ) = x(P )− t.

Now from f(t) = sy(P )2 we obtain
y(P )2 − x(P )3 + 3t2x(P ) = 2t3 + sy(P )2,(4.3)

or rearranging,
(4.4) (1− s)y(P )2 = (x(P )− t)2(x(P ) + 2t).
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By the assumption y(P ) = x(P )−t, this simplifies to x(P ) = 1−s−2t. �

This leads us to the elliptic curve E over k(S, T ) defined in the introduc-
tion, which has a distinguished point P ∈ E (k(S, T )):

(4.5)
E : y2 = (x− T )2(x+ 2T ) + (1− S − 3T )2 S,

P := (1− S − 2T, 1− S − 3T ) .

To complete the proof of Theorem 1.2, it suffices to determine the pairs of
specializations of E that satisfy the conditions of Proposition 3.2.

Proof of Theorem 1.2. The equation for E also defines a hypersurface Ẽ in
P2

k(x, y)× A2
k(S, T ). Let U0 be the Zariski-open subset of A2

k on which the
discriminant

(4.6) ∆(E ) = −432S(1− S − 3T )2(4T 3 + (1− S − 3T )2S)

is nonzero; this is nonempty as long as char k 6= 2, 3. Then the fiber of the
projection Ẽ → A2

k over a point (s, t) ∈ U0(k) will be an elliptic curve Es,t

over k.
Each element of E (k(S, T )) determines a section A2

k → Ẽ . Let Õ denote
the image of the zero section A2

k → Ẽ , and for each integer ` ≥ 1, let ˜̀P
denote the image of the section associated to `P. Pulling back Õ ∩ ˜̀P
along the zero section, we obtain a closed subvariety Z` of A2

k, where a
point (s, t) ∈ U0(k) is in Z`(k) if and only if `Ps,t is the identity of Es,t.
The point P is not itself torsion (one way to see this is to specialize to
S = 1 and show that the canonical height is nonzero; this computation is
carried out in Appendix A), so Z` is not all of A2

k. Its complement, which
we denote U`, is therefore a non-empty Zariski-open subset.

By our hypothesis of uniform boundedness for torsion, there exists an
integer L such that if Ps,t is torsion in Es,t for any (s, t) ∈ U0(k), it must
have order 1 ≤ ` ≤ L. Hence, the finite intersection

(4.7) U :=
L⋂

`=0
U`

is a non-empty Zariski-open set such that Ps,t is non-torsion for all (s, t) ∈
U(k).

Suppose we take any (s, t1), (s, t2) ∈ U(k) such that Es,t1 and Es,t2 are
rank 1 curves. By definition of U , the points P1 = Ps,t1 and P2 = Ps,t2

will not be torsion, and we will have f(t1)/y1(P1)2 = s = g(t2)/y2(P2)2.
We also have f ′(t1) = g′(t2) = 0 directly from the definition. Hence, by
Proposition 3.2, Es,t1 × Es,t2 is clean. �
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5. Infinitely Many Clean Pairs?
For each s ∈ k \ {0}, let Es be the curve over k(T ) obtained from E by

evaluating the indeterminate S at s. In this section we prove Corollary 1.5:
assuming that none of the curves Es have elevated rank, then for any rank 1
elliptic curve E satisfying certain conditions, it will form a clean pair with
infinitely many E′ that are non-isomorphic over k.

We begin by defining what it means for a curve over k(T ) to have elevated
rank. After a brief discussion of this phenomenon, we will proceed with a
proof of Corollary 1.5.

Definition 5.1. Let F be an elliptic curve over k(T ), and let Ft denote
the specialization of F at T = t. We say that F has elevated rank if for all
but finitely many t ∈ k, the rank of Ft(k) is strictly greater than the rank
of F (k(T )).

Remark 5.2. Let us consider the phenomenon of elevated rank over vari-
ous fields k. Conrad, Conrad, and Helfgott [6] describe examples of curves
with elevated rank over Q(T ), but point out that all known examples are
isotrivial (the j-invariant is constant). In fact, assuming the parity, density,
squarefree-value, and Chowla conjectures, they prove that every curve over
Q(T ) with elevated rank must be isotrivial. In contrast, they construct ex-
amples of nonisotrivial curves of elevated rank over k(T ), for k a field of
positive characteristic. These examples depend very strongly on the char-
acteristic being nonzero; as the authors mention, “the failure of Chowla’s
conjecture in positive characteristic was our initial clue to the possibility
that elevated rank may occur in nonisotrivial families in the function field
case” [6, 36]. Hence we suspect that there should be no nonisotrivial curves
of elevated rank over k(T ) when k is a number field. Since Es is nonisotrivial
for all s 6= 0, the parity, density, squarefree-value, and Chowla conjectures
imply that Es never has elevated rank when k = Q, and it is plausible that
Es never has elevated rank over any number field.

