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On the few products, many sums problem

par BRENDAN MURPHY, MisHA RUDNEV, ILyA SHKREDOV et YURI
SHTEINIKOV

RESUME. Nous prouvons de nouvelles estimations quantitatives pour les pro-
priétés additives des ensembles finis & doublement multiplicatif petit |[AA| <
M| A| dans la catégorie des ensembles réels ou complexes A, ainsi que pour les
sous-groupes du groupe multiplicatif d’un corps fini premier. Ces améliora-
tions reposent sur de nouveaux lemmes combinatoires qui peuvent présenter
un intérét indépendant.

Dans le cas réel,nos principaux résultats sont 'inégalité

A — AP|AAP Z A"

qui redistribue les exposants dans 'inégalité somme-produit d’Elekes et la
nouvelle borne pour I’énergie additive

E(A) Sar |A[*2,

qui améliore les résultats précédemment connus et s’accorde, au sens expliqué
dans l'article, avec la meilleure borne connue pour ’ensemble somme |A +
Al Zar AP,

Ces bornes, avec M = 1, s’appliquent également aux sous-groupes multi-
plicatifs de )’ d’ordre O(,/p). Nous adaptons la borne pour Iénergie citée
ci-dessus a des sous-groupes plus grands et obtenons de nouvelles bornes pour
les écarts entre les éléments dans les classes des sous-groupes d’ordre €2(,/p).

ABSTRACT. We prove new quantitative estimates on additive properties of
finite sets A with small multiplicative doubling |AA| < M|A| in the category
of real/complex sets as well as multiplicative subgroups in the prime residue
field. The improvements are based on new combinatorial lemmata, which may
be of independent interest.

Our main results are the inequality

A — AP|AAP Z A",

over the reals, “redistributing” the exponents in the textbook Elekes sum-
product inequality and the new best known additive energy bound E(A) Sas
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|A[*9/20 which aligns, in a sense to be discussed, with the best known sum
set bound |A + A| = |A[8/5.

These bounds, with M = 1, also apply to multiplicative subgroups of IF;,
whose order is O(,/p). We adapt the above energy bound to larger subgroups
and obtain new bounds on gaps between elements in cosets of subgroups of

order Q(,/p).

1. Introduction

Let A be a finite set in a field. We use the standard notation A =+
A, AA, A/A for the sets of all sums, differences, products and finite ratios of
pairs of elements of A, as well as A~! for the set of inverses, A+a = A+{a}
for translates, etc. By A*, however, we mean the k-fold Cartesian project
of A with itself.

The Erdds—Szemerédi [10] or sum-product conjecture applied to reals
challenges one to prove that V e > 0,

(1.1) |AA| + |A+ A| > AP,

for all sufficiently large A C R.

The weak Erdés—Szemerédi conjecture, or few products, many sums is a
claim that if A has small multiplicative doubling, that is [AA| < M|A|
for some M > 1, then |A + A| >3 |A|?, where the inequality symbols
2, Sy will subsume universal constants, powers of log |A| (logarithms
are meant to be base 2) and powers of M if the subscript »s is present;
constants alone are suppressed by the standard Vinogradov notation <, >
and, respectively O, (as well as &~ for both O and 2); these can also be
subscripted by s to hide powers of M. When both < and 2 bounds hold
we may use the symbol ~. To ensure not dividing by zero, it is assumed by
default in all formulations that |A| > 1 as well as 0 ¢ A.

In this paper we address the case A C R as well as when A is a mul-
tiplicative subgroup of the multiplicative group IF; of the prime residue
field F),. All our results over the reals apply to the complex field as well:
we do not make a distinction and real may be read in the sequel as real or
complex.

The weak Erdds—Szemerédi conjecture appears to be the key issue in
understanding the more general sum-product phenomenon, see e.g. a sur-
vey [11] and the references therein. If in its above formulation one allows
exponential dependence on M, the affirmative answer was established by
Chang and Solymosi [4] via a variant of Schmidt’s subspace theorem.

The strongest few products, many sums result known so far is due to
by Bourgain and Chang [2] in the context of integers (rationals), the proof
relying strongly on the main theorem of arithmetics. It claims that for any
€ > 0, there is a power C(e), so that |A + A| > M~¢()]A]>~¢ although
C(€) goes to infinity as € — 0.
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Our results are somewhat different in flavour, for our dependence C'(¢)
is linear (as well as all the constants involved are “reasonable” and com-
putable); what we cannot do is go below € = 1/3.

The converse question few sums, many products is resolved over the
reals, where it was shown by Elekes and Ruzsa [9] to follow from the
Szemerédi—Trotter theorem. Its strongest quantitative version is implied
by Solymosi’s [41] inequality |AA||A + A|? 2 |A|%, although this does not
embrace A — A. Moreover, [27, Theorem 12] presents an affirmative quan-
titative estimate to an L2-variant of the question. The few sums, many
products question is not settled in positive characteristic, the best known
results being [22, Theorem 2].

One can target various type of estimates along the lines of the few prod-
ucts, many sums — henceforth FPMS — phenomenon (the acronym is
meant to embrace differences and ratios as well) in terms of the properties
of the number of realisations function 744 4(z), namely

TA:EA(QJ) = \{(a,b) EAXA:atxb= 37}’

and its moments, in particular
2
E(4) = ZTA:I:A(:E)a
x

known as (additive) energy. Energy is independent of the choice of +, being
the number of solutions of the equation ay + as = a3 + a4, with variables
in A, which can be rearranged. A fruitful viewpoint at looking at r4_4(x)
is that = represents an equivalence class on A x A by translation, with
r4—A(x) members.
The three types of FPMS bounds one may be interested in are as follows.
(i) Convolution support: inequalities |A + A| > |A|>~¢ aiming at
€ — O+.
(ii) Energy, or L?-bounds: inequalities E(A) < |A|*T€ aiming at € —
O+.
(iii) L°°-bounds: inequalities ra1a(x) < |A|¢, aiming at € — 04, same
for ra_a(x) for x # 0.
Energy bounds clearly imply ones for support: by the Cauchy—Schwarz
inequality
A
E(4)
As far as the last question is concerned, there is a bound O(]A|?/3) implied
by a single application of the Szemerédi—Trotter theorem; nothing better
appears to be known, and we therefore do not pursue the issue any further.
Thus this paper addresses questions (i) and (ii). Techniques available
today have limited powers, and those in this paper prefer differences to
sums, owing to shift invariance.

A+ A >
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Let us give a brief outline of how results of this paper fit into the general
state of the art. The starting point to this line of work was the paper
of Elekes [7]. It implies (although only question (i) was addressed) that
E(A) < M|A[%/2, see (2.4) below. A similar bound, with M = 1, is implicit
in the paper Elekes, Nathanson and Rusza [8] on sumsets of convex sets
([8] also addressed question (i)). Both bounds arise from an application
of the Szemerédi—Trotter theorem, made possible by a trick of adding an
extra variable, owing to associativity, much in the way this is done in the
well-known Ruzsa distance inequality, see e.g. [45]. These works established
what we refer to as the threshold value of e = 1/2.

