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Résumé. Soit E une courbe elliptique sur Q ayant réduction multiplicative
en un nombre premier p. Supposons que en tout nombre premier différent de
p la courbe E a une réduction multiplicative ou potentiellement bonne. Pour
chaque entier positif n on pose Kn := Q(E[pn]). Le but de cet article est
d’étendre nos résultats précédents [13] concernant l’ordre du p-sous-groupe
de Sylow du groupe des classes d’idéaux de Kn à un cadre plus général. Nous
modifions également la borne inférieure précédente de cet ordre donnée en
termes du rang de Mordell–Weil de E(Q) et de la ramification liée à E.

Abstract. Let E be an elliptic curve over Q which has multiplicative reduc-
tion at a fixed prime p. Assume E has multiplicative reduction or potentially
good reduction at any prime not equal to p. For each positive integer n we
put Kn := Q(E[pn]). The aim of this paper is to extend the authors’ previous
results in [13] concerning with the order of the p-Sylow group of the ideal
class group of Kn to more general setting. We also modify the previous lower
bound of the order given in terms of the Mordell–Weil rank of E(Q) and the
ramification related to E.

1. Introduction

This article is a sequel of [13]. Let p be a prime number and E be an
elliptic curve over Q. For each positive integer n, we consider the field Kn

generated by the coordinates of points on E[pn] over Q. In [13] the authors
studied a lower bound of the p-part of the class number hKn of Kn in
terms of the Mordell–Weil rank of E(Q) when E has prime conductor p.
The present article extends this result to a more extensive class of elliptic
curves over Q.

For such an elliptic curve, we will carry out a similar estimation done
in [13] but at the same time we give an improvement of the method of
the estimation. As we have done in [13] the lower bound will be given
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in terms of the Mordell–Weil rank and the information coming from the
ramification related to E. Our formula is reminiscent of Iwasawa’s class
number formula for Zp-extension. In fact we have an explicit class number
formula in a special case (see Corollary 1.2).

Our study is motivated by the works of Greenberg [6] and Komatsu–
Fukuda–Yamagata [5] who have studied a lower bound of Iwasawa invari-
ants for CM fields in terms of the Mordell–Weil group of the corresponding
CM abelian varieties. We have pursued an analogue for non-CM elliptic
curves since [13].

To state our main theorem we introduce our notation. The Mordell–
Weil theorem asserts that E(Q) is a finitely generated abelian group. Thus
there exists a free abelian subgroup A of E(Q) of finite rank such that
A + E(Q)tors = E(Q). We denote the rank of A by r. We put Gn :=
Gal(Kn/Q) and Ln := Kn([pn]−1

E A), where [pn]E is the multiplication-by-
pn map on E. We denote generators of A by P1, . . . , Pr. For each j in
{1, . . . , r} we take a point Tj of E(Ln) satisfying

[pn]E(Tj) = Pj .

Then we have Ln = Kn(T1, . . . , Tr). The Galois action on {Tj}j naturally
induces an injective Gn-homomorphism

Φn : Gal(Ln/Kn)→ E[pn]r : σ 7→ (σTj − Tj)j
(cf. [10, p. 116]). In particular, the degree [Ln : Kn] is equal to a power
of p.

We denote the maximal unramified abelian extension of Kn by Kur
n . We

define the exponent κn by
[Ln ∩Kur

n : Kn] = pκn .

Assume that E has multiplicative reduction at p and E has multiplicative
reduction or potentially good reduction at any prime ` 6= p.

Then the main theorem of this article is the following theorem.

Theorem 1.1. Assume that Gn ' GL2(Z/pnZ) for each n ≥ 1 and
p 6 | ordp(∆), where ∆ is the minimal discriminant of E. The following in-
equalities hold:

(1) Assume that p is odd. Then for any n ≥ 1,

κn ≥ 2n(r − 1)− 2
∑
`6=p

ν`,

where we put

ν` :=


min{ordp(ord`(∆)), n} if E has split multiplicative reduction at

` 6= p,
0 otherwise.
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(2) Assume that p = 2. Then for any n ≥ 1,

κn ≥ 2n(r − 1)− 2(r2,n − 2)− δ2 − 2
∑
`6=p

ν`,

where r2,n = 1, 2 according as E(Q)/E(Q) ∩ [2n]E(E(Qp)) is cyclic
or not, and we put

ν` :=



min{ordp(ord`(∆)), n} if E has split multiplicative reduction at
` 6= 2,

1 if E has potentially good reduction at
` 6= 2 and n = 1, or if E has non-split
multiplicative reduction at ` 6= 2 and
ord`(∆) is even,

0 otherwise.

and

δ2 :=
{

2 if n = 1 and r2,1 = 1,
0 otherwise.

