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de Bordeaux 31 (2019), 293–311

On the sum of the first n prime numbers

par Christian AXLER

Résumé. Dans cet article, nous établissons une formule asymptotique pour
la somme des n premiers nombres premiers, plus précise que celle donnée par
Massias et Robin en 1996. En outre, nous prouvons un certain nombre de résul-
tats concernant l’inégalité de Mandl pour la somme des n premiers nombres
premiers. Nous utilisons ces résultats pour établir de nouvelles estimations
explicites de la somme des n premiers nombres premiers, qui améliorent les
meilleures estimations actuellement connues.

Abstract. In this paper we establish an asymptotic formula for the sum
of the first n prime numbers, more precise than the one given by Massias
and Robin in 1996. Further we prove a series of results concerning Mandl’s
inequality on the sum of the first n prime numbers. We use these results to
find new explicit estimates for the sum of the first n prime numbers, which
improve the currently best known estimates.

1. Introduction
Let π(x) denote the number of primes not exceeding x. Hadamard [13]

and de la Vallée-Poussin [25] independently proved a result concerning the
asymptotic behavior for π(x), namely π(x) ∼ li(x) as x → ∞, which is
known as the Prime Number Theorem. Here, the logarithmic integral li(x)
is defined for every real x ≥ 0 as

(1.1) li(x) =
∫ x

0

dt
log t = lim

ε→0+

{∫ 1−ε

0

dt
log t +

∫ x

1+ε

dt
log t

}
.

In a later paper [26], where the existence of a zero-free region for the Rie-
mann zeta-function ζ(s) to the left of the line Re(s) = 1 was proved, de la
Vallée-Poussin also estimated the error term in the Prime Number Theorem
by showing that

(1.2) π(x) = li(x) +O(xe−a
√

log x),
where a is a positive absolute constant. Denoting the sum of the first prime
numbers not exceeding x by S(x), Szalay [24, Lemma 1] used (1.2) to find

(1.3) S(x) = li(x2) +O(x2e−a
√

log x).
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Using (1.3) and integration by parts in (1.1), we get the asymptotic expan-
sion

(1.4) S(x) = x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 3x2

8 log4 x
+O

(
x2

log5 x

)
.

The first aim of this paper is to find explicit estimates for S(x) in the
direction of (1.4). The current best such upper bound for S(x) is due
to Massias and Robin [16, Théorème D(v)]. They found that S(x) ≤
x2/(2 log x) + 3x2/(10 log2 x) for every x ≥ 24 281. We start with the fol-
lowing result which improves the last inequality.

Theorem 1.1. For every x ≥ 110 118 925, we have

S(x) < x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 5.3x2

8 log4 x
.

The current best lower bound for S(x) concerning (1.4) is also due to
Massias and Robin [16, Théorème D(ii)]. We find the following improve-
ment.

Theorem 1.2. For every x ≥ 905 238 547, we have

S(x) > x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 1.2x2

8 log4 x
.

Using an explicit estimate for li(x2), we find for the first time explicit
bounds for the difference S(x)− li(x2) concerning (1.3) by establishing the
following result.

Theorem 1.3. We have

−0.25x2

log4 x
< S(x)− li(x2) < 0.25x2

log4 x
,

where the left-hand side inequality is valid for every x ≥ 906 484 877 and
the right-hand side inequality holds for every x ≥ 110 117 797.

The case x = pn, where pn denotes the nth prime number, is of particular
interest. Here, S(x) =

∑
k≤n pk is equal to the sum of the first n prime

numbers. Massias and Robin [16, p. 217] found that

(1.5)
∑
k≤n

pk = li((li−1(n))2) +O(n2e−c
√

logn),

where c is a positive absolute constant and li−1(x) is the inverse function of
li(x). Then they [16, p. 217] used (1.5) and a result of Robin [17] to derive
the asymptotic expansion

(1.6)
∑
k≤n

pk = n2

2

(
logn+

m∑
i=0

Ai+1(log logn)
logi n

+O

(
(log logn)m+1

logm+1 n

))
,



On the sum of the first n prime numbers 295

where m is a positive integer and the polynomials Ak satisfy the formulas
A0(x) = 1 and A′k+1 = A′k−(k−1)Ak. Unfortunately, this recursive formula
for derivatives does not yield a description of the polynomials Ak, since the
constant coefficient of the polynomials Ak remains undetermined by this
equation. We fix this problem by applying a method developed by Salvy [21,
Theorem 2] and get the following theorem.

Theorem 1.4. Let N be a positive integer. Then there exist uniquely deter-
mined monic polynomials T1, . . . , TN−1 with real coefficients and deg(Ti) =
i, such that

∑
k≤n

pk = n2

2

(
logn+ log logn− 3

2 +
N−1∑
i=1

(−1)i+1Ti(log logn)
i logi n

)

+O

(
n2(log logn)N

logN n

)
.