Schoen and the third author [28] succeeded in decreasing the value of
e apropos of the analogue of question (i) in the conver set setting, having
introduced the concept and taken advantage of combinatorics arising in the
context of the third moment, alias cubic energy E3(A) (see (2.1) below),
which has played a key role in quantitative estimates, both in the convex
sumset and sum-product type settings, ever since, including this paper.
The key issue is that the Szemerédi—Trotter theorem yields a very strong
estimate (2.4) for Es(A), (with M = 1 in the convex set case). Li [17]
observed that the analysis of [28] could be adapted to the FPMS case:
this with further generalisations was the subject of his paper with Roche-
Newton [18].

Energy bounds, concerning question (ii), are harder to establish, and
in order to improve the threshold exponent 5/2 (which applies in a broad
context, see [25]) the third author set forth in [31] an eigenvalue technique,
which was then further developed in [30], [32], [33]. In the latter paper [33,
Theorem 6.1] it was shown that, in fact, the estimates (2.4) for E(A) and
Es(A) effect a certain critical relation between the two quantities, which
guarantees sub-threshold improvement of the estimate for E(A) — ques-
tion (ii) and therefore question (i) — via the Balog-Szemerédi-Gowers
theorem. However, the quantitative improvement this way, although very
general and valid also in non-commutative context, is quite small. The
eigenvalue method yields stronger results, being able to reach to the multi-
plicative properties of A in the FPMS case more explicitly. For an exhaus-
tive exposition of the eigenvalue method see [33, Section 4].

The aim of this paper is to prove the strongest so far quantitative bounds
on questions (i) and (ii) in the FPMS case, which explore the multiplicative
structure of A more thoroughly and in particular do not extend (at least
we do not see how) to the convex set case. Our first result is bringing e
down to 1/3 for the size of A — A in Theorem 1.3.

However, we are quite far from being able to bring € from 1/2 down to
1/3 as to the energy estimate in question (ii) and even the cardinality of
A+ A in question (i). We can only decrease ¢ = 1/2 by 1/20 and 1/10
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(rather by 1/6) respectively. The new best known bond for additive energy,
stated in Theorem 1.4 is due to Lemma 4.1, which is very specific to the
FPMS case.

The bound |A+ A| =>,s |A[/® following from Theorem 7.1 in the last sec-
tion of the paper has already been established by the third author in [32].
We include that section, owing to the better M-dependence in the estimate
of the theorem, whose proof is based, in particular, on a new energy pi-
geonholing Lemma 7.2 that we feel may be useful for other purposes. Until
recently, results of the type that the lemma presents were drawn using the
quantitatively costly Balog—Szemerédi-Gowers theorem. We also remark
that if we could improve the key estimate (4.8) in the proof of the energy
Theorem 1.4, this would also improve the sum set exponent 8/5.

As some consolation, as well as possibly a principle obstacle against
improving the estimates in this paper, given the technique, we take the
example by Balog and Wooley [1], also discussed in [27], which shows that
generally the exponent 7/3 is the best possible one for energy inequalities:
there are sets A, such that any positive proportion subset A’ C A would
have both E(A) and its multiplicative analogue exceeding |A|"/3. This is
unlikely to happen in the extremal FPMS case but nonetheless, together
with the results in this paper bears some evidence that one can hardly ex-
pect to be able to establish L?-estimates, which would be equally strong to
support ones; certainly this is the case within the applicability of the tech-
niques we possess. In fact, the methods in this paper are essentially energy
methods, that is the multiplicative constant M can be viewed as equal to
|A|3/EX(A), where EX(A) is multiplicative energy, and the key estimates,
with some work, can be re-cast in terms of the Balog—Wooley decomposition
set forth in [1], using the state-of-the-art techniques, developed in [27].

1.1. Background and main results. Our key geometric tool is the
Szemerédi-Trotter theorem [44].

Theorem 1.1. Consider a set of n points in R?. Connect all pairs of dis-
tinct points by straight lines, then for k > 2, the number of lines supporting
at least k points is

’I’l2 n
(1.2) 9, (1@ + k) .

The total number of incidences between n points and m straight lines is
O(m?*n*3 + m +n).

In fact, in our applications the point set is a Cartesian product. In this
case there is an easier proof of estimate (1.2) by Solymosi and Tardos [42],
in particular the hidden constants having very reasonable values in both
the real and complex settings.
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Heath-Brown and Konyagin [12] used the Stepanov method to prove a
quantitatively similar result about multiplicative subgroups in IF;. This was
further developed in [21], [38], the statement we quote can be found in [21].

Theorem 1.2. Let I be a multiplicative subgroup in F and © C F) /T x
FX/T, |T1*6] < p* and |©] < 3373|T|%. Then

(1.3) > {@y) e xTiuz+ vy =1} < (T)|0)%.
(u,v)€O©

We observe, and will use, the heuristic fact that both Theorem 1.1 and 1.2
would yield the same main factor in the upper bound (|X||Y||Z||T])?/3 —
see e.g. [38, Corollary 5.1] — for the number of solutions of the equation
ar+y ==z, withael'and x € X, y €Y, z € Z, with the restriction in F,
that the sufficiently small in terms of p sets X, Y, Z be I'-invariant — that
is, say XI' = X — and extra polynomial dependence in M in the real case.
For some recent work along the same lines on multiplicative subgroups in
[, see, e.g., [20], [35], [37] and the references contained therein.

Applications of the Szemerédi—Trotter theorem to sum-product type
problems were, as we already said, started by Elekes [7], who proved the
textbook inequality

(1.4) A+ AP|AA)? > |A]°,

which established the threshold FPMS inequality |A & A| > |A[3/2.
Developing more efficient applications of the Szemerédi—Trotter theorem
to the FPMS question together with arithmetic/analytic combinatorics lem-
mata has been the subject of much recent work: see, e.g. [23], [27], [30], [32],
[36], [39] (and the references therein).
In particular, the third author [36] established the inequality

(L5) A~ APJAA[" 2 AP,

(In the statement of the corresponding [36, Theorem 1] one has the ratio set
A/A, but after some inspection of the proof can be extended to embrace
AA as well.) Inequality (1.5) sets the world record |A — A| =5, |A]P/3,
which we believe is unlikely to be beaten within the current state of the
art. Similarly the inequality |I' & T'| > |T|3/? for a multiplicative subgroup
I' C Fp, with [T'] < p?/3, was established by Heath-Brown and Konyagin [12]
and improved to |I' — T'| > |T'|%/3 for |T'| < /P in [38].

On the other hand, back to the real case, in the sense of the original
question (1.1), that is when cardinalities |AA| and |A — A| are roughly the
same, inequality (1.5) is weaker that (1.4).

The first inequality in the statement of the following theorem strengthens
the inequality (1.5) (modulo the power of log|A|) so that it matches the
Elekes one, involving the difference set in the case of similar cardinalities.
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Theorem 1.3. For a real set A
‘A|10

1.6 A—APIAAP >
(1.6) ! |*|AA log /2 | 4]

We remark that in estimates (1.6) one can replace AA with A/A. The
proof also applies, with AA = A, to the case when A is replaced by a
multiplicative subgroup I' C F,\, with |I'| < /p. In the latter case the
inequality is due to the third author and Vyugin [38].