Corollary 1.2. Assume that the conductor of E is equal to p. Then

κn =
{

2n(r − 1) + 2ν (n > ν)
2nr (n ≤ ν)

for some integer ν ≥ 0 (which depends only on Pj).

We explain the conditions imposed on E. Put

n0 :=


1 if p > 3
2 if p = 3
3 if p = 2.

It is known that Gn ' GL2(Z/pnZ) for n ≤ n0 implies Gn ' GL2(Z/pnZ)
for all n ≥ 1 (cf. [3, Section 1]). Thus the assumption in Theorem 1.1 can
be replaced by Gn ' GL2(Z/pnZ) for n ≤ n0. For a given prime number p,
there is a criterion for Gn (n ≤ n0) to be isomorphic to GL2(Z/pnZ) (see [3]
for p = 2, [4] for p = 3, and [14] for p ≥ 5). The condition p6 | ordp(∆) is
automatically satisfied when p > 5 and E is a semistable elliptic curve
(cf. [12, Théorème 1, p. 176]).

While preparing this paper, Hiranouchi [8] generalized Theorem 1.1(1)
to the case where p > 2, E(Qp)[p] = {0}, G1 ' GL(Z/pZ). He uses the
structure theorem of E(Qp) and the formal group for E which plays a
substitution of Tate curves. He also shows E(Qp)[p] = {0} for p > 2 under
the assumption of Theorem 1.1.
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The organization of this paper is as follows. In Section 2, we study the ex-
tension Ln/Kn. To do this we modify Bashmakov’s result [1] from Lang [10]
for our elliptic curves. Then we investigate the degree [Ln : Kn] of the ex-
tension Ln/Kn. A key point is to show the equality L1 ∩ K∞ = K1. To
do this we separate the situation into the case when p is odd and the case
when p = 2. The former case will be done in Section 2, but the latter case
will be devoted to Section 6 because of the particular treatment in which
being p = 2 causes. In Section 3 and Section 4, we investigate the degree
of the p-adic completion of Ln over the one of Kn, which is used for the
estimate of the inertia group in Section 5. We give the proof of Theorem 1.1
in Section 5, and we give numerical examples of κn in Section 7.

Acknowledgments. We would like to express our deep appreciation to
Professors Matsuno Kazuo and Toshiro Hiranouchi, and Yoshiyasu Ozeki
for comments in our previous version. We thank also the referee for helpful
suggestions and collections which are useful for improving contents and
presentations.

2. The extension Ln over Kn

In this section, we extend some results in [13] which has been done by the
arguments essentially based on Bashmakov [1] (cf. [10, Lemma 1, p. 117]).

Let us keep the notation in Section 1 and throughout this paper we
assume our elliptic curve E always satisfies the condition in Theorem 1.1.
Put K∞ := ∪n≥1Kn, L∞ := ∪n≥1Ln and G∞ := Gal(K∞/Q). For each
n ≥ 1 let us consider the Gn-homomorphism

Φn : Gal(Ln/Kn)→ E[pn]r.

It follows that the G∞-homomorphism

Φ∞ := lim←−
n

Φn : Gal(L∞/K∞)→ Tp(E)r

is injective and the image is a closed subgroup. We are concerned with
the order of the image of Gn-homomorphism Φn. As we will see below, Φ1
controls Φ∞ and then the information for Φn comes up from Φ∞.

To obtain a lower bound of the class number in question, we need to study
that the image of Φn to guarantee the degree [Ln : Kn] is large enough. We
will prove that Φn is an isomorphism for any prime p and n ≥ 1.