The polynomials Ti can be computed explicitly. In particular,
• T1(x) = x− 5/2,
• T2(x) = x2 − 7x+ 29/2,
• T3(x) = x3 − 12x2 + 54x− 185/2,
• T4(x) = x4 − 52x3/3 + 124x2 − 442x+ 1996/3.

For i ≥ 1, the polynomials Ai+1 given in (1.6) and polynomials Ti are
connected by the formula Ti = (−1)i+1iAi+1.

The proof of Theorem 1.4 is given in Section 5. The initial motivation
for writing this paper was an inequality conjectured by Mandl concerning
an upper bound for the sum of the first n prime numbers, namely

(1.7) npn
2 −

∑
k≤n

pk ≥ 0

for every integer n ≥ 9. This inequality originally appeared in [20] without
proof. In his thesis, Dusart [10] used the identity∑

k≤n
pk = npn −

∫ pn

2
π(x) dx

and explicit estimates for the prime counting function π(x) to prove that
(1.7) indeed holds for every integer n ≥ 9. The second goal of this paper is to
study the sequence (Bn)n∈N, where Bn denotes the left-hand side of (1.7),
in more detail. For this purpose, we first derive an asymptotic expansion
for Bn by using a result of Cipolla [7] concerning an asymptotic expansion
for the nth prime number. He proved that for every positive integer N
there exist uniquely determined monic polynomials R1, . . . , RN−1 with real
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coefficients and deg(Ri) = i, such that

pn = n

(
logn+ log logn− 1 +

N−1∑
i=1

(−1)i+1Ri(log logn)
i logi n

)

+O

(
n(log logn)N

logN n

)
.

The polynomials Ri are computed explicitly in [21, p. 235]. Setting Vi =
Ri − Ti, where the polynomials Ti are given by Theorem 1.4, we get the
following asymptotic expansion for Bn.

Theorem 1.5. Let N be a positive integer. Then,

Bn = n2

2

(
1
2 +

N−1∑
i=1

(−1)i+1Vi(log logn)
i logi n

+O

(
(log logn)N

logN n

))
.

The polynomials Vs can be computed explicitly. In particular,
• V1(x) = 1/2,
• V2(x) = x− 7/2,
• V3(x) = 3x2/2− 12x+ 27,
• V4(x) = 2x3 − 26x2 + 124x− 221.

Since it is still difficult to compute Bn for large n, we are interested in
explicit estimates for Bn. From (1.7), we get that Bn ≥ 0 for every integer
n ≥ 9. Hassani [14, Corollary 1.5] has found that the inequality Bn > n2/12
holds for every integer n ≥ 10. Up to now, the sharpest lower bound for
Bn is due to Sun [23, Theorem 1.1]. He proved that Bn > n2/4 for every
integer n ≥ 417. We improve Sun’s result as follows.

Theorem 1.6. For every integer n ≥ 6 309 751, we have

Bn >
n2

4 + n2

4 logn −
n2(log logn− 2.9)

4 log2 n
.

In the other direction, we give the following explicit estimate for Bn,
which improves the only known upper bound Bn < 9n2/4, which holds for
every integer n ≥ 2, found by Hassani [14, Corollary 1.5].

Theorem 1.7. For every integer n ≥ 256 376, we have

Bn <
n2

4 + n2

4 logn −
n2(log logn− 4.42)

4 log2 n
.
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Theorem 1.4 implies that∑
k≤n

pk = n2

2

(
logn+ log logn− 3

2 + log logn− 5/2
logn − T2(log logn)

2 log2 n

)
(1.8)

+O
(
n2(log logn)3

log3 n

)
,

where T2(x) = x2−7x+29/2. We use the inequalities found in Theorems 1.6
and 1.7, and combine them with some estimates for the nth prime number
given in [6, Theorems 1 and 4] to derive the following estimates for the sum
of the first n prime numbers, which refine the ones previously known.

Theorem 1.8. Let Tup(x) = x2 − 7x + 13.567. Then, for every integer
n ≥ 1 897 700, we have∑
k≤n

pk <
n2

2

(
logn+ log logn− 3

2 + log logn− 5/2
logn − Tup(log logn)

2 log2 n

)
.

Theorem 1.9. Let Tlow(x) = x2 − 7x + 15.741. Then, for every integer
n ≥ 2, we have∑
k≤n

pk >
n2

2

(
logn+ log logn− 3

2 + log logn− 5/2
logn − Tlow(log logn)

2 log2 n

)
.

2. Proof of Theorem 1.1
The following proof of Theorem 1.1 is based on a recent obtained estimate

for π(x).

