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Journal de Théorie des Nombres
de Bordeaux 31 (2019), 689–696

On the number of prime factors of the composite
numbers resulting after a change of digits of

primes

par Kübra BENLİ

Résumé. Dans cette note, nous prouvons que pour tout entier fixé K ≥ 2,
pour tout ε > 0 et pour tout x suffisamment grand, il existe au moins x1−ε

nombres premiers x < p ≤ (1 +K−1)x tels que tous les nombres entiers de la
forme pj ± ahk avec 2 ≤ a ≤ K, 0 < |k| ≤ K, 1 ≤ j ≤ K, 0 ≤ h ≤ K log x
sont des nombres composés ayant au moins (log log x)1−ε facteurs premiers
distincts.

Abstract. In this note, we prove that for any fixed integer K ≥ 2, for all
ε > 0 and for all sufficiently large x, there exist at least x1−ε primes x < p ≤
(1 + K−1)x, such that all of the integers pj ± ahk, 2 ≤ a ≤ K, 0 < |k| ≤
K, 1 ≤ j ≤ K, 0 ≤ h ≤ K log x are composite having at least (log log x)1−ε

distinct prime factors.

1. Introduction
In 1979, Erdős proved the following result, which appeared in the solution

to a problem in Mathematics Magazine [3].

Theorem 1.1 (Erdős). For all sufficiently large positive integers k, there
exist primes p,

p =
k∑
i=0

ai10i, ak > 0, 0 ≤ ai ≤ 9,

such that all of the integers p+ t 10i, 0 < |t| < 10, 0 ≤ i ≤ k are composite.

In 2011, Tao [6] proved that for any integer K ≥ 2, there exist at least
cK

x
log x primes p in the interval [x, (1 + K−1)x] satisfying |pj ± ahk| is

composite for every 2 ≤ a ≤ K, 1 ≤ j, k ≤ K and 1 ≤ h ≤ K log x, where
cK > 0 is a constant depending only on K. In a different direction, Hao
Pan [5] proved the following theorem.
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Theorem 1.2. Suppose that K ≥ 2 is an integer and ε > 0 is small
number. Then for all sufficiently large (depending only on K and ε) x, there
exist at least x1−ε integers n ∈ [x, (1 + K−1)x] such that ω(nj ± ahk) ≥
(log log log x)

1
3−ε for all 2 ≤ a ≤ K, 1 ≤ j, k ≤ K and 0 ≤ h ≤ K log x.

Here, as usual, ω(m) denotes the number of distinct prime factors of m.

In [5], Pan also asked if one could improve the quoted lower bound by
a log factor. (This is a natural question as the normal order of ω(n) is
log logn.) In this note we give the affirmative answer. Indeed we prove the
following result.

Theorem 1.3. Let K ≥ 2 be an integer, ε > 0 be a small number. For
all sufficiently large positive x, there exist at least x1−ε primes x < p ≤
(1 + K−1)x, such that all of the integers pj ± ahk, 2 ≤ a ≤ K, 0 < k ≤
K, 1 ≤ j ≤ K, 0 ≤ h ≤ K log x are composite having at least (log log x)1−ε

distinct prime factors.

This result improves Theorem 1.2 in two ways; first the number of prime
factors is improved by a log factor, secondly the numbers considered are
prime numbers.

Acknowledgments. The author is grateful to the anonymous referee and
to Dr. Paul Pollack for their careful reading of the manuscript.

2. Proof of Theorem 1.3
2.1. Lemmata. We first state the results which will be used in the proof
of Theorem 1.3.

In [4], Linnik proved the following theorem.

Theorem 2.1 (Linnik’s Theorem). Let a, q be two integers such that q ≥ 1
and (a, q) = 1. There exists a prime p such that p ≡ a mod q, and p� qC

for some positive absolute constant C.

Following the proof of Linnik’s Theorem in [2], one can obtain the fol-
lowing corollary. Due to lack of suitable reference we include the proof here.

Corollary 2.2. Let K > 0 be fixed. Let a, q be two integers such that q ≥ 1
and (a, q) = 1, and let x be a real number so that qc � x, for a sufficiently
large constant c > 0. Then there are at least �K

x
q2ϕ(q) log x primes p such

that p ≡ a mod q, and x < p ≤ (1 +K−1)x.

Proof. The result in the case when q ≤ (log x)2 follows by applying the
Siegel–Walfisz Theorem. Suppose that q > (log x)2.We follow Bombieri’s
notation used in [2]. Here, L(s, χ) denotes a Dirichlet L-function for s =
σ + it, where σ and t are real numbers, and χ is a Dirichlet character
mod q. Let c1 > 0 be the constant appearing in the Landau–Page Theorem
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(see [2, p. 39]), such that L(s, χ) 6= 0 for σ ≥ 1 − c1
log T , |t| ≤ T for all

primitive characters χ modm, m ≤ T except possibly for one exceptional
real character. We let χ1 denote a character modulo q, induced by an ex-
ceptional character, if it exists. In this case we let β1 denote the exceptional
zero of L(s, χ1), and we also let δ1 := 1− β1.