Proof of Corollary 1.5. Let E be a rank 1 elliptic curve of the form y2 =
x3− 3t2x+ b, such that there is no torsion point in E(k) with x-coordinate
equal to t. If b − 2t3 = r2 for some r ∈ k, set P = (−2t, r) (which will be
non-torsion by assumption); if b − 2t3 is not in k2, let P ∈ E(k) be any
non-torsion point. By the techniques of Section 4, if we set s = b−2t3

y(P )2 and
d = x(P )−t

y(P ) , then we will have E ∼= Es,d2t (with P corresponding to Ps,d2t),
and (s, d2t) ∈ U(k).

Now consider the curve Es. By our definition of s and choice of P , we
either have s = 1 (if b−2t3 = r2) or s is not in k2. We will apply the following
rank computation, which can be found immediately after the current proof.
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Proposition 5.3. The group Es(k(T )) has rank 1 for all s ∈ k \k2 and for
s = 1, and has rank 2 for s ∈ k2 \ {0, 1}.

By this result, Es(k(T )) has rank 1 for all s we are considering. A theorem
of Silverman tells us that there are only finitely specializations of Es that
have rank lower than the generic rank [18, Theorem C], and we are assuming
that Es does not have elevated rank, so there are infinitely many t′ ∈ k such
that Es,t′ has rank equal to 1.

The restriction of the Zariski-open U to the line S = s in A2
k is nonempty

(it contains Es,d2t), so (s, t′) ∈ U(k) for all but finitely many t′ ∈ k. Hence,
by Theorem 1.2, there are infinitely many Es,t′ with rank 1 that will form
a clean pair with E. The j-invariant of Es,

(5.1) j(Es) = 6912T 6

s(1− s− 3T )2(s(1− s− 3T )2 + 4T 3) ,

is a nonconstant rational function in T , so any given j-invariant in k is
attained by a specialization of Es only finitely many times. Thus one can
find infinitely many Es,t′ as above with pairwise distinct j-invariants. �

Proof of Proposition 5.3. Let Es denote the base change of Es to k(T ), and
let Ẽs denote the minimal elliptic surface over P1

k̄
associated to Es. Since

Ẽs is a rational elliptic surface (for instance by [14, Remark 1.3.1]) over an
algebraically closed field, a special case of the Shioda–Tate Theorem [16,
Theorem 10.3] tells us that the rank of Es(k(T )) will equal 8−

∑
t∈R(mt−1),

where R is the set of places of bad reduction, and mt is the number of
irreducible components of the fiber at T = t. Let ∆ denote the discriminant
of Es, and let valt(∆) denote the valuation of ∆ at T = t. For each t ∈ R,
mt will either equal valt(∆) (if the fiber has multiplicative reduction) or
valt(∆)−1 (if the fiber has additive reduction) [15, Equation (13)]. So if we
let Ra be the set of places with additive reduction, we obtain the formula

(5.2) rank Es(k(T )) = 8−
(∑

t∈R

valt(∆)
)

+ #R+ #Ra.

We compute each of these terms in Appendix A; the rank will be 8− 12 +
3 + 2 = 1 for s = 1, and 8 − 12 + 5 + 1 = 2 for s 6= 1. These are upper
bounds for the rank of Es(k(T )).

We then consider the points in Es(k(T )) given by

(5.3)
P := (1− s− 2T, 1− s− 3T ) ,
Q :=

(
T, (1− s− 3T )

√
s
)
.

If s = 1, then P is non-torsion by a height computation (Appendix A) and
so rank E1(k(T )) = 1 (note that P = −2Q). If s 6= 1, on the other hand,
we show that these two points are independent by computing their height
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pairing matrix (Appendix A), so they generate a finite-index subgroup of
Es(k(T )). If in addition s ∈ k2, so P and Q are both defined over k, then
rank Es(k(T )) = 2.

Now suppose s /∈ k2. Then P is fixed by all Galois automorphisms, but
there is an automorphism that sends Q 7→ −Q. Given any T ∈ Es(k(T )),
we will have `T = mP + nQ for some integers `,m, n with ` 6= 0. If T
(and hence `T ) is fixed by the Galois action, then mP + nQ = mP − nQ,
which implies n = 0 because Q is non-torsion. Therefore any T ∈ Es(k(T ))
is linearly dependent with P, proving that Es(k(T )) has rank 1. �

6. Examples
6.1. Generating Curves in a Subfamily. While we do not know how
to rule out the possibility that Es has elevated rank, we can easily compute
lists of curves in this family that can be used to generate clean pairs. For
example, set k = Q and consider specializations of E1. At each t = p

q ∈ Q,
an integral model for the fiber at t is given by
(6.1) y2 = (x− pq)2(x+ 2pq) + 9p2q4.