Proof of Theorem 1.1. We denote the right-hand side of the required in-
equality by f(x) and let x0 = 10 166 443 802. First, we consider the case
x ≥ x0 and let n = π(x) ≥ 462 277 798. We have

(2.1) S(x) = π(pn)pn − npn +
∑
k≤n

pk.

Applying the upper bound for the prime counting function π(x) given in [4,
Proposition 3.6] and the lower bound for npn −

∑
k≤n pk found in [5, The-

orem 1] to (2.1), we get S(x) < g(pn), where

g(t) = t2

2 log t + t2

4 log2 t
+ t2

4 log3 t
+ 4.8t2

8 log4 t
+ 4.5t2

4 log5 t
+ 28.5t2

8 log6 t

+ 121.5t2

8 log7 t
+ 25826.5t2

16 log8 t
.

Note that g(t) is an increasing function for every t ≥ 17. So we conclude that
S(x) < g(x) for every x ≥ x0. Since g(t) < f(t) for every t ≥ x0, the theo-
rem is proved for every x ≥ x0. A computer check shows that f(pi) ≥ S(pi)
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for every integer i such that π(110 119 007) ≤ i ≤ π(10 166 443 802). Hence,
f(x) ≥ S(x) for every x with 110 119 007 ≤ x ≤ x0. Finally, we notice that
f(x) ≥ S(x) for every x satisfying 110 118 925 ≤ x < 110 119 007, which
completes the proof. �

Remark 2.1. In [9, Corollary 2.7], Deléglise and Nicolas found a slightly
weaker version of Theorem 1.1.

3. Proof of Theorem 1.2
The currently best known lower bound for S(x) is also due to Massias

and Robin [16, Théorème D(ii)]. They proved that the inequality S(x) ≥
x2/(2 log x) + 0.954x2/(4 log2 x) holds for every x ≥ 70 841. In order to
prove Theorem 1.2, we first note the following lemma, which can be found
in [1, Theorem 4.2].

Lemma 3.1 (Abel’s identity). For any function a : N → C let A(x) =∑
n≤x a(n), where A(x) = 0 if x < 1. Assume g has a continuous derivative

on the interval [y, x], where 0 < y < x. Then we have∑
y<n≤x

a(n)g(n) = A(x)g(x)−A(y)g(y)−
∫ x

y
A(t)g′(t) dt.

The following proof of Theorem 1.2 is based on the use of Lemma 3.1
and some recently obtained estimates for the prime counting function π(x).

Proof of Theorem 1.2. First, we consider the case x ≥ 19 027 490 297. We
denote the right-hand side of the required inequality by f(x). Further, let
y = 1, g(t) = t, and

a(n) =
{

1 if n is prime,
0 otherwise.

We use Lemma 3.1 to get

S(x) =
∑

1<n≤x
a(n)g(n) = xπ(x)−

∫ x

1
π(t) dt = xπ(x)− 143−

∫ x

27
π(t) dt.

Now we apply the estimates for the prime counting function found in [4,
Propositions 3.6 and 3.12] to the last equality, and use [10, Lemme 1.6]
and [3, Proposition 9] to see that

(3.1) S(x) > 26689x2

180 log x + 26689x2

360 log2 x
+ 26689x2

360 log3 x
+ 5327x2

48 log4 x
+ 6661x2

30 log5 x

+ 1663x2

3 log6 x
+ 3317x2

2 log7 x
+ 10017x2

2 log8 x
− 26599

90 li(x2).



On the sum of the first n prime numbers 299

By [3, Lemma 19], we have

(3.2) li(x2) ≤ x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 3x2

8 log4 x
+ 3x2

4 log5 x

+ 15x2

8 log6 x
+ 45x2

8 log7 x
+ 1575x2

64 log8 x

for every x ≥ 109. Combined with (3.1), we get

(3.3) S(x) > x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 3x2

20 log4 x
+ 3x2

8 log5 x

+ 3x2

16 log6 x
− 63x2

16 log7 x
− 289877x2

128 log8 x
,

which completes the proof for every x ≥ 19 027 490 297. To deal with the
remaining case 905 238 547 ≤ x < 19 027 490 297, we check with a com-
puter that S(pi) ≥ f(pi+1) for every integer i with π(905 238 547) ≤ i ≤
π(19 027 490 297). Since f ′(x) > 0 for every x ≥ 2.8, we get S(x) ≥ f(x)
for every x ≥ 905 238 547. �

Remark 3.2. Recently, Theorem 1.2 was independently found by Deléglise
and Nicolas [9, Corollary 2.7].

We obtain the following lower bound for S(x), which corresponds to the
first three terms of the asymptotic expansion (1.4).

Corollary 3.3. For every x ≥ 152 603 617, we have

(3.4) S(x) > x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
.