Theorem 2.1. Assume that G1 ' GL2(Z/pZ). Then, Φ1 is an isomor-
phism for any prime p. In particular, the equality [L1 : K1] = p2r holds.
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Proof. The proof given here is almost identical with the proof of
Theorem 2.4 in [13]. Therefore we only explain a key point. Since G1 '
GL2(Z/pZ), the Galois cohomology H1(G1, E[p]) vanishes by [11]. Then
there is an injective homomorphism

A/[p]EA ↪→ HomG1(Gal(L1/K1), E[p])
(see [13, p. 283, l. 6]). Therefore we have ]HomG1(Gal(L1/K1), E[p]) ≥ pr,
where r is Z-rank of A. On the other hand Gal(L1/K1) ' E[p]s for some
s ≤ r. Then we see that

HomG1(Gal(L1/K1), E[p]) ' EndG1(E[p])s ' (Z/pZ)s

which implies s ≥ r. Hence s = r and it turns that Φ1 is an iso-
morphism. �

Theorem 2.1 is different from Theorem 2.4 of [13] at the point where we
omit the assumption that N is prime and p > 2.

To show that Φn is an isomorphism, we have the following lemma.

Lemma 2.2. Assume that Gn ' GL2(Z/pnZ) for n ≥ 1. Then, the equality
L1 ∩K∞ = K1 holds for any prime p.

Proof. In case when p is odd prime the assertion follows from Lemmas 2.1
and 2.2 of [13]. In case when p = 2 it follows from Theorem 6.5. �

Theorem 2.3. Assume that Gn ' GL2(Z/pnZ) for n ≥ 1. Then, Φn is
an isomorphism for n ≥ 1 and any prime p. In particular, the equality
[Ln : Kn] = p2nr holds.

Proof. By Lemma 2.2, Gal(L1/L1∩K∞) = Gal(L1/K1). Then we have the
following commutative diagram

Gal(L∞/K∞)

α1
��

Φ∞ // Tp(E)r

β1
��

Gal(L1/K1) Φ1 // E[p]r,

where α1 is the restriction map and β1 is the reduction modulo p. Clearly
these vertical arrows are surjective.

Since Φ1 is an isomorphism by Theorem 2.1, Φ1 ◦α1 is surjective. We see
that Φ∞ is surjective by using Nakayama’s Lemma. This gives rise to the
commutative diagram

Gal(L∞/K∞)

αn
��

Φ∞
' // Tp(E)r

βn
��

Gal(Ln/Ln ∩K∞) Φn // E[pn]r,
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where αn is the restriction map and βn is the reduction modulo pn. Thus it
follows that the restriction of Φn to Gal(Ln/Ln∩K∞) is surjective and thus
Φn is surjective. Since Φn is also injective, Φn is an isomorphism. Hence
[Ln : Kn] = p2nr. �

Corollary 2.4. The equality Ln ∩K∞ = Kn holds for n ≥ 1.

Proof. In the proof of Theorem 2.3, we saw that Φn and its restriction to
Gal(Ln/Ln ∩K∞) are isomorphisms to E[pn]r. Thus we have Gal(Ln/Ln ∩
K∞) = Gal(Ln/Kn), and the assertion follows. �

3. The inertia subgroups of Gal(Ln/Kn) on p

In this section we estimate the order of the inertia subgroups of
Gal(Ln/Kn) on p. We also improve the previous result (cf. [13, Theo-
rem 1.1]).

3.1. The local case. Let us recall the notation in Section 3 of [13]. Fix
a natural number n. Put Kn := Qp(E[pn]) and let p be the prime ideal of
Kn. Put Ln := Kn([pn]−1

E A) and let P be the prime ideal of Ln.
We will investigate the order of the inertia subgroup In of Gal(Ln/Kn).
We denote the generators of A by P1, . . . , Pr, where A is the fixed free

subgroup in E(Q). For each j in {1, . . . , r} we take Tj such that [pn]E(Tj) =
Pj . The injectivity of the homomorphism

Φloc
n : Gal(Ln/Kn)→ E[pn]r : σ 7→ (σTj − Tj)j

shows that [Ln : Kn] divides p2nr.
A key point is to prove the cyclicity of In and we make use of the

Tate curves to confirm it. Since E has multiplicative reduction at p, there
exists q in pZp such that E is isomorphic over M to the Tate curve Eq
for some unramified extension M over Qp of degree at most two (cf. [15,
Theorem 14.1, p. 357]). We note Eq(Qp) ' Q∗p/qZ.