The next theorem is an L? estimate in the following Theorem 1.4. It
improves the previously best known bound E(A) <p; |A*2/1% in [32, The-
orem 8] and [33, Theorem 5.4]. The improvement is largely due to the
forthcoming Lemma 4.1.

Theorem 1.4. Let A C R and |AA| < M|A|. Then
(1.7) E(A) < MB/?|A[*9/2010g1/5 | A].

The same estimate, with M = 1 holds for a multiplicative subgroup I' C F,;,
with |T'| < \/p.

L?-estimates represent much interest as to many questions, arising in the
context of multiplicative subgroups in IF,,. Our new energy bound brings an
improvement to several such bounds in the literature. We develop some
applications in Section 6. The main result in Section 6 is Theorem 6.8,
yielding progress on the question of maximum gap size between coset ele-
ments, introduced by Bourgain, Konyagin and Shparlinski in [3].

In conclusion of this section we remark that all the known proofs of the
Szemerédi—Trotter theorem strongly rely on order properties of reals, and
despite recent progress in incidence theory over general fields (see [26], [43])
the versions of the Szemerédi—Trotter theorem which apply there are weaker
than Theorem 1.1. On a somewhat pessimistic note, it appears extremely
unlikely that the weak Frdés—Szemerédi conjecture can be resolved over the
reals without a novel insight that we currently do not possess. In particular,
inequality (1.6), its proof being simple as it is, appears to be the best one
can hope for within today’s scope of ideas.

2. The cubic energy: basic lemmata

In this short section we re-introduce the concept of cubic energy E3(A),
namely the third moment of the number-of-realisations function r4_ 4. Gen-
erally, for ¢ > 1 we define

(2.1) Eq(A) :=> 7% 4(d),
d
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omitting the subscript for ¢ = 2, where we also write Ay = AN (A+d), as
well as

E(A,B) =) _|An(B+d)*.
d

Returning to (2.1) we are especially interested in the case ¢ = 3.

Notation-wise, if the domain of the summation index is not specified,
this means the whole universe R or [F),.

Geometrically E3(A) is the number of collinear triples of points in the
Cartesian product A x A C R? on unit slope lines y = = + d. By looking at
the projections of such a collinear point triple on the coordinate exes, the
same quantity can be re-counted as

(2.2) Es(4) = [An(A+d) N (A+d)] ZEAAd
dd'

Le., triples of elements (a,b,c) € A x A x A get partitioned into equiv-
alence classes by translation, a single class being identified by differences
d="b—a, and d = c— a. Two latter triples of elements of A are equivalent
if and only if they differ by translation. The quantity E3(A) is the sum, over
all equivalence classes, of squares of their population. (The same concerns
the energy E(A), which pertains to equivalent by translation pairs, rather
than triples, of elements of A.)

Note that since b — ¢ = d — d’ is also a member of A — A, it follows by
the Cauchy—Schwarz inequality that

|Al°
Es(A)

(2.3) {(d,d,d")e(A-A3P:d'=d—-d}| >

An application of Theorem 1.1 or Theorem 1.2 (see, e.g., [14, Lemma 7])
yields a near-optimal estimate for E3(A) with |[AA| = M|A| or A =T,
quoted as part of the following lemma.

Lemma 2.1. Suppose |AA| or |A/A| = M|A|. Then for any A’ C A, and
any B, one has bounds

(2.4) Es(A') < M2 A')%|Allog|Al, E(A, B) < M|A||BJ*/2.

If T is a multiplicative subgroup in IF' , with size O(\/p), and B a I'-
invariant set B, then

(2.5) Es(T) < [T log T, E(I, B) < |T'||BJ*/2.
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Besides, for A >1

M2A|3 rpB
(2:6) > oa<MHh y <l
z:ra_a(z)>A z:rp_p(z)>A
M?2A]3 rpB
7)Y A @) < AL Y e < B
A A
z:ra—a(z)>A z:rp_r(z)>A

Remark 2.2. In fact, as far as the multiplicative subgroup case is con-
cerned, all the inequalities of Lemma 2.1 but for the second inequality
in (2.5) are valid for |I'| < p*/3. See, e.g., [34, Lemma 4]. This will be used
in the proof of the forthcoming Theorem 6.5, where the second inequality
in (2.5) will be replaced by Lemma 6.4.

We use Lemma 2.1 to immediately obtain the following consequence of
estimate (2.3).

Corollary 2.3. Under assumptions of Lemma 2.1,

3
d,d,d")e(A-AP:d' =d-d AP
and the same for I', with M = 1.

3. Proof of Theorem 1.3

Let us first prove the inequality (1.6) under an additional easy-to-remove
assumption. Define the set of popular differences as

(3.1) P = {deA—A: ra—a(d) > (A = 2|f‘lA—|A\>}

By the pigeonhole principle
(3.2) > racald) VW
d'eP

Proposition 3.1. Suppose the bound of Corollary 2.3 applies to the equa-
tiond' =d—d, withd,d" € A— A and d' € P. Then (1.6) follows.

Proof. This becomes merely an application of the Szemerédi—Trotter theo-
rem after for any z € A one writes

(3.3) {(d,d,d")e(A—A) xPx(A—A):d=d —d"}|
=|{(d,d,d")e(A-—A) xPx(A—A): d' =d—ad /z}]

éﬂﬂds% 2)€(A—A)x Sx(A—A)x A: d' = d— s/z)]

where

(3.4) Si={s€ AA— AA: raa_aa(s) > A}
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Indeed, since d’ has at least A different representations d = b — a as a

member of A — A, then xd’ has at least A the representations in the form

xd = xb — xa as the difference of two products from AA. It follows that
(M|A)?

< —.
5 <k

Thus the Szemerédi—Trotter theorem yields the upper bound for the number
of solutions of the latter equation d” = d — s/x, interpreted as incidences
between n = |A||A — A| points and m = |S||A — A| lines, as

(3.5) O (|APMY2A - A|M3A~2/5)

(it is easy to see that if the term |L| = |A — A||S| were to dominate we
would have a much better estimate than (1.6)).

Dividing this by |A| in view of (3.3) and comparing this with the lower
bound of Corollary 2.3 yields

B
M?log |A|
and hence (1.6).
It is easy to see, after trivial modifications of the argument involving M

that wherever it appeared above, it could have as well come from |A/A| =
M|A].

< |AIMYB|A — AP|AI7Y3,

All it takes to ensure applicability of Proposition 3.1 is the following,
essentially trivial lemma.

Lemma 3.2. One has the following bound:

|A4|6 <Es(A){(d,d,d") e (A—A) x Px (A—A): d' =d—d}

Proof. The proof is just an application of the pigeonhole principle, often
presented as a graph density argument. Considering P as a bipartite graph
on A x A, it has density > 1/2. Therefore, the number of triples (a, b, c)

with a — b € P is > |A]3/2. The claim of the lemma now follows by the
Cauchy—Schwarz inequality, just like (2.3) above. O

4. Proof of Theorem 1.4

The proof of Theorem 1.4 mainly rests on lemmata 4.1 and 4.5.

In general, for £ > 2 an integer, and A a subset of an abelian group,
let Tr(A) (such additive characteristics of sets appear throughout additive
combinatorics literature) be the quantity

(4.1) Te(A) ={(ay,...,a, d},...,a}) €A% - a1+ +ap = dy +---+a}}].