Proof. From Theorem 1.2, it follows that the required inequality holds for
every x ≥ 905 238 547. Similar to the proof of Theorem 1.2, we check (3.4)
for smaller values of x with a computer. �

The asymptotic formula (1.4) implies that

(3.5) S(x) ≥ x2

2 log x + x2

4 log2 x

for all sufficiently large values of x. In 1988, Massias, Nicolas, and Robin [15,
Lemma 3(i)] proved that the inequality (3.5) holds for every x such that
302 791 ≤ x ≤ e90. Under the assumption that the Riemann hypothesis
is true, Massias and Robin [16, Théorème D(iv)] showed that the inequal-
ity (3.5) holds for every x ≥ 302 971. Further, they [16, Théorème D(iv)]
proved that the inequality (3.5) holds unconditionally for every x such that
302 971 ≤ x ≤ e98 and for every x ≥ e63864. Using Corollary 3.3, we fill this
gap.
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Corollary 3.4. The inequality (3.5) holds for every x ≥ 302 971.

Proof. We only need to show that the desired inequality is valid for every x
such that e98 < x < e63864. But this is a consequence of Corollary 3.3. �

4. Proof of Theorem 1.3
So far, we established explicit estimates for S(x) in the direction of (1.4).

In the following proof of Theorem 1.3, where we establish for the first time
explicit bounds for the difference S(x)− li(x2), we use an effective estimate
for li(x2).

Proof of Theorem 1.3. In the proof of Theorem 1.1 it is shown that

S(x) < x2

2 log x + x2

4 log2 x
+ x2

4 log3 x
+ 4.8x2

8 log4 x
+ 4.5x2

4 log5 x
+ 28.5x2

8 log6 x

+ 121.5x2

8 log7 x
+ 25826.5x2

16 log8 x

for every x ≥ 10 166 443 802. By applying the corresponding lower bound for
li(x2) given in [3, Lemma 15], we establish the correctness of the inequality

S(x)− li(x2) < 0.225x2

log4 x
+ 0.375x2

log5 x
+ 1.6875x2

log6 x
+ 9.5625x2

log7 x
+ 1594.46875x2

log8 x

for every x ≥ 10 166 443 802. This completes the proof of the right-hand side
inequality for every x ≥ 15 884 423 625. Similar to the proof of Theorem 1.2,
we check with a computer that this inequality also holds for every x such
that 110 117 797 ≤ x ≤ 15 884 423 625. Analogously, we use (3.2), (3.3) and
a computer to verify that the desired left-hand side inequality is valid for
every x ≥ 906 484 877. �

Remark 4.1. Under the assumption that the Riemann hypothesis is true,
Deléglise and Nicolas [8, Lemma 2.5] improved (1.3) by showing that for
every x ≥ 41,

|S(x)− li(x2)| ≤ 5
24π x

3/2 log x.

5. Proof of Theorem 1.4
In 1996, Massias and Robin [16, p. 217] found the currently most accurate

asymptotic expansion for the sum of the first n primes, namely

(5.1)
∑
k≤n

pk = n2

2

(
logn+ log logn− 3

2 + log logn− 5/2
logn

)

+O

(
n2(log logn)2

log2 n

)
.
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In Theorem 1.4, we give an asymptotic expansion for the sum of the first
n primes, more precise than (5.1). The maintool for the given proof is a
result of Salvy [21, Theorem 2].

Proof of Theorem 1.4. Let N be a positive integer. We define

DN (t) =
N∑
s=0

s!ts.

First, we note that repeated integration by parts in (1.1) gives

(5.2) li(x) = x

log x

(
DN

( 1
log x

)
+O

(
1

logN+1 x

))
.

For x > 1, the logarithmic integral li(x) is increasing with li((1,∞)) = R.
Thus, we can define the inverse function li−1 : R→ (1,∞) by

(5.3) li(li−1(x)) = x.

Using (5.2), we get the asymptotic formula

(5.4) li((li−1(x))2) = e2y

2y

(
DN

( 1
2y

)
+O

( 1
yN+1

))
where y = log li−1(x). Next, we combine (5.2) and (5.3) to obtain x =
eyy−1D(1/y), where D(t) = DN (t) + O(tN+1). Now we apply Theorem 2
of [21] with α = 1, β = 2, and γ = −1 to see that

e2y

2y DN

( 1
2y

)
= x2 log x

2

N∑
i=0

Qi(log log x)
logi x

+O

(
x2(log log x)N

logN x

)
,

where the polynomials Qi ∈ R[x] are defined by

(5.5) Q0 = 1, Q′i+1 = Q′i − (i− 1)Qi
so that Qi = Ai where Ai is defined by (1.6). Together with (1.5), (5.4),
and the fact that li−1(x) ∼ x log x as x→∞, we conclude that

∑
k≤n

pk = n2 logn
2

N∑
i=0

Qi(log logn)
logi n

+O

(
n2(log logn)N

logN n

)
.