Define the height of this curve to be
(6.2) h(t) := max{(3p2q2)3, (2p3q3 + 9p2q4)2}.
Now fix some bound H; for each t ∈ Q with h(t) ≤ H6, we check to see
whether the discriminant is nonzero, and whether the point (−2pq,−3pq2)
is non-torsion (guaranteeing that (1, t) ∈ U(k)). If so, we record the rank of
the corresponding curve. The data is summarized in Table 6.1. In particular,
the 27062 rank 1 curves found here all have s = 1, and so any two of them
will form a clean pair.

The density conjecture [6, Appendix A] predicts that 100% of curves
in this family have ranks 1 or 2, so the increasing proportion of rank 3
curves in Table 6.1 may be concerning. However, it is likely that this trend
reverses for large enough values of H, with the proportion of rank 3 curves
eventually decreasing to 0.2

6.2. Curves with Small Conductor. Consider the 683 elliptic curves
of rank 1 with conductor up to 500 (using Cremona’s Tables [7]). When
put into reduced Weierstrass form, 89 of them satisfy the conditions of
Corollary 1.5 (91 have the form y2 = x3 − 3t2x+ b, and of these, there are
2 for which b− 2t3 = r2 and (−2t, r) is torsion); the first four of these have
Cremona references 43a1, 65a1, 89a1, and 99a1. In particular, there are 16

2In an analogous setting, Zagier considered all curves of the form x3+y3 = m with m ≤ 70000,
and found 38.3% with rank 0, 48.9% with rank 1, 11.7% with rank 2, and 1.1% with higher
rank [21]; once we account for the difference in generic rank, the similarity to Table 6.1 is
striking. However Watkins later extended the data to all m ≤ 107 to show that the proportion
of curves with rank ≥ 2 appears to decay after a sufficiently long time [20].
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Table 6.1. Distribution of ranks among elliptic curves y2 =
(x− t)2(x+ 2t) + 9t2 with h(t) ≤ H6, such that (−2t,−3t)
is non-torsion. Computed using Magma [5].

H Total rank 1 rank 2 rank 3 rank ≥ 4 rank ?
10 823 465 (56.5%) 339 (41.2%) 19 (2.3%) 0 (0%) 0
20 4710 2115 (44.9%) 2263 (48.0%) 332 (7.0%) 0 (0%) 0
30 13055 5363 (41.0%) 6418 (49.2%) 1242 (9.5%) 32 (0.2%) 0
40 26828 10512 (39.2%) 13140 (48.9%) 3063 (11.4%) 113 (0.4%) 0
50 46956 17573 (37.4%) 23121 (49.2%) 5994 (12.8%) 258 (0.5%) 10
60 74069 27062 (36.6%) 36378 (49.1%) 10087 (13.6%) 523 (0.7%) 19

for which b− 2t3 is a square,3 so that we can take s = 1 for each of them;
this gives us 256 clean pairs.

The two rank 1 curves of smallest conductor are 37a1 and 43a1. De-
spite 37a1 not appearing in the family E , we can use alternative tech-
niques to prove that (37a1, 43a1) is a clean pair. Namely, pick non-torsion
points P1, P2 on each, and consider the curve Cr : f(x1) = r2g(x2) passing
through π̂(P1, P2) as in Section 3. This will be a genus 1 curve, so we can
use elliptic curve computations to find a principal divisor on Cr relating
π(P1, P2) to the images of fixed points of ι. As before, when we pull back
to obtain principal divisors on π−1(Cr) and π−1(C−r) and take their dif-
ference, the fixed points of ι will cancel, leaving us with a nonzero multiple
of Φ (([P1]− [−P1])⊗ ([P2]− [−P2])). This technique (and others) will be
discussed in more depth in the author’s forthcoming thesis [10]; using these
methods we can prove the cleanness of several pairs of curves that are not
accounted for by Theorem 1.2.4

However, there are still many pairs of rank 1 curves which we have not
been able to prove are clean, including for example (37a1, 53a1) and (43a1,
53a1).

Appendix A. Computations for Proposition 5.3
We consider two minimal models of Es: the original Weierstrass equation,

and the equation obtained by the substitution (x, y, T ) =
(

x′

T ′2 ,
y′

T ′3 ,
1

T ′

)
(for

studying the fiber at ∞). We calculate the discriminant of each model; the
places of bad reduction will be determined by where the discriminant van-
ishes. At each place, we compute the valuation of ∆ and the reduction

343a1, 112a1, 135a1, 153a1, 155c1, 216a1, 225e1, 236a1, 248a1, 252b1, 280a1, 304c1, 308a1,
364b1, 387c1, and 400c1.