Clearly T2(A) = E(A) is additive energy; we here focus on T3(A). We have
also denoted by T (A) the number of collinear point triples in the plane set
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A x A. Note that Theorems 1.1 and 1.2, applied respectively in the real and
IT'| < /p multiplicative subgroup I' C F}; settings, ensure that

(4.2) T(A) < |Al*log|A.
The next lemma evinces a connection between the quantities T3(A) and
T(A).
Lemma 4.1. One has the inequality
T3(A)
|AA/A]
AP
Using the standard Pliinnecke inequality, that is if [AA| or |A/A] is <

M|A|, then |AA/A| < M3|A| (see e.g. [45]) and the Szemerédi-Trotter
Theorem 1.1 or Theorem 1.2, we arrive in the following corollary.

Corollary 4.2. If |AA| < M|A| or |A/A| < M|A|, then
T3(4) < MP?|A]* log |A],

the same holds with M =1 if A is replaced by I', a multiplicative subgroup
in T with O(,/p) elements.

min (]AA]\/T(A/AA) “T(AA), |A/A|/T(AA/A) - T(A/A)).

We remark that in the context of multiplicative subgroups I', when |T'| =
O(y/p) the bound T(I') < |I'|*log|T| can be found in [35, Proposition 1].

Remark 4.3. Corollary 4.2 (in the case of small multiplicative subgroups)
improves some results of the fourth author, see [40]. Upper bounds for T5(T")
have interesting applications to number-theoretic congruences studied, e.g.
by Cilleruelo and Garaev [5], [6].

Consider the case when I' C (Z/p?Z)*, and |T'| divides p — 1. One can
consider the subgroup I'' C F,, where I' = T' (mod p). It is easy to check
that |I'| = |T'| and hence Ty (') < T, (I"”). Using this and the method of the
proof of Lemma 4.1 and [35, Proposition 1], one can deduce the following
statement.

Lemma 4.4. Let T' be subgroup of (Z/p*Z)* and let || = t. If t < p'/?
then T3(T) < t*. Ift = p'/219 then T3(T) < 4169,

The reader can also find the previous bounds for T3(I") in the paper [20],
which were obtained purely by Stepanov’s method. To avoid repeating the
above-mentioned proofs, we content ourselves with merely a sketch of the
proof of Lemma 4.4 further in this paper.

In the forthcoming proofs we avoid keeping track of exact powers of M
and log |A| to make the formulae shorter; the reader is invited to check
that they are indeed as presented in the statement of the theorem. The
next lemma is crucial; its predecessor can be found in [33, Section 4].
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Lemma 4.5. Let 1 < A < |A] and
EA)=E+E":= > i@+ Y ri_a).
zra_a(z)<A zra_a(z)>A

One has the inequality

(4.3) E% < |AI°E3(A)A%Y,

where

(4.4) Y= ZTA,A(d)TA,A(d')Ti_A(d— d).
d.d’

We are now ready to prove Theorem 1.4.

Proof. We use Lemma 4.5 with the choice of A ~j; |A|'Y/20 (that is we
omit the exact powers of M and log |A|). Then we are done with the proof
of Theorem 1.4 if E” > E(A), owing to estimate (2.7) of Lemma 2.1.

We proceed assuming that E' > E(A). Denote P := A — A.

The quantity ¥ in (4.4) counts solutions of the equation

(4.5) a—d =b-V = (a1 —az) — (a3 — as),

with all the variables in A.

Let us introduce a cutoff parameter 7 ~y; |A[*/® whose value is to be
justified shortly. We now partition P = P’ U P” the set A — A into the set
of “poor” and “rich” elements, namely

P ={d: rs_a(d) <7}, P"=pP\P.

Correspondingly,
Y=+ 2//7
where 3 is the restriction of the count (4.5) to the case when (d = a—d' =
b—b)eP.
Clearly,

b < T|{a1 —Qas = (a3 — a4) — (a5 — a(;) P al,...,06 € A}| = TTg(A)
(46) <m7T(4)
S Tl
by Lemma 4.1 and (4.2).

On the other hand, for P” = {d: r4_a(d) > 7}, Lemma 2.1 provides a
cardinality bound, decreasing as 773. We need a slightly more elaboration, a
dyadic partitioning to be soon summed as a vanishing geometric progression
to show that as to P”, one can roughly assume that r4_4(d) < 7, for all

de P".
Namely, j > 1 set

Pj{/ ={d: 20—l < ra—a(d) < 2jT}.
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Then, denoting for simplicity 2/7 = 7;, one has, by (2.6),
M2] A|3
4.7 Pl <« .
( ) | i ‘ 7_]3

Setting X7 to be the corresponding to P component of %", that is when
the sum in (4.4) is restricted to d — d’ € P}, we can bound

Z;-/ < T]2|{(d,a1,a2,a3,a4) S P]{,XAX XA) cd= (al—ag)—(a3—a4)}\

< 77y E(A, P)\/Ts(4A),

by Cauchy—Schwarz.
We substitute (4.7) to claim, by (2.4), Lemma 2.1:

E(P/, A) < M|A||F;]*? <ar |A[P/2702,

Furthermore, T3(A) <ps |A|* as above, by Lemma 4.1 and (4.2).
Thus
Y <u 7_71/4|A|19/4227j/4 < 7_71/4‘A|19/4'
Jj=1
We now match the latter estimate and (4.6) for 3': this prompts the choice
7 ~ar |A]P/5 (that is up to powers of M and log |A|) and proves that
(4.8) > <ar AP0

We now go back to the main estimate (4.3) of Lemma 4.5. We have,
by Lemma 2.1, the fact that Es(A) <ps |A]® and the assumption E(A) >
E’ in the statement of Lemma 4.5 ends the proof of Theorem 1.4 after
substituting A = |A|'/29 in the lemma’s estimate. Indeed, we get

ES(A) <pr |AS- |AP - |A[M/10. | A23/5 = | AM47/10, -

5. Proofs of main lemmata

5.1. Proof of Lemma 4.1.

Proof. Clearly, for any triple (hi,h2,h3) € A x A x A and a € A we have

hs hohg
hi—hy—hg=(hy —hy) (1——=)——=
1 2 3 ( 1 2)( hl) hl
_ _ h3 h2h3
= (ahy — ah L 1>
(CL ! @ 2) (a hl hl

Set a = a‘”ﬁ—f € AJAA, B = ahy € AA. Then we have the following
estimate, where the first line follows from the latter identity, and in the
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second line the Cauchy—Schwarz inequality and interchange of the order of
summation have been applied:

T3(A) = ZT,%;—QA(ZL‘)

2

<A ( > T(A-1—a)(Aa—p) (T + 045))

T \a€cA/AA, BEAA

[AAJ|A/AA] 2
S 4] > D a1 —ayaa—p (@)
a€A/AA,BEAA ©

The three-index sum in the right-hand side is the number of solutions of
the equation

(b—a)(c—B) = (V' —a)(d—B): a € AJAA, B € AA, bV € A7 ¢, € AA,
or, after rearranging, of the equation (with the same variables)
b—a d—-p
V—a c¢—f°
The left-hand side of the latter equation, since A~' C A/AA, has all its
variables b, b, € A/AA, the right-hand side ¢,d, 8 € AA. Applying once
again the Cauchy—Schwarz inequality, the number of solutions of the latter
equation is bounded by /T (A/AA) - T(AA).