By (5.5) and (5.1), we have Q0(x) = 1 and Q1(x) = x − 3/2, respectively.
Moreover, Theorem 2 of [21] demonstrates how to compute the value of
the constant coefficient of the polynomials Qi for every integer i satisfying
2 ≤ i ≤ N , which is not given by (5.5). In the appendices of [21], one can
find a Maple code for the computation of the polynomials Q2, . . . , QN and
it suffices to write

(1/2)*theorem2_part2(1,2,-1,D_N(n),D_N(n/2),n,N);.
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Finally, we set Ti = (−1)i+1iQi+1 for every integer i with 1 ≤ i ≤ N − 1.
Then, (5.5) implies that the polynomials Ti are monic with deg(Ti) = i,
which completes the proof. �

Remark 5.1. The first part of Theorem 1.4 was already proved by Sinha
[22, Theorem 2.3].

6. Proof of Theorem 1.5
Recall that Bn = npn/2−

∑
k≤n pk. In this section, we use another result

of Salvy [21, Corollary 4] (or Cipolla [7]) to give a proof of Theorem 1.5
where we establish an asymptotic expansion for Bn.

Proof of Theorem 1.5. Let N be a positive integer. By Salvy [21, Corol-
lary 4] (or Cipolla [7]) there exist uniquely determined monic polynomials
R1, . . . , RN−1 with real coefficients and deg(Ri) = i, so that

(6.1) pn = n

(
logn+ log logn− 1 +

N−1∑
i=1

(−1)i+1Ri(log logn)
i logi n

)

+O

(
n(log logn)N

logN n

)
.

Furthermore, in Appendix B.2 of [21], one can find a Maple code for the
computation of the polynomials R1, . . . , RN−1. We set Vi = Ri − Ti for
every integer i with 1 ≤ i ≤ N − 1, where the polynomials Ti are given
as in Theorem 1.4. Now it suffices to combine (6.1) and the asymptotic
expansion given in Theorem 1.4. �

7. Proof of Theorem 1.6
In order to give a proof of Theorem 1.6, we first note the following

proposition. Here, let

γ(n) = 2.9 log2 n

4 log2 pn
+ log2 n

4 log pn
+ 16.7 log2 n

4 log3 pn
− logn

4 + log logn
4 .

Proposition 7.1. For every integer n ≥ 6 315 433, we have

Bn >
n2

4 + n2

4 logn −
n2 log logn

4 log2 n
+ γ(n)n2

log2 n
.

Proof. First, we consider the case where n ≥ 440 200 309. By [5, Theorem 1],
we have

(7.1) npn −
∑
k≤n

pk ≥
p2
n

2 log pn
+ 3p2

n

4 log2 pn
+ 7p2

n

4 log3 pn
+ L1(n),
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where L1(n) = (44.4p2
n log2 pn + 184.2p2

n log pn + 937.5p2
n)/(8 log6 pn). By

(7.1) and the definition of Bn it suffices to prove that

p2
n

2 log pn
+ 3p2

n

4 log2 pn
+ 7p2

n

4 log3 pn
+ L1(n)(7.2)

>
npn
2 + n2

4 + n2

4 logn −
n2 log logn

4 log2 n
+ γ(n)n2

log2 n
.

For convenience, in the remaining part of the proof we write p = pn, y =
logn, and z = log p. It is easy to see that 937.5p2 > 715.32npz+117.88n2z2.
We combine this inequality with the definition of γ(n) to get

2n2z5y2 + 5.8n2z4y2 + 55.5n2z2y2(z − 1.1) + 937.5p2y2 − 56.83n2z2y2

> 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 22.1n2z3y2 + 715.32npzy2.

By Dusart [10, Théorème 1.10], we have p > n(z − 1.1). Hence,

2n2z5y2 + 5.8n2z4y2 + 184.2npzy2(z − 1.1) + 937.5p2y2 − 56.83n2z2y2

> 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 22.1n2z3y2

+ 128.7npz2y2 + 512.7npzy2.

Again, we use the inequality p > n(z − 1.1) to obtain

(7.3) 2n2z5y2 + 5.8n2z4y2 + 184.2p2zy2 + 937.5p2y2 − 56.83n2z2y2

> 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 22.1n2z3y2

+ 128.7npz2y2 + 512.7npzy2.

Similar, we apply the inequality p > n(z − 1 − 1.15/z) found in [4, Corol-
lary 3.3] to (7.3) and see that

2n2z5y2 + 8L1(n)z6y2

> 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 6n2z4y2 + 10.3n2z3y2

+ 43.26n2z2y2 + 32.6npz3y2 + 84.3npz2y2 + 461.64npzy2.