We put 4A := log x
log q so that (1+K−1)x = q4c0A, where c0 = 1+ log(1+1/K)

4A log q .
Then 1 < c0 < 2. Using the last equation in the proof of Linnik’s Theorem
in [2, p. 55], namely,

∑
p6x

p≡a mod q

log p = 1
ϕ(q)

(
x− χ1(a)x

β1

β1

)
+O

(
x

ϕ(q)δ1(log q) exp (−c1A)
)

+O

(
x log x
q4

)
+O

( 1
ϕ(q)x

1/2q20
)
,

we obtain

(2.1)
∑

x<p6(1+K−1)x
p≡a mod q

log p = 1
ϕ(q)

(
K−1x− χ1(a)((1 +K−1)β1 − 1)xβ1

β1

)

+O

(
x

ϕ(q)δ1(log q) exp
(
−c′A

))
+O

(
x log x
q4

)
+O

( 1
ϕ(q)x

1/2q20
)
.

Note that 1
2 < β1 < 1, so K−1

(2+K−1) < (1 +K−1)β1 − 1 < K−1. So we have

K−1

(2 +K−1)
xβ1

β1
<

∣∣∣∣∣χ1(a)((1 +K−1)β1 − 1)xβ1

β1

∣∣∣∣∣ < K−1x
β1

β1
.

If χ1(a) > 0, then

K−1x− χ1(a)((1 +K−1)β1 − 1)xβ1

β1
> K−1x− χ1(a)K−1x

β1

β1
.

If χ1(a) < 0, then

K−1x− χ1(a)((1 +K−1)β1 − 1)xβ1

β1
> K−1x− K−1

(2 +K−1)χ1(a)x
β1

β1

>
K−1

(2 +K−1)x−
K−1

(2 +K−1)χ1(a)x
β1

β1
.

Thus we have

K−1x− χ1(a)((1 +K−1)β1 − 1)xβ1

β1
�K x− χ1(a)x

β1

β1
.
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For A large enough, the term x − χ1(a)xβ1
β1

is � (δ1 log q)x. So the main
term is �K

x
ϕ(q)q

−2 and the first error term on the right hand side of (2.1)
is negligible compared to the main term for large A. Moreover, it follows
from the argument given in [2] that x− χ1(a)xβ1

β1
� x

q2 . Now we note that
for A large enough, the sum of the last two error terms on the right of (2.1)
is also negligible. Thus we obtain∑

x<p6(1+K−1)x
p≡a mod q

log p�K
x

ϕ(q)q
−2.(2.2)

Since each term of the sum in (2.2) is ≤ log x, the result follows. �

The following is a well known result special cases of which have been
discovered by many mathematicians independently. See [1], for example.

Theorem 2.3 (Zsigmondy’s Theorem, 1892). Let a and n be two integers
greater than 1. Then there exists a prime q such that a has order n mod q,
except exactly in the following cases:

(1) n = 2 and a = 2k − 1, where k ≥ 2.
(2) n = 6 and a = 2.

The idea Erdős used for the proof of Theorem 1.1 was to find small prime
numbers q and a prime p so that each p+t10i is divisible by one of the primes
q. In order to do that effectively (using as few small primes as possible),
he used Zsigmondy’s Theorem to choose primes {q} so that most of the
powers 10i of 10 fall into the same congruence class for some prime q. This
made the argument effective enough to obtain several congruence conditions
(whose simultaneous solution exists by Chinese remainder theorem) with
a common solution to a small enough modulus so that Linnik’s Theorem
provides a solution which is a prime number. As in the case of the proof of
Theorem 1.1, Zsigmondy’s Theorem is going to be the key in our argument
to prove Theorem 1.3. Before we start giving the proof of the theorem, we
state the following technical lemma.

Lemma 2.4. Let A be a finite set of consecutive positive integers. For each
a ∈ A, and each integer i ≥ 2 for which the pair (a, i) is not an exception to
Zsigmondy’s theorem, let qa,i be a prime for which the order of a mod qa,i
is i. We can choose a family of disjoint sets {Qa}a∈A such that if we write
Qa = {qa,i1 < qa,i2 < qa,i3 < . . .}, then each difference ij+1 − ij ≤ 1 + #A.