This completes the proof, once we note that |[AA/A| = |A/AA| and that

one could implement the above procedure for any a € A~!, rather than
a€ A O

(5.1)

5.2. Sketch of Proof of Lemma 4.4. According to Lemma 4.1 we need
to find upper bound for the number of solution to the equation

(a—b)d —)=(a—c)d =V): a,b,c,d b/, €eT"=T (mod p).
Here we follow the scheme of the proof of Proposition 1 of the paper [35].
It is easy to see that for any tuple (a,b,c,a’,b', ') satisfying the above
equation, the points (a,a’), (b,V'), (¢,c’) lie on the same line and one can

assume that these points are pairwise distinct. One can restrict the set of
lines to only those in the form

ux + vy = 1.

Define l,,, = [{(z,y) € I" xI" : ux + vy = 1}|. So, we need to get an upper
estimate for the sum

M.

u,v

Such an estimate follows from Theorem 1.2 after easy calculations. For
the case of |I'| = O(y/p) this method gives a near-optimal estimate, when
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0 # 0, the claim of Lemma 4.4 follows by application of the Hélder
inequality.

5.3. Proof of Lemma 4.5. The proof represents an instance of the eigen-
value method developed by the third author.

Proof. Consider a |A| x |A| matrix 9, with elements My, = \/ra—a(a —b).
In addition, let R be the matrix with entries R,y = r4-a(a — b).

We observe that both matrices have positive entries, are symmetric, and
the matrix R is semipositive-definite. Indeed, for any vector v € Rl
identifying A with its characteristic function, the same for its shifts, say
A+ (a —b) below, we have, after a rearrangement

v- %U—ZA A+ (a — b)](c)vavp

a,b,c

=Y [A—10](c—a)[A —d](c— a)vavy

a,b,c

— Z <Z[A — a](:z:)va> .

Let us calculate the trace tv(9M?R) in two different bases. In the standard
basis

(5.2) te(IM*R)
= Z \/rA_A(a: - y)\/TA—A(y —z)ra—a(r — 2)

x,y,2EA

=S racal@yfracald)raa(d—d)AN(A+d) N (A+d)
d,d’

1/2
< <Z|Aﬂ(A+d)m(A+d’)|2>

d,d’

1/2
" (Z ra—a(d)ra—a(d)ri_a(d - dl))

d,d’
= 4/E3(4)X.

Modulo a power of |A| this gives the square root of the right-hand side in
the lemma’s estimate.

Let us now estimate te(92R) from below. Since both matrices have
positive entries, the trace will not increase if we zero the elements 2,
with r4_4(a —b) > A.
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Let us now define the matrix 9 (see the forthcoming Remark 5.1 as to
why) as follows:
(5.3) / {A_1/2mab7 if 7’A—A(a - b) <A,

b= .
“ 0, otherwise.

The matrix 9 is clearly symmetric, and we have an entry-wise bound
M, < My for all a,b € A.

We now get a lower bound on tt(91*$R).

Consider the orthonormal basis {vl,...,v| A|} of real eigenvectors of
M’, the corresponding real eigenvalues being p1, . . - 1) 4], ordered by non-
increasing moduli. The eigenvector v1, corresponding to the principal eigen-
value p is non-negative by the Perron—Frobenius theorem.

Hence, since fR is semipositive-definite

te(M°R) = Z 12 (R, - v,) > i (Rvy - vy).
acA

Since pq is the spectral radius of M’, we have, with v = ——(1,...,1),
E/
1 =v1- Moy >v- Mo = A_l/zw.

Furthermore, by non-negativity of SR and v; and the previous estimate,
/

Al
This completes the proof of Lemma 4.5. 0

vq - E)‘{'vl > AI/Q’Ul . im'vl >

Remark 5.1. In the case of a multiplicative subgroup I', the proof could
be made slightly more straightforward, for the reason from passing from 9t
to M in (5.3) was that otherwise we would need additional argument as
to how PRwv; - v1, where v is the principal eigenvector of 2, compares to
Rov-v, withv = #(1, ..., 1). In the multiplicative subgroup case v = vy,

VAl

for both matrices 9t and R are regular (in fact, circulant). This implies the
lower bound
te(MPR) > |A| 7 5 (A)E(A),
where the notation E3 /5(A) was defined by (2.1). The latter estimate suffices
to yield Theorem 1.4, for by the Holder inequality
2/3
E(A) < E3(A)E3§2 (A)

Previously best known energy bounds that Theorem 1.4 improves on,
have been used in many papers, quoted in the introduction and beyond.
The new bound (1.7) automatically results in improvement of estimates,
which relied on its predecessors. This concerns, in particular, the results
in [39], dealing with multiplicative energy of sumsets.
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6. Additive energy of multiplicative subgroups

Studying translation properties of multiplicative subgroups in Fj is a
classical subject of number theory see, e.g., [16], [29]. In [12], [13] it was
proved, in particular, that E(T') < |['|%/? for any subgroup I' C F,, with
IT| < p?/3. Tt is well known that the latter bound is optimal for subgroups
of size Q(p?/3). In [32] better energy bounds for multiplicative subgroups
of smaller size were obtained. Theorem 1.4 sets the new record for |I'| =
O(p'/?). 1t also allows for some improvement of the “intermediate range”
bounds for Q(p'/?) = |T'| = O(p*/3), presented in this section.

Let us restate the results that we are going to use. See the beginning of
Section 4 for some of the notation used.

Corollary 6.1. Let I' CF be a multiplicative subgroup, || < /p. Then

(6.1) T3(T) < 7(T) < |T)*log T,
and
(6.2) E(T) < [D|*2010g!/% |T|.

To get new energy bounds for intermediate size subgroups, we apply
the standard technique from the literature cited below and the following
theorem [19, Theorem 1.2] which replaces the bound (6.1).

Theorem 6.2. Let I' C F; be an arbitrary multiplicative subgroup. Then

T) — —— < [DPp~2,  if p*3 > |T| = p'/?logp,
T[*log [T, if 1| < p'/?logp.

Remark 6.3. Using Theorem 6.2 one can sightly improve the upper bound
for T3(I'), T' C Z/p?Z in Lemma 4.4; we leave this to a keen reader.

The changes to estimate (6.2) we are about to address are also due to
the fact that the estimates of Theorem 6.2 have replaced (6.1), and besides
that the full analogue of the second inequality in (2.5) from Lemma 2.1
(used once in the proof of (6.2)) for subgroups |I'| < p?/3 is as follows.

Lemma 6.4. Let I' C F); be a multiplicative subgroup, |I'| < p2/3. Then
and for any I'—invariant set Q C F) (i.e. Q' = Q) one has

T |QP

+|TQI.
p

(6.3) E(Q,T) <
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Namely for |T'| = Q(p'/?), one has to add to the second estimate in 2.5
the “statistical average”, see, e.g., [30] or [32]. Note that the format of
second term in (6.3) complies with using the point-plane theorem of [26],
see also [25].