We write ϕ from E to Eq for the isomorphism overM. We define pj and
tj in Eq(Qp) by

ϕ(Pj) = pj and ϕ(Tj) = tj (1 ≤ j ≤ r)

(see Section 1 for Pj and Tj).
Assume that p - ordp(q). We have MKn = M(ζpn , q

1
pn ). We discuss

about generators of Ln/Kn.
We put

H :=
{
Q∗p ifM = Qp

{x ∈M∗ |NM/Qp(x) ∈ qZ} if [M : Qp] = 2.
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Then we have q ∈ H and E(Qp) ' H/qZ via ϕ (cf. [15, Theorem 14.1,
p. 357]). We have

E(Qp)/[pn]E(E(Qp)) ' H/〈Hpn , q〉.

3.1.1. We consider the case ofM = Qp. Then H = Q∗p and

H =
{
〈p〉 × (Z/pZ)∗ × (1 + pZp) if p 6= 2
〈2〉 × (Z/4Z)∗ × (1 + 4Zp) if p = 2.

It follows from p - ordp(q) that

(3.1) H/〈Hpn , q〉 =
{
〈1 + p〉 ' Z/pnZ if p 6= 2
〈−1〉 × 〈5〉 ' Z/2Z× Z/2nZ if p = 2.

Hence E(Qp)/[pn]E(E(Qp)) is an abelian group of type (pn), (2n, 2).
We discuss generators of the image of the projection from the subgroup

〈p1, . . . , pr, q〉/qZ to H/〈Hpn , q〉.
We first consider the case of p > 2. Since Z/pnZ is a local ring, there is

a relation of inclusion between every two submodules of Z/pnZ. By renum-
bering, we may assume 〈pj〉 ⊂ 〈p1〉 as a subgroup of H/〈Hpn , q〉 for each
j ≤ r. In this case Ln = Kn(t1) holds.

Secondly we consider the case of p = 2. Since Z/2nZ is a local ring,
there is a relation of inclusion between every two submodules of Z/2nZ.
By renumbering, we may assume 〈pj ,−1〉 ⊂ 〈p1,−1〉 as a subgroup of
H/〈H2n , q〉 for each j ≤ r. If the rank of 〈p1, . . . , pr〉 is two, we may assume
p2 /∈ 〈p1〉. Then we have p2 = −pk1. By replacing p2 by p2p

−k
1 , we may

assume p2 = −1. In this case Ln = Kn(t1) or Ln = Kn(t1, ζ2n+1) holds.

3.1.2. We consider the case of [M : Qp] = 2. Then

H := {x ∈M∗ |NM/Qp(x) ∈ qZ}

and we investigate the structure of H/Hpn .
Since NM/Qp(q) = q2, the image of H via NM/Qp is a subgroup in qZ of

exponent 1 or 2. Thus H contains the group H0 = 〈q〉×UM,1 as a subgroup
of exponent 1 or 2, where UM,1 is the subgroup ofM∗ with norm 1.

We first consider the case of p > 2. Since the exponent [H : H0] is prime
to pn, we have

H/Hpn ' H0/H
pn

0 ' 〈q〉 × UM,1/U
pn

M,1.

We investigate generators of UM,1/U
pn

M,1. We denote the ring of integers
inM by O.

log : 1 + pO → pO : 1 + x 7→ log(1 + x)
converges and it gives an isomorphism. Since log(1+x) is a power series with
coefficients in Qp, it commutes with the action of Gal(M/Qp). Specially
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each element of 1+pO with norm one corresponds to that of pO with trace
zero.

We putM := Qp(
√
D) for a square-free integer D in Zp. Then we have

pO ∩ kerTrM/Qp = pZp
√
D

and
(1 + pO) ∩ kerNM/Qp = exp(pZp

√
D).

Since O∗ ' (O/pO)∗ × (1 + pO) and the order of (O/pO)∗ is prime to p,

UM,1/U
pn

M,1 = 〈exp(p
√
D)〉 ' Z/pnZ.

We have
H/〈Hpn , q〉 ' 〈exp(p

√
D)〉 ' Z/pnZ.

By a similar discussion as in the case of M = Qp, we may assume 〈pj〉 ⊂
〈p1〉 as a subgroup of H/〈Hpn , q〉 for each j ≤ r.

In this caseMLn =MKn(t1) holds.
Secondly we consider the case of p = 2. We have NM/Q2M∗ = 〈22〉×UQ2 .

It follows from the assumption 2 - ord2(∆) that 2 - ord2(q). Thus there does
not exist y in M such that NM/Q2(y) = q. Thus we have NM/Q2(x) ∈ qZ
if and only if NM/Q2(x) ∈ q2Z.