4For example, of the
(10

2

)
= 45 pairs of rank 1 curves with conductor below 80, we can show

that the seven pairs (37a1, 43a1), (37a1, 57a1), (37a1, 77a1), (53a1, 58a1), (61a1, 65a1), (61a1,
65a2), and (65a2, 79a1) are clean.
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type of Es. We then compute local heights of certain points using Silver-
man’s algorithm, as described in Exercises 6.7 and 6.8 of [19]. We provide
a few notes to explain some of the computations (these are referenced in
Table A.1):

(a) val0(F2) = 2 and val0(F3) = 6, so λ0(P) = −2/6 + 4/12.
(b) val∞(F2) = 4 and val∞(F3) = 8, so λ∞(P) = −8/16 + 7/12.
(c) r1, r2, r3 are the roots of 4T 3 + (1− s− 3T )2s = 0. The polynomial

(1− s− 3T )(4T 3 + (1− s− 3T )2s) in T has discriminant 6912(s−
1)9s2 6= 0, so for s 6= 1, these roots are distinct from each other and
from 1−s

3 .
(d) Smoothness follows because 2y 6= 0 at all t 6= 1−s

3 .
(e) valt(2y) = 1, so α = 1

2 .
(f) val∞(F2) = 4 and val∞(F3) = 10, so λ∞ = −10/16 + 7/12.
(g) Smoothness follows because the roots of 3x2 − 3T 2 and 2y are dis-

tinct when s 6= 1.
These computations give us the following results.

• The point P ∈ E1(k(T )) is non-torsion, because its canonical height
is 1

6 . This is used in Section 4 to prove that P is non-torsion in
E (k(S, T )), and in the proof of Proposition 5.3 to show E1(k(T ))
has rank 1.
•
∑

t∈R valt(∆) = 12. This, together with the classification of places
with bad reduction, allows us to compute the rank of Es(k(T )) in
the proof of Proposition 5.3.
• The canonical heights of P, Q, and P+Q on Es for s 6= 0, 1 are 1

4 ,
1
8 ,

and 3
8 respectively. This proves that P and Q are non-torsion, and

since ĥ(P)+ĥ(Q) = ĥ(P+Q), they are orthogonal under the height
pairing. In particular, P and Q are linearly independent, which is
used in the proof of Proposition 5.3 to prove that they generate a
finite-index subgroup of Es(k(T )).
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Table A.1. Computing the rank of Es(k̄(T )).

Case s = 1
model y2 = x3 − 3T 2x+ 2T 3 + 9T 2 y′2 = x′3 − 3T ′2x′ + 2T ′3 + 9T ′4

∆ −3888T 4(9 + 4T ) −3888T ′7(4 + 9T ′)
P (−2T,−3T ) (−2T ′,−3T ′2)

t t /∈ R 0 − 9
4 ∞

∑
t

valt(∆) 0 4 1 7 12
reduction y2 = x3 y2 =

(
x− 9

4

)2 (
x+ 9

2

)
y′2 = x′3

type good additive multiplicative additive
Pt smooth singular smooth singular

λt(P) 0 0 (a) 1
12

1
12 (b) 1

6

Case s 6= 1
model y2=x3−3T 2x+2T 3+(1−s−3T )2s y2=x3−3T ′2x+2T ′3+T ′4(T ′−sT ′−3)2

s

∆ −432s(1−s−3T )2(4T 3+(1−s−3T )2s) −432sT ′7(T ′−sT ′−3)2(4+(T ′−sT ′−3)2sT ′)

P (1− s− 2T, 1− s− 3T )
(
(1− s)T ′2 − 2T ′, (1− s)T ′3 − 3T ′2

)
Q

(
T, (1− s− 3T )

√
s
) (

T ′, ((1− s)T ′3 − 3T ′2)
√
s
)

P +Q
(
T − 2(

√
s− s),

(
T ′ − 2(

√
s− s)T ′2,

(3T − (4
√
s− 3s− 1))

√
s
)

(3T ′2 − (4
√
s− 3s− 1)T ′3)

√
s
)

t t /∈ R 1−s
3 r1, r2, r3 (c) ∞

∑
t

valt(∆) 0 2 1 7 12
reduction y2 = (x− t)2(x+ 2t) y2 = (x+ t)2(x− 2t) y2 = x3

type good multiplicative multiplicative additive
Pt smooth singular smooth (d) singular

λt(P) 0 − 1
12 (e) 1

12
1

12 (b) 1
4

Qt smooth singular smooth (d) singular
λt(Q) 0 − 1

12 (e) 1
12 − 1

24 (f) 1
8

(P +Q)t smooth smooth (g) smooth (g) singular
λt(P +Q) 0 1

6
1

12 − 1
24 (f) 3

8
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