We now present the new energy bound, improving the bound E(T") <
IT|5/2 (sharp for |T| ~ p*/?) for subgroups with |I'| < p°/%.

Theorem 6.5. Let I' C FS be a multiplicative subgroup, with p/2 <0 <
p2/3. Then

‘F‘104 1/40 |F|68 1/24
(64)  E(I) < log!/*|I| - max <p> () '

p

Outline of the proof. Set L =log|I'|. We repeat the arguments of the proof
of Theorem 1.4, estimating T(I") as T(I') < L|TI'|%/p, according to Theo-
rem 6.2. To bound energies E(PJ” ,I') which appear in the proof, see esti-
mate (4.7) and argument following it, we use the estimate (6.3) of Lem-
ma 6.4. If the second term in the application of (6.3) dominates, we literally
repeat the proof of Theorem 1.4, obtaining

r[io4 1/40
E(T) < log!/® 1| - <3> .
p

Observe that owing to Remark 2.2 the estimates of Lemma 2.1 on E3(T),
as well (4.7) remain valid.

It is easy to see that apart from the above estimate on 7 (I"), the alterna-
tive case of the estimate of Lemma 6.4 is the only modification to the proof
of Theorem 1.4 required. A straightforward calculation leads to choosing in
the later case the value of the parameter 7 in the proof of Theorem 1.4 as
7 = |['[°/3p~2/3, which then yields the inequality

6
Es/»(D)E*(D) < LITPT(T) - 7 < L2|F|9|p| .

Substituting 7 = |I'|%/3p~2/3 and using the Holder inequality to get rid of
Eg/g(l“), see Remark 5.1, we have

ES(L) < L2|T|Pp (TP /p*%) - (I /E(T))?.

and therefore ,
1/24
E(N) < LY. <|F|68> O
PP ’

Bound (6.4) is better than the previously best known one in [32, Theo-
rem 8] for subgroups of size p'/2 < |T| < p*/7.



On the few products, many sums problem 591

It was proved in [34] that for any multiplicative subgroup such that
T > pl/2 log1/3p, and —1 € I' one has F) C 5I". We finish this section
adding one more result about basis properties of subgroups and show, in
particular, that the restriction —1 € I' can be omitted.

Corollary 6.6. Let I' C F; be a multiplicative subgroup. Then for all
sufficiently large p if |U'| > \/plogp, then |3T'| > p/2. In particular, F, C 5T

Proof. Using the second part of Theorem 6.2, combining with Lemma 4.1,
we obtain

Py’
(65) Z (7"1"+1"+1"(l’) — p> <K |F|5p*1/2 .

T

Hence if the complement to 3I" is at least p/2, then we have

P o ppp12
p/2' pQ <<|F| p

and this is a contradiction for sufficiently large p.

To prove that F), C 5I' it is sufficiently to show that for any nonzero §
the following holds 3I'N (£ - T' — 2T") # (). But the last is trivial because the
arguments above work for any sets of the form a-I'+ 5 -I'+ ~ - I', where
a, B,y #0. O

6.1. On the greatest distance between the adjacent elements of
cosets of a subgroup. Following Bourgain, Konyagin and Shparlinski [3],
we introduce, for a multiplicative subgroup I' C ' of order ¢, the maximum
gap H)p(t) between elements of cosets of I, as follows:

Hy(t) =max{H :Ja€F,JuecF,,1<j<H:u+jeF,\al}
In [3, Theorem 3] the following bound was established.
Theorem 6.7. Fort > p'/2, one has

The case t > p'/2? is important, because for any g > 1 and for almost
all p the subgroup generated by powers of ¢ has cardinality at least p'/2,
see [24]. The distribution of the elements of this subgroup is closely related
to the distribution of digits of 1/p in base g.

We use the symbol o(1) in this section to subsume terms which are
smaller than any power of p, most of these terms come from the forthcoming
quote of [3, Theorem 1] as Theorem 6.10 here, to be used as a black box.

The above exponent ‘518% was improved to 2%; in [40]. New estimates for
additive energy of multiplicative subgroups allow for further improvement,
as follows.
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Theorem 6.8. For t > p'/2, one has
Hy(t) < pote®, p — oo,

Before proving Theorem 6.8, let us introduce several auxiliary quantities.
Let g be the primitive root of F. I' C F, as we said, is a multiplicative

subgroup of order ¢; set n = (p — 1)/t. Also let T; := ¢T and

Si(t):==8(¢’,T) = ep(¢’x);  Njg(h) :=[{1 < |ul <h:uely},
zel

where e, is the canonical additive character.
The quantities Hp(t), Nj:(h) and S;(t) are related via following state-
ment [16, Lemma 7.1].

Theorem 6.9. Iffor some h > 1 the inequality :

> Nju(h)[Sj4k(t)] < 0.5

1<j<n
holds for all k =1,...,n, then for any e >0
Hy(t) < p'*tent.

Besides, it is easy to see that the quantity

N(L,h):= Y NZ(h)

1<j<n
is the number of solutions to the congruence
ur =y (mod p), 0<|zl,|lyl <huel.

In [3, Theorem 1], an upper bound for N(I', h) was proved in the following
form.

Theorem 6.10. Let v > 1 be a fized integer and let t > pY/2, p — oo.
Then

N(T, ) < ht#tor paan o) | 241 /v,=1/v+o(1),

By orthogonality, it follows from definition of the quantity S;(t) that

(6.6) > IS0l < ZE@).

1<j<n

We are now ready to prove Theorem 6.8.
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Proof. The structure of the proof repeats its predecessors in [3] or [40]. Just
as above t := |I'|. By the Holder inequality we obtain

Z Nyt (h)|Sjk(2)]

1/2 1/4 1/4
< ( > Nj,t(h)> (Z N‘,t(h)2> (Z |Sj(t)’4> -

1<j<n 1<j<n 1<j<n
For the three terms in the right—-hand side we have estimates

> Nji(h) =2h,

1<j<n
> Nju(h)* = N(T,h),

1<j<n

and (6.6).
Define h = p*3/480—¢ for some small fixed € > 0.
Consider the case t € [p'/2,p*7]. Then by (6.4) one has

e (1)

p3

We take v = 6 in the estimate of Theorem 6.10 for N(I', k), in which case
the second term in the estimate dominates. One can easily check that for
such choice of parameters, the quantity

(6.7) > Nja(W)ISjr ()l

1<j<n

is less than 0.5¢.
Now consider the case when ¢ > p*7. Then we merely write

> Nj(h)[Sn(t y<maxys )| ST Nj(h) < /Tl 2p,

1<j<n 1<5i<n

The last inequality took advantage of the supremum estimate for |S;(t)]
that we take from [34, Theorem 1]. It is easy to verify that the inequality

(6.8) Y Nit(h)|Sjx(t)] < 0.5¢
1<j<n

also holds. With that, and taking sufficiently small € > 0, the proof of
Theorem 6.8 is completed. O
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7. Sum set inequalities

We start out with a remark that one can repeat the proof of Theorem 1.4
with the matrix 9 being replaced by the matrix of zeroes and ones, with

My = 1 if the sum a + b is popular, that is r444(a +b) > 2||AA7J‘;|.