Analogously, we use the inequality p > n(z − 1 − 1/z − 3.69/z2) which is
valid by [4, Corollary 3.3] to get

(7.4) 14p2z3y2 + 8L1(n)z6y2

> 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 2n2z5y2 + 2n2z4y2

+ 6.3n2z3y2 + 28.5n2z2y2 + 10npz4y2 + 18.6npz3y2

+ 70.3npz2y2 + 409.98npzy2.
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Next, we apply the inequality p > n(z − 1 − 1/z − 3.15/z2 − 14.25/z3),
see [4, Corollary 3.3], to (7.4) in a similar way to obtain

6p2z4y2 + 14p2z3y2 + 8L1(n)z6y2

> 2n2z6y2 + 2n2z6y − 2n2z6 log y + 8γ(n)n2z6 + 4npz5y2

+ 4npz4y2 + 12.6npz3y2 + 51.4npz2y2 + 324.48npzy2.

Finally, by applying the inequality p > n(z−1−1/z−3.15/z2−12.85/z3−
81.12/z4), which is fulfilled by [4, Corollary 3.3], we get

4p2z5y2 + 6p2z4y2 + 14p2z3y2 + 8L1(n)z6y2

> 4npz6y2 + 2n2z6y2 + 2n2z6y − 2n2z6 log y + 8γ(n)n2z6.

We divide the last inequality by 8z6y2 to obtain the inequality (7.2), so the
claim follows for every integer n ≥ 440 200 309. We check the remaining
cases with a computer. �

Sun [23] proved that the inequality Bn > n2/4 is valid for every integer
n ≥ 417. By proving Theorem 1.6, we improve Sun’s lower bound for Bn.

Proof of Theorem 1.6. For convenience, we write again y = logn and z =
log pn. First, we consider the case where n ≥ 6 315 433. By Proposition 7.1
it suffices to show that γ(n) ≥ 2.9/4. In [2, p. 42], it is shown that for every
m ≥ 255,

(7.5) logm ≥ 0.75 log pm.

Furthermore, we have x2 − 6.8x + 16.7 · 0.752 > 0 for every x ≥ 4.88.
Together with (7.5), we get

(7.6) 16.7y2 + (log2 y − 6.8 log y)z2 + 2.9z log2 y − 2.9z(log y − 1) ≥ 0.

From Dusart [12, Proposition 5.15] and the inequality log(1 + t) ≤ t, which
holds for every t > −1, follows that

(7.7) z ≤ y + log y + log y − 1
y

+ log y − 2
y2 .

Using the result of Rosser [18, Theorem 1] that pm > m logm for every
positive integer m, we obtain

(7.8) − z + log y ≤ −y.

Hence, from (7.6), we get

(7.9) 16.7y2 + z2(log y − 1− 2.9) log y − 2.9zy log y − 2.9z(log y − 1) ≥ 0.

Let f(x) = 3.9(log log x−2)/ log x. Then it is easy to see that f has a global
maximum at x0 = 3. Hence f(x) ≤ f(3) ≤ 0.2 for every x > 1. Similary,
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we get 2.9(log log x−1)/ log x ≤ 0.4 and 2.9(log log x−2)/ log2 x ≤ 0.01 for
x > 1. Therefore,

3.9z2(log y − 2)
y

+ 2.9z2(log y − 1)
y

+ 2.9z2(log y − 2)
y2 < z2.

We combine this with (7.9) to obtain

z2 + 16.7y2 + 2.9zy2 + z2(log y − 1− 2.9) log y

≥ 2.9zy
(
y + log y + log y − 1

y
+ log y − 2

y2

)
+ z2(log y − 2)

y

+ 2.9z2

y

(
log y − 1 + log y − 2

y

)
.

Now we use (7.7) to obtain

z2 + 16.7y2 + 2.9zy2 + z2(log y − 1) log y

≥ 2.9z2
(
y + log y + log y − 1

y
+ log y − 2

y2

)
+ z2(log y − 2)

y
.

Again, by using (7.7), we get

z2 + 16.7y2 + 2.9zy2 + z2(log y − 1) log y ≥ 2.9z3 + z2(log y − 2)
y

.

Finally we apply (7.8) and (7.7) to the last inequality and get 4z3γ(n) ≥
2.9z3. Hence, the claim follows from Proposition 7.1 for every n ≥ 6 315 433.
A computer check for smaller values of n completes the proof. �

8. Proof of Theorem 1.7
We set

κ(n) = log2 n

4 log pn
+ 4.1 log2 n

4 log2 pn
− logn

4 + log logn
4 + r(log pn) log2 n

8 log6 pn
,

where r(x) is defined by

(8.1) r(x) = 34.6x3 + 207.1x2 + 1431.56x+ 28972.335,

to obtain the following proposition.