Proof. We construct the sets Qa greedily. Proceed through the elements
a ∈ A in order. For each a, add to Qa the prime qa,i, where i is chosen as
small as possible subject to the conditions that

(1) qa,i is defined, and
(2) qa,i has not already been included in any of set Qa′ (a′ ∈ A).
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After having gone through the entire list of a’s, we start over and repeat
the process. We continue this indefinitely to construct the sets Qa.

Suppose that the prime added to Qa at a certain stage is qa,i. By the
next time we are to add a prime to Qa, we have used (in the worst case)
#A possible candidates. Since there is at most one index j ≥ 2 for which
qa,j is undefined, the prime we add at this next stage, say qa,i′ , necessarily
satisfies i′ − i ≤ #A+ 1, as desired. �

2.2. Proof of Theorem 1.3. Our proof strategy is as follows: First, note
that for an integer m coprime to j, if p ≡ −ahk

j mod m then pj + ahk ≡
0 mod m. In order to find primes p with the desired property, we attempt to
find residue classes to many (at least (log log x)1−ε) different prime moduli
in order for the numbers ahk

j to be “covered”. One way to do this could
be assigning congruence conditions to each one of those numbers using
different moduli at each step. However this naive choice is not efficient
enough for our purpose: If we apply Chinese Remainder Theorem after
writing down lots of congruence conditions, the modulus to which we can
ensure a simultaneous solution would end up being too large to be able to
find small enough primes p in our range. Thus we would like to use the
same congruence classes for different ahk

j , whenever there is no obstruction
to do so. Here, knowing that we can always find moduli for which a is far
from being a primitive root (by Zsigmondy’s Theorem) allows us to have
an efficient way to decrease the number of moduli we use at the end, and
the modulus we find the simultaneous solution for becomes much smaller,
allowing us to ensure that we can find prime solutions as small as we need
for our purpose.

We let K ≥ 2 be a given integer, and let ε > 0 be a fixed small real
number. For a given large x, we put t = bK log xc. Define the set

DK,t := {−K, −K + 1, . . . ,−1, 1, . . . ,K} × {0, 1, . . . , t} × {1, 2, . . . ,K},

so that #DK,t = 2K2(t+ 1).
First, put r := Kb(log x)

1
3 c. By Lemma 2.4, we can construct pairwise

disjoint sets {Qa}a∈{2,3,...K} as follows: each Qa = {qa,i1 < qa,i2 < . . .} and
the indices il satisfy K ≤ i1 < i2 < · · · ≤ r, and il− il−1 ≤ K, for all l > 1.
We enforce i1 ≥ K, so that Qa has no element ≤ K, while including only
elements indexed by il ≤ r ensures that the number of elements in Qa is at
most r −K + 1. We put Ia := {i1, i2, . . . : qa,il ∈ Qa}.

Now, let n = d(log log x)1−εe and let 1 ≤ d ≤ n be an integer. Here, n is
the number of times we will repeat our argument, and we will divide the pro-
cess into n pieces associated to the congruence classes modulo n (we use con-
gruence classes as a bookkeeping measure, this division may have been done
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in a different way without changing the result). We determine several con-
gruence classes (mod qa,il), for il ∈ Ia such that l = d+ en, inductively on
e. Fix any congruence class −ua,id (mod qa,id), then suppose that we have
determined the congruences −ua,id+en (mod qa,id+en), for each 0 ≤ e ≤ c−1.
Let C a

id+cn
be the set of numbers of the form k·ah

j , (k, h, j) ∈ DK,t which are
not congruent to any of −ua,id+en mod qa,id+en , for any 0 ≤ e ≤ c−1. (Here
k·ah
j ≡ −u is equivalent to saying that k · ah ≡ −ju.) Now, since the pow-

ers of a take exactly id+cn distinct values (mod qa,id+cn), numbers of the
form k·ah

j can occupy at most 2K2 id+cn residue classes (mod qa,id+cn). So
by the Pigeonhole Principle, there exists −uid+cn for which the congruence

class −ua,id+cn (mod qa,id+cn) is occupied by at least
⌈ #C aid+cn

2K2id+cn

⌉
elements

of C a
id+cn

.
We use the bounds for C a

il
for various l ≡ d mod n iteratively to obtain

that for given integers a and d, 1 ≤ d ≤ n, 2 ≤ a ≤ K, the number Rd,a
of triples (k, h, j) ∈ DK,t for which kah

j is not ≡ −ua,il mod qa,il for any
K ≤ il ≤ r, l ≡ d mod n is

≤ 2K2(t+ 1)
∏
il∈Ia

l≡d mod n

(
1− 1

2K2 il

)
.(2.3)

In order to assign congruence classes for the remainders from each step
of this process, we now list the numbers labeled by the triples counted
by

∑n
d=1Rd,a, meaning that the remaining elements of the form kah

j not
covered by the chosen residues classes for each 1 ≤ d ≤ n. We introduce
the notation given by the list: {va,d,f : 1 ≤ f ≤ Rd,a, 2 ≤ a ≤ K, 1 ≤
d ≤ n}. For each element in this list we assign a prime number among
the first

∑K
a=2

∑n
d=1Rd,a + rK primes which are not in ∪Ka=2Qa, denoted

by the elements of the following list: {Qa,d,f : 1 ≤ f ≤ Rd,a, 2 ≤ a ≤
K, 1 ≤ d ≤ n}. Note that the number of primes in ∪Ka=2Qa is at most
(K − 1)(r −K + 1) ≤ rK.