This will not alter the structure of the proof, owing the identity
(b+a)—(c+a)=b—c¢, replacing (b—a)—(c—a)=b—c,

as well as the fact that the quantity ET(A) := Y, 7%, 4(s) satisfies the
same upper bound as E3(A) in (2.4), Lemma 2.1 — it would replace E3(A)
in the analogue of estimate (5.2).

After that the acme of getting the upper bound on te(9M?R) would re-
main to be estimate (4.8). However, estimating tv(9?9R) from below does
present some challenge in the real case, owing to Remark 5.1. However,
in the multiplicative subgroup case the matrices 9, R still have the same
principal eigenvector if al ones, and one arrives in the following estimate:

for || < /p,
IT 4T > |03 1log2/?|T|.

The same estimate, with a slightly worse power of log |I'| was established
n [32]. We do not know how to improve the exponent 8/5 for the sum
set towards 7/3 as we have for the difference set but would like to point
out that both the sum set and the energy FPMS exponents have been now
made dependent on the same estimate (4.8).

To circumnavigate the difficulty arising from the fact that principal eigen-
vectors of the matrices with elements 744 4(a+b) and 74— 4(a — b) may be
different for M > 1, we present a different proof, resulting in a new FPMS-
type sum-product inequality, with a “reasonable” M-dependence. Heuristi-
cally speaking, the better the FPMS-exponent, the weaker the inequality,
treated as the usual sum-product inequality, namely when |AA| ~ |A + A|,
cf. (1.5). In this sense, the following inequality (7.1) is slightly weaker than
the classical Elekes one (1.4) and represents, in some sense a sum set ana-
logue of (1.5).

We remark that on can find “middle-ground”, that is non-trivial from
the FPMS point of view (that is giving a FPMS exponent greater than
3/2) and still stronger than (1.4), due, e.g., to Li and Roche-Newton [18§]
or the one used by Konyagin and Shkredov [15, Theorem 12] to derive their
new sum-product bound. But as the FPMS aspect improves, the other
aspect eventually becomes weaker than (1.4), the only exception (up to a
log factor) being (1.6).

Theorem 7.1. For a real set A one has the estimates

(7.1) |A+ A|JAAT > | A3,
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The forthcoming proof of Theorem 7.1 uses the construction from [36,
Proof of Theorem 10|, which dealt with differences and led to (1.5). Its
adaptation to sums rests on the following Lemma 7.2 — a stronger version
of the argument from [27, Proof of Proposition 16] and [15, Section 4].

Proof. Denote D = D(A) = A— A, S = S(A) = A+ A Let P C D
be a popular energy subset of D by energy. Note that P, A throughout the
paper have different meaning, and in this section these are not the quantities
used in the proofs of Theorems 1.3 and 1.4, also different from one another.

Namely, now P is defined as follows. There exists some A : ;Ejﬁ; <A <A,

such that each x € P has approximately A, that is between A and 2A
realisations and

(7.2) E(A) ~ > rh_al@) 2 |PIA%
zeP
Such P exists by the dyadic version of the pigeonhole principle. We will
not keep track of powers of log |A|, for they go slightly out of hand in the
proof of Lemma 7.2.
Furthermore, define a plane point set

(7.3) P(A) CAx A:={(a,d'): a—d € P}, so |P(A)| =~ |P|A.

Lemma 7.2. There exists A C A, with |A| > |A|, a pair of subsets
A A" C A and a natural number q with the following property: |A'| >
|A”| > q, |A'| 2 |Al|, and for each a € A’ there are at least ¢ ~ |P(A)|/| A
points (a/,a”) € P(A)N (A’ x A”), where the point set P(A) C A x A is the
popular energy set defined in terms of A via (7.2), (7.3).

Besides, E(A) ~ E(A’, A").

Informally, Lemma 7.2 claims that there exists a positive proportion (in
fact, of density arbitrarily close to 1 as the proof shows) proportion subset
A of A, such that much of the energy of A (up to factors of powers of log |A|)
is supported on some “regular” point set P’, such that P’ gets covered by
a wide rectangle: P’ C A’ x A” C A x A, with, most importantly, the lower
bound |A’| Z |A|, and (up to factors of powers of log | A|) an expected lower
bound of the number of points of P’ for every abscissa a’ € A’. The lower
bound |A’| Z | A| strengthens the above-mentioned earlier statement in [27]
and is crucial for the forthcoming argument.

We remark that the claim or Lemma 7.2 remains true for any finite
> 1 moment of the number-of-realisations function r4_4, as well as its
multiplicative analogue 74, 4.

We prove the lemma afterwards and now proceed with the proof of The-
orem 7.1. Apply Lemma 7.2 and to ease on notation reset A = A and

P(A) =P. Let P/ =P N (A x A").
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For A € A/A (nonzero, since 0 ¢ A) denote
"={aeA: Xac A'}, so \A\ C A.
Also denote, for brevity

(7.4) BX =) 140
A

so E* is the multiplicative energy of A’ and A. In the sequel sums in A
mean sums over A/A. Clearly,

(7.5) Yol =1AP7 1A = A4
A A

Whether either |[A/A| = M|A| or |AA| = M|A|, does not affect the
argument, for M only comes from estimate (2.4) in Lemma 2.1 that we
restate:

(7.6)  Es(A") S MPJA[JA"]?,  Es(A)) = Es(\71A4)) £ M?|A|| A4

Let us estimate the number 7, of collinear point triples in S x S C R?
such that the point triples are supported just on the lines with slopes in
A = A/A. For the total number of collinear point triples 7(S) > 75 in Sx S
we have the unconditional upper bound, which is the standard implication
of the Szemerédi—Trotter theorem:

(7.7) Ta <T(S) S 19

To get a lower bound on 75 we consider a line y = Az + d, where some
d € P, A\ € A and estimate the minimum number of points of S x S,
supported on this line.

This means, we are looking at some a,b,a’,b’ € A such that

a+b—\d +¥)=d.

The latter equation is satisfied if one chooses b = AV, with any b € A):
for any a’ € A) there are at least ¢ choices of a € A”, where the number ¢
comes from Lemma 7.2.

Hence, define a point set Q) C S x S as follows:

(7.8)  Qxn:={(d +b,a+b):a€ A d be A, and (a,\d") € P'}.
so for (z,y) € Q) we have
y—Ar=a— M\,
and since A\a’ € A’, for each pre-image a’ € A there are at lest ¢ values of
a € A”, by Lemma 7.2, such that a — Aa’ € P.
The point set @, C R? (by construction, see (7.8)) is supported on at

most |P| parallel lines with the slope A, making therefore |Q,| incidences
with these lines. The number of collinear triples in the set Q) on these lines,
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giving the lower bound for the quantity 7, is at least the uniform case (in
other words, we use the Holder inequality):
Ta = [Pl(1Q:l/IPI)° = |Qu*/| P[>
Comparing this with (7.7) we obtain

(7.9) ISP Z Y 1.
AEA
For a fixed A, by (7.8) and Cauchy—Schwarz, one has
(7.10) glAL? < |Qx2 X2,

where X is the number of solutions of the following system of equations:
ad+b=d" +0V, a+Xo=d"+\': d,d" bbecA, ad cA.
This can be rewritten as
AMa' —ad")y = AV —b)=a—d".