Proposition 8.1. For every integer n ≥ 256 265, we have

Bn <
n2

4 + n2

4 logn −
n2 log logn

4 log2 n
+ κ(n)n2

log2 n
.
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Proof. First, let n ≥ 841 424 976, i.e. pn ≥ 19 033 744 403. By [5, Theorem 2]
and the definition of Bn it suffices to show that

(8.2) npn
2 + n2

4 + n2

4 logn −
n2 log logn

4 log2 n
+ κ(n)n2

log2 n

>
p2
n

2 log pn
+ 3p2

n

4 log2 pn
+ 7p2

n

4 log3 pn
+ U(n),

where

(8.3) U(n) = 45.6p2
n

8 log4 pn
+ 93.9p2

n

4 log5 pn
+ 952.5p2

n

8 log6 pn
+ 5755.5p2

n

8 log7 pn
+ 116371p2

n

16 log8 pn
.

For convenience, we denote again p = pn, y = logn and z = log p. From the
definiton of κ(n) and r(x), it follows that

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 3913.24n2z2y2

= 2n2z7y2 + 8.2n2z6y2 + 34.6n2z5y2 + 207.1n2z4y2

+ 1431.56n2z3y2 + 32885.575n2z2y2.

By Rosser and Schoenfeld [19, Corollary 1], we have p < nz. Hence, we
obtain the inequality

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 3913.24n2z2y2 + 25299.925npzy2

> 2n2z7y2 + 8.2n2z6y2 + 34.6n2z5y2 + 207.1n2z4y2

+ 1431.56n2z3y2 + 58185.5npzy2.

Again, we use the inequality p < nz to get

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 3913.24n2z2y2 + 25299.925npzy2

> 2n2z7y2 + 8.2n2z6y2 + 34.6n2z5y2 + 207.1n2z4y2

+ 1431.56n2z3y2 + 58185.5p2y2.

Next, we apply the inequality p < n(z−1), which was found by Dusart [10],
in a similar way to get

(8.4) 2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 610.47n2z3y2

+ 1871.21n2z2y2 + 3713.47npz2y2 + 19544.425npzy2

> 2n2z7y2 + 8.2n2z6y2 + 34.6n2z5y2 + 207.1n2z4y2

+ 5755.5p2zy2 + 58185.5p2y2.
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The double usage of the inequality p < n(z−1−1/z), see [4, Corollary 3.9],
to (8.4) gives

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 110.4n2z4y2 + 292.97n2z3y2

+ 1553.71n2z2y2 + 635npz3y2 + 2760.97npz2y2

+ 18591.925npzy2

> 2n2z7y2 + 8.2n2z6y2 + 34.6n2z5y2 + 952.5p2z2y2

+ 5755.5p2zy2 + 58185.5p2y2.

Analogously, we apply the inequality p < n(z − 1 − 1/z − 2.85/z2), which
was found in [4, Corollary 3.9], in a similar way to obtain

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 23.9n2z5y2 + 51.9n2z4y2

+ 234.47n2z3y2 + 1386.985n2z2y2 + 129.3npz4y2

+ 447.2npz3y2 + 2573.17npz2y2 + 18056.695npzy2

> 2n2z7y2 + 8.2n2z6y2 + 187.8p2z3y2 + 952.5p2z2y2

+ 5755.5p2zy2 + 58185.5p2y2.

Next, we use that p < n(z − 1 − 1/z − 2.85/z2 − 13.15/z3), see [4, Corol-
lary 3.9], to get

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 6n2z6y2 + 9.7n2z5y2 + 37.7n2z4y2

+ 194n2z3y2 + 1200.255n2z2y2 + 31.4npz5y2 + 83.7npz4y2

+ 401.6npz3y2 + 2443.21npz2y2 + 17457.055npzy2

> 2n2z7y2 + 8U(n)z8y2,

where U(n) is defined by (8.3). Similar, we apply the inequality p < n(z −
1−1/z−2.85/z2−13.15/z3−70.7/z4), which is valid by [4, Corollary 3.9],
to the last inequality and get

2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 2n2z7y2 + 2n2z6y2 + 5.7n2z5y2

+ 26.3n2z4y2 + 141.4n2z3y2 + 917.455n2z2y2 + 10npz6y2

+ 17.4npz5y2 + 69.7npz4y2 + 361.7npz3y2 + 2259.11npz2y2

+ 16467.255npzy2

> 14p2z5y2 + 8U(n)z8y2.
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Now, we use p < n(z−1−1/z−2.85/z2−13.15/z3−70.7/z4−458.7275/z5),
see [4, Corollary 3.9], in a analogical way to get

(8.5) 2n2z8y2 + 2n2z8y − 2n2z8 log y + 8κ(n)n2z8 + 4npz7y2 + 4npz6y2

+ 11.4npz5y2 + 52.6npz4y2 + 282.8npz3y2

+ 1834.91npz2y2 + 13714.89npzy2

> 6p2z6y2 + 14p2z5y2 + 8U(n)z8y2.