Since NM/Q2(q) = q2, we have

(3.2) H = qZ × UM,1

and
H/H2n ' 〈q〉 × UM,1/U

2n
M,1.

We investigate generators of UM,1/U
2n
M,1.

log : 1 + 4O → 4O : 1 + x 7→ log(1 + x)
converges and it gives an isomorphism. We modify discussion in the case
of p > 2. Since

1→ 1 + 4O → O∗ → (O/4O)∗ → 1
and

(O/4O)∗ = 〈
√

5〉 × µ6 ' Z/2Z× Z/6Z,
we have

1→ (1 + 4O) ∩ UM,1 → UM,1 → µ6 → 1,
where µ6 is the group of 6-th roots of unity. Thus we have

UM,1 = µ6 × 〈exp(4
√

5)〉.
Let UM,±1 be the subgroup ofM∗ with norm ±1. Then the norm map-

ping induces the exact sequence
1→ UM,1 → UM,±1 → 〈−1〉 → 1.
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We note ε := (−1 +
√

5)/2 has norm −1. Since ε6 = 1 + 4(−2ε+ 1), there
exists a unit w such that ε6 = exp(4w

√
5). Since 3 is an unit, we have

ε2 = η exp(4w
√

5/3) for some η in µ3. Thus we have
(3.3) UM,1 = µ6 × 〈ε2〉.
We also have
(3.4) H/〈H2n , q〉 = 〈−1〉 × 〈ε2〉 ' Z/2Z× Z/2nZ.
By a similar discussion as in the case ofM = Qp, we may assume 〈pj ,−1〉 ⊂
〈p1,−1〉 as a subgroup of 〈H, q〉/〈H2n , q〉 for each j ≤ r. If the rank of
〈p1, . . . , pr〉 is two, we may assume p2 = −1.

In this caseMLn =MKn(t1) orMLn =MKn(t1, ζ2n+1) holds.

3.1.3. To sum up our discussion, we have the following proposition.

Proposition 3.1. Assume that p - ordp(q). For a suitable change of basis
of a maximal free subgroup A of E(Q), the equationMLn =MKn(ϕ(T1))
or MLn = MKn(ϕ(T1), ζ2n+1) holds. The latter case occurs only when
p = 2, and then we may assume ϕ(P2) = −1, ϕ(T2) = ζ2n+1.

3.2. Assume p > 2. We investigate the ramified index MLn/MKn. We
need the following Lemma.

Lemma 3.2 ([10, p. 118, Theorem 5.1]). Let G be a group and let M be
a G-module. Let α be in the center of G. Then H1(G,M) is annihilated by
the map x 7→ αx− x on M . In particular, if this map is an automorphism
of M , then H1(G,M) = 0.

By the inflation-restriction exact sequence, we have

0→ H1(Gal(M(ζpn)/M), µpn)→ H1(GM, µpn)

→ H1(GM(ζpn ), µpn)Gal(M(ζpn )/M).

When p > 2, a−1 is an unit of (Z/pnZ)∗ ' Gal(M(ζpn)/M) for a primitive
root a of (Z/pnZ)∗. By Lemma 3.2, we have

H1(Gal(M(ζpn)/M), µpn) = 0.
Thus we have

0→ H1(GM, µpn)→ H1(GM(ζpn ), µpn)Gal(M(ζpn )/M).

By the Kummer theory we have
M∗/M∗pn ↪→ (M(ζpn)∗/M(ζpn)∗pn)Gal(M(ζpn )/M) ↪→M(ζpn)∗/M(ζpn)∗pn.

Thus we see that the Galois group ofMKn(u
1
pn )/M(ζpn) is of type (pn, pn),

where u = 1 + p, exp(p
√
D). We have [MKn(u

1
pn ) :MKn] = pn.

We will see thatMKn(u
1
pn )/M(ζp) is a totally ramified extension.
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Suppose that MKn(u
1
pn )/M(ζp) is not a totally ramified extension.

Since MKn(u
1
pn )/M(ζp) is a Galois extension, there exists an interme-

diate field N such that N/M(ζp) is an unramified extension of degree p.
SinceN is the composite ofM(ζp) and the unramified extension of degree

p overM, N/M is an abelian extension of degree p(p−1). SinceM(ζp2) is
the unique intermidiate field between MKn(u

1
pn ) and M(ζp) which is an

abelian extension overM of degree p(p− 1), there does not exist N . This
contradicts the assumption.