For d € A— A, let r"(d), 7} (d) denote the number of realisations of d as a
difference in A” — A" and A\, — A),, respectively. Then we have, tautologically
by definition of X and then Hélder inequality

X< Zr” () < By (AMEY(A)),

We can now proceed with (7.10) by applying (7.6) to the above estimate
for the quantity X, getting

|A ‘2 < ‘Q>\|1/2(M1/3|A|1/6’A”‘1/3)(M2/3’A|1/3|A/ |2/3)
Before summing over A € A/A let us rearrange as follows:
(7.11) q]A”] 1/3’A‘ 1/2’A |3 < M|Q)\‘1/2|A/ ‘5/3

We now sum in A. In the right-hand side of (7.11) we apply the Holder
inequality:

1/6 5/6
ST1OaMAAL P < (Z%P) (DA P) .
A A

A

In the left-hand side of (7.11) use the Cauchy-Schwarz inequality and
relations (7.4), (7.5):

Z|Al 1/2|A ’3/2 /AHA/ /Z|A/ |3

Applying the standard Cauchy—Schwarz estimate EX > (|A||A|")?/(M|A])
yields

Z |Q)\|3 > M_G|A|_9q6|AN|_2|A,‘_6EX7 > M_13|A|_2q6|A”|_2|A/|8,
A
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Thus by (7.9) one has
|SI* 2 M~ |A| 7260 A" 72| A P 2,

Using Lemma 7.2 we have the worst possible case ¢5|A”|72|A'|® >
(|P|A)S, thus

|S|* 2 M™BIA| 2 PITAS 2 M BIAPEN (A) A,
The claim of Theorem 1.3 now follows from the upper bound
A < E3(A)/E(A) S M?AP/E(A),

where for E3(A) we use (2.4), and the standard Cauchy—Schwarz lower
bound E(A) > |A|*/]S]. O

7.1. Proof of Lemma 7.2.

Proof. The proof is a pigeonholing argument.

For brevity sake round up the values of all logarithms to integers. In
the notation of the proof of Theorem 7.1 curtail P = P(A). Partition A
in at most log|A| nonempty sets by popularity of abscissae in P. That is
for i = 1,...,log |A| each abscissa from the set A; supports between 2¢~1
(inclusive) and 2! (non-inclusive) points of P. Let us set ¢; = 2¢ and further
in the proof use ~ ¢; as a shortcut for a number between 2~ and 2°. For
i=1,...,log|A| take P;, defined as the set of all points of P with abscissae
in A; and dyadically partition the set of its ordinates by popularity as the
union of sets A7.

As a result, P is covered by the union of at most log? |A| disjoint rect-
angles A; x Al. By a rectangle we mean Cartesian product. By symmetry
we can transpose ¢ and j, so there is another cover symmetric with respect
to the bisector y = z.

By the pigeonhole principle, at least one half of the mass |P| ~ | P|A lies
7. each containing at least m|P|A points of P.
Rather than writing out powers of 2 arising after such popularity arguments
explicitly, we will often subsume them in the >, <, & symbols.

There are two cases to consider.

in “rich” rectangles A

Case 1. One of the rich rectangles has width or height, say > |A|log 1" | A|.
Then there is another, symmetric with respect to the y = x bisector, and
we are almost done, choosing the wider of the two rectangles.

Indeed, let R denote such a rich rectangle. We set A” to be its projection
on the y-axis. '

Furthermore, R} has base A;, with |4;| > |A”| and |A;]| > |A|log™ 17| A|
(by how the case has been defined). For each a € A; there are = ¢; points
of P. In particular, there are < ¢; points of P NR with a given abscissa
a € A;. Clearly, |Ai|¢g; < |P|A (the total number of points in P) thus the
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maximum number of points of P in 72{ with the same abscissa a € A; is
trivially

(7.12) gi < |P|A/|A;].
On the other hand, 7?,] is rich, that is contains > ; |A| |P|A points of P.

We refine its base A; to the set A’ of rich absmssae supporting at least
q:= %ﬁW\P\A points of P N RJ each; by the pigeonhole principle
these abscissae in A’ still support > - o | A |P|A points of PN R]

Clearly, ¢ < |A”|, the total number of ordinates in 723 )

Since the maximum number of points of P per abscissa in A; is g;, the

minimum number of the latter rich abscissae is

1

1
A |>> o PIA > — A,

g’ |A| log? | A|

by (7.12). Recall that by construction |4;] > |A”|, as well as |A;] >
|Allog™1Y A, so |A’| > |A”| and |A’| > |A|. Thus, but for the last claim of
the lemma about energy, to be dealt with in the very end of the proof, we
are done with Case 1, having found the sets A’, A” and A = A.

Case 2. Let us show that Case 1 is the generic one, that is if there are no
sufficiently wide or high rich rectangles apropos of P(A), we can refine A
to its (arbitrarily) high proportion subset A and find ourselves in Case 1,
relative to the point set P(A) C P(A).

Indeed, suppose there are no sufficiently wide or high rich rectangles A7
in the above constructed covering of P(A) by rectangles, that is both pro-
jections of each rich rectangle are < |A|log™!° |A| in size. Then we remove
from A the union A; UJ; Al calling the resulting set A;. By construction,
crudely, |A1| > (1 —log™ |A])|Al.

On the other hand, at least half of the mass of P(A) has been removed.
This means loss of at least a third of the energy. Indeed, P is supported
on the union of |A| lines with the number of points of A x A on each line
ranging between N and 2N and now at least half of the point set P has
been deleted. Let us estimate from below the difference E(A) — E(A41).

To minimise the amount of energy lost after the deletion of half of the
point set P(A), supported on P lines, each supporting between A and 2A
of A x A) one should be deleting the poorest lines, one by one (stopping in
the midst of a line is also allowed). To this end, the extremal case arises if
half of the mass of P were supported on lines with minimum occupancy A
and the other half on lines with maximum occupancy 2A. In this extremal
case one has |P| = 4|P|A/3, the total energy 2|P|A? being supported on
| P| lines. Deleting the 2| P|/3 poorest lines means being left with two-thirds
of the energy.
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Thus E(A;) < (1 - %log’1 |A|)E(A).

So we pass from A to A; and check if we are in Case 1 apropos of P(A;).
If yes, we are done (modulo the coming claim about energy), otherwise we
iterate the Case 2 deletion procedure. Once we have encountered Case 2,
say log® |A| times, we still retain a large subset, of A, containing a fraction
of A, bounded from below as Q((1 — log™> | Al)los” 141) > 1. The energy of
this remaining large subset, however, is at most

1. log® | A )
(13l A1) E() = o4,

which is a contradiction. Thus at some point throughout iteration we must
encounter Case 1.

To verify the final claim of the lemma about energy, it suffices to assume
that the desired pair A’, A” has been found in Case 1 immediately, that is
A = A. Clearly,

E(A', A") < E(A) ~ |P|A%.
On the other hand, the rectangle R = A’ x A” still contains ~ |P|A points
of P, which are all supported on at most |P| lines.

Thus
Z TA/_A//(LU) > ‘P‘A
xeP
It follows by Cauchy—Schwarz that
E(A,A") > " r%_an(z) > |P|A? ~ E(A). O
zeP
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