Finally, we similary apply [4, Theorem 3.8] to the inequality (8.5) to get

4npz8y2 + 2n2z8y2 + 2n2z8y − 2n2z8 log y + 8κ(n)n2z8

> 4p2z7y2 + 6p2z6y2 + 14p2z5y2 + 8U(n)z8y2.

We divide both sides of this inequality by 8z8y2 to obtain the inequal-
ity (8.2) for every integer n ≥ 841 424 976. We verify the remaining cases
by using a computer. �

Now we use Proposition 8.1 to give a proof of Theorem 1.7.

Proof of Theorem 1.7. The proof consists of four steps. In the first step, we
set a1 = 0.08 and notice that

f(x) = 4a1(x+ log x) + (x+ 4a1 − log x) log
(

1 + log x− 1
x

)
− log2 x

is positive for every x ≥ e19.63. In the following three steps, we write again
y = logn and z = log pn, and consider the case y ≥ 19.63. Then, f(y) ≥ 0,
i.e.

(8.6)
(
y + log y + log

(
1 + log y − 1

y

))
(4a1 + y − log y) ≥ y2.

From Dusart [11] follows that

(8.7) z ≥ y + log y + log
(

1 + log y − 1
y

)
.

We apply this inequality to (8.6) to get
(8.8) 8a1z

8 ≥ 2z7y2 − 2z8y + 2z8 log y.
In the third step, we set a2 = 1.025 and t(x) = 16a2x

3 log x+8a2x
2 log2 x−

r(x), where r(x) is defined by (8.1). Then t(x) ≥ 0 for every x ≥ 19.71 and
it follows that
16a2z

5y2 log z+ 8a2z
4y2 log2 z− r(z)z2y2 + (8a2− 8.2)z6y2 = z2y2t(z) ≥ 0.

The function s 7→ log s/s is decreasing for every s ≥ e. So, log(y)/y ≥
log(z)/z and we get

8a2z
6(y + log y)2 − r(z)z2y2 − 8.2z6y2 ≥ 0.
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By (8.7), we obtain z ≥ y + log y. Hence 8a2z
8 ≥ r(z)z2y2 + 8.2z6y2.

Now, in the final step, we combine the last inequality with (8.8) to see that
κ(n) ≤ 4.42/4 for every integer n ≥ e19.63. We apply this to Proposition 8.1,
which completes the proof for every integer n ≥ e19.63. We conclude by a
direct computation. �

Remark 8.2. Theorem 1.7 improves the only known upper bound Bn <
9n2/4, which holds for every integer n ≥ 2, found by Hassani [14, Corol-
lary 1.5].

9. Proof of Theorems 1.8 and 1.9
In 1998, Dusart [10] proved that the inequality∑

k≤n
pk ≤

n2

2

(
logn+ log logn− 3

2 + log logn− 2.29
logn

)
holds for every integer n ≥ 10 134. In this section, we use the identity

(9.1)
∑
k≤n

pk = npn
2 −Bn,

the inequalities stated in Theorems 1.6 and 1.7, and some explicit estimates
for the nth prime number given in [6] to find proofs of Theorems 1.8 and 1.9.
We start with the proof of Theorem 1.8.

Proof of Theorem 1.8. We combine (9.1), [6, Theorem 1], and Theorem 1.6,
to get that the required inequality holds for every integer n ≥ 46 254 381.
The remaining cases are verified with a computer. �

Based on Theorem 1.8, we obtain the following upper bound for the sum
of the first n prime numbers, which corresponds to the first four terms of
the asymptotic expansion found in Theorem 1.4.

Corollary 9.1. For every integer n ≥ 115 149, we have

(9.2)
∑
k≤n

pk <
n2

2

(
logn+ log logn− 3

2 + log logn− 5/2
logn

)
.

Proof. Theorem 1.8 implies the validity of (9.2) for every integer n ≥
1 897 700. It remains to check the required inequality for smaller values
of n with a computer. �

The current best lower bound for the sum of the first n primes in the
direction of (1.8) is also due to Dusart [10, Lemme 1.7]. He proved that∑

k≤n
pk ≥

n2

2

(
logn+ log logn− 3

2

)
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for every integer n ≥ 305 494. Using [6, Theorem 4] and Theorem 1.7, we
finally give the following proof of Theorem 1.9.

Proof of Theorem 1.9. Applying [6, Theorem 4] and Theorem 1.7 to (9.1),
we get that the desired inequality holds for every integer n ≥ 256 376. For
the remaining cases, we use a computer. �
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