HenceMKn(u
1
pn )/M(ζp) is a totally ramified extension.

When we put
(3.5) p1 = qaump

ν
wp

n (a ∈ Z, p - m, ν ≥ 0, w ∈M∗),
we have

t1 = p
1
pn

1 = ζjpn × q
a
pn u

m
pn−ν w (j ∈ (Z/pnZ)∗).

Since ζpn , q
1
pn are inMKn, we have

MLn =MKn(t1) =MKn(u
1

pn−ν )
and

[MLn :MKn] =
{
pn−ν if n > ν

1 if n ≤ ν.
MKn/Kn is unramified and MLn/MKn is totally ramified. It follows

from p > 2 that [MKn : Kn] is coprime to [Ln : Kn]. Thus MLn/Ln is
unramified of degree [MKn : Kn] and Ln/Kn is totally ramified of degree
[MLn :MKn] holds.

Let In be the inertia subgroup of Gal(Ln/Kn). Then we have

|In| =
{
pn−ν if n > ν

1 if n ≤ ν.

3.3. We consider the case of p = 2. We first discuss the case ofM = Q2.
Then Ln is contained in Kn(5

1
2n , ζ2n+1). Further Kn(

√
5)/Kn is unramified.

ζ2n is in Kn and [Kn(ζ2n+1) : Kn] = 2. Therefore the inertia group of
Kn(5

1
2n , ζ2n+1)/Kn is of type (2m, 2) for some m ≤ n− 1. Thus

|In| ≤ 2n−1 × 2 = 2n.
When n ≥ 2 and Ln = Kn(t1), we can improve the estimate. Since Ln/Kn

is cyclic, In is also cyclic. Thus we have
|In| ≤ 2n−1.

When n = 1 we can decide |I1| directly because L1 is contained in
K1(
√

5, ζ4). If L1 is contained in K1(
√

5), then |I1| = 1. Otherwise, |I1| = 2.
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Secondly we discuss the case of M = Q2(
√

5). Then MLn is contained
in MKn(ε

1
2n−1 , ζ2n+1). Further ζ2n is in Kn and [Kn(ζ2n+1) : Kn] = 2.

Therefore the inertia group of Kn(ε
1

2n−1 , ζ2n+1)/Kn is of type (2m, 2) for
some m ≤ n− 1. Thus

|In| ≤ 2n−1 × 2 = 2n.
When n ≥ 2 andMLn =MKn(t1), we can improve the estimate. Since

Ln/Kn is cyclic, In is also cyclic. Thus we have
|In| ≤ 2n−1.

When n = 1 we can decide |I1| directly because ML1 is equal to
MK1(ζ4) = Q2(

√
5,
√

2, ζ4). We note MK1 = M(√q) = M(
√
±2). If

ML1 contains ζ4 then |I1| = 2. Otherwise, |I1| = 1. Specially if
E(Q)/E(Q) ∩ [2]E(E(Q2)) is not cyclic, then t2 = −1 and thus |I1| = 2.

3.4. The global case. Let v be any prime above p in Kn and Iv the
inertia subgroup of Gal(Ln/Kn) at v. Put Ip := 〈Iv |v|p〉. In this subsection
we take a basis of the maximal free subgroup A of E(Q) satisfying the
assertion of Proposition 3.1.

We first consider the case of p > 2. If |Iv| = 1, Ln/Kn is unramified at
v. Since both Ln/Q and Kn/Q are Galois extensions, Ln/Kn is unramified
at any prime above p in Kn. Therefore Ip = 1.

We assume that |Iv| = pn−ν .
By Proposition 3.1, we haveMLn =MKn(ϕ(T1)). Thus Ln/Kn(T1) is

unramified at v. Since both Ln/Q and Kn(Tn)/Q are Galois extensions,
Ln/Kn(T1) is unramified at any prime above p in Kn(T1). Thus there ex-
ists the injective homomorphism from Ip to Gal(Kn(T1)/Kn). Since Ip is
generated by elements in Iv and their conjugate, the exponent of Ip is equal
to that of Iv. Gal(Kn(T1)/Kn) is Gn-isomorphic to E[pn] and E[pn−ν ] is
unique Gn-invariant subgroup of E[pn] of exponent pn−ν . Since E[pn−ν ] is
irreducible with respect to the action of Gn, we have

|Ip| = p2(n−ν).