Using the construction above, we consider the following system of con-
gruences:

(2.4)
p ≡ ua,il mod qa,il , il ∈ Ia, 2 ≤ a ≤ K,
p ≡ −va,d,f mod Qa,d,f , 1 ≤ f ≤ Rd,a, 2 ≤ a ≤ K, 1 ≤ d ≤ n.

By the Chinese Remainder Theorem, the solution to the system of con-
gruences (2.4) is unique modulo (

∏
qa,il

∏
Qa,d,f ). If a prime p is a solution

to (2.4), then for all triples (k, h, j) ∈ DK,t, each pj + ahk is ≡ 0 modulo
at least n distinct primes. Indeed, let (k, h, j) ∈ DK,t. For every 1 ≤ d ≤ n,
in the above construction we determine a congruence class modulo a prime
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among either {qa,il} or {Qa,d,f} occupied by kah

j , call this class −u mod q.
Then p ≡ u mod q ≡ −kah

j mod q which is equivalent to the congruence
pj + ahk ≡ 0 mod q. So for each pj + ahk, we have at least n distinct
primes q (one for each choice of d) dividing pj + ahk.

Next, we show that the modulus (
∏
qa,il

∏
Qa,d,f ) is not too large. First

note that, by the construction of Qa, for any a ∈ {2, 3, . . .K}, and l ≥ 1
such that qa,il ∈ Qa, we have K ≤ il and 0 < il+1− il ≤ K. Moreover, using
the construction given in Lemma 2.2 for the sets Qa, we have i1 ≤ 2K + 2.
So for any 2 ≥ d ≥ n, we have id ≤ i1 +dK ≤ (d+2)K+2, and similarly we
have id+en ≤ (d+ en+ 2)K+ 2. Note that there will be at least

⌊
r−(d+4)K

nK

⌋
elements of the form id+en, since the il only go up to r.

Therefore,

∑
il∈Ia

l≡d mod n

1
il
≥

⌊
r−(d+4)K

nK

⌋∑
e=0

1
(d+ en+ 2)K + 2

≥ 1
K

⌊
r−(d+4)K

nK

⌋∑
e=0

1
d+ en+ 3 ≥

1
nK

⌊
r−(d+4)K

nK

⌋∑
e=0

1
e+ 5 .

Since
r − (d+ 4)K

(n+ 1)K ≥ (log x)
1
4 ,

for large x, we have that∑
il∈Ia

l≡d mod n

1
il
≥ 1
nK

(1
5 log log x

)
� (log log x)

ε
2 .

Thus,∏
il∈Ia

l≡d mod n

(
1− 1

2K2il

)
≤ exp

{ −1
2K2 (log log x)

ε
2

}
� exp

{
−(log log x)

ε
3
}
.

Hence, recalling the upper bound in (2.3), we obtain
K∑
a=2

n∑
d=1

Rd,a �K K2t
K∑
a=2

n∑
d=1

exp
{
−(log log x)

ε
3
}

�K n log x exp
{
−(log log x)

ε
3
}

�K
log x log log x

(log log x)ε exp{(log log x)
ε
3 }
�K

log x
exp{(log log x)

ε
4 }
.
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Since the product of the first ` primes is exp{(1 + o(1))` log `}, and since
the primes labeled by Qa,d,f lie in the first

∑K
a=2

∑n
d=1Rd,a + rK primes,

we have the following upper bound for the product
∏
Qa,d,f :∏

Qa,d,f �K exp

C ′ log x log log x
exp

{
(log log x)

ε
4
}
�K x

ε
2 .(2.5)

On the other hand, as for each qa,il ∈ Qa, qa,il ≤ ail ,
K∏
a=2

∏
il∈Ia

qa,il ≤
K∏
a=2

r∏
h=1

ah ≤ (K!)
r(r+1)

2 �K exp{C(log x)
2
3 } �K x

ε
2 .(2.6)

Thus, combining (2.5) and (2.6), we seek for primes in a certain arith-
metic progression where the modulus is� xε. Hence we apply Corollary 2.2
to finish the proof of Theorem 1.3. �
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