Secondly we consider the case of p = 2. Suppose thatMLn =MKn(t1)
and n ≥ 2. Then, |Iv| is at most 2n−1. Similarly as above, Ln/Kn(T1)
is unramified at any prime above 2 in Kn(T1). Since Gal(Kn(T1)/Kn) '
E[2n], the inequality

|I2| ≤ 22(n−1)

holds.
If n = 1, |Iv| is at most 2. Since Gal(K1(T1)/K1) ' E[2], the inequality

|I2| ≤ 22

holds.
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Suppose that MLn = MKn(t1, t2). Then Ln/Kn(T1, T2) is unramified
at any prime above 2 in Kn(T1, T2). Since Iv is of type (2m, 2) for some
m ≤ n−1 and ϕ(T2) = ζ2n+1 , there exists α in E[2] such that σT2 = T2⊕Eα
for σ in Iv and

Iv ↪→ E[2n−1]× E[2]
via the isomorphism

Gal(Kn(T1, T2)/Kn) ' E[2n]× E[2n].
Thus the inequality

|I2| ≤ 22(n−1) × 22 = 22n

holds.
If n = 1, |Iv| equals 2. Indeed ML1 = Q2(

√
5,
√

2, ζ4) and MK1 =
M(
√
±2). It follows from ϕ(T2) = ζ4 that K1(T2)/K1 is ramified. Thus

K1(T1, T2)/K1(T2) is unramified. Since Gal(K1(T2)/K1) ' E[2], the in-
equality

|I2| ≤ 22

holds.
Now we have the following theorem.

Theorem 3.3. Assume p > 2 and p - ordp(∆). Then the equation |Ip| =
p2(n−ν) holds for n > ν and |Ip| = 1 holds for n ≤ ν.

Assume p = 2. Then the inequality |Ip| ≤ p2(n+r2,n−2)+δ2 holds for all
n ≥ 1, where r2,n = 1, 2 according as E(Q)/E(Q) ∩ [2n]E(E(Q2)) is cyclic
or not, and

δ2 =
{

2 if n = 1 and r2,1 = 1
0 otherwise.

Remark 3.4. Note that the authors roughly estimated it as |Φn(Ip)| ≤ p4n

in [13, Section 4].

When p = 2 and In is not cyclic, we may assume ϕ(T2) = −1. Thus ζ4
is in L1. We note that ζ4 /∈ L1 implies r2,n = 1.

4. The inertia subgroups of Gal(Ln/Kn) on ` 6= p

In this section we estimate the order of the inertia subgroups of
Gal(Ln/Kn) on ` 6= p.

4.1. The local case when ` is multiplicative. Let l be a prime ideal
in Ln lying above `. Let Ln and Kn be the completion of Ln and Kn

respectively. Since E has multiplicative reduction at `, E is isomorphic to
the Tate curve Eq for some q in `Z`. We denote by ϕ the isomorphism from
E to Eq. The isomorphism ϕ is defined over an unramified extension M
over Q` of degree at most two. We haveMKn =M(ζpn , q

1
pn ).
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We define pj in Eq(Q`) by ϕ(Pj) = pj (1 ≤ j ≤ r). We put

H :=
{
Q∗` ifM = Q`

{x ∈M∗ |NM/Q`(x) ∈ qZ} if [M : Q`] = 2.

4.1.1. We consider the case whereM = Q` and ` 6= 2.
Since

Q∗` = 〈l〉 × (Z/`Z)∗ × (1 + `Z`),
and the pn-th power mapping is invertible by ` 6= p, we have

H/Hpn = Q∗`/(Q`)∗p
n = 〈l〉 × 〈ζ`−1〉 ' (Z/pnZ)× (Z/pmZ),

where we put m := min{ordp(`− 1), n}. We have

(4.1) H/〈Hpn , q〉 = 〈l〉 × 〈ζ`−1〉 ' (Z/pνZ)× (Z/pmZ),

where ν := min{ordp(ord`(q)), n}.
It follows from (4.1) that

Ln ⊂ Kn(ζpn(`−1), `
1
pn )

and
[Kn(ζpn(`−1), `

1
pn ) : Kn(ζpn(`−1))] = pν .

We also have
Q`(ζpn(`−1), q

1
pn ) = Q`(ζpn(`−1), `

1
pn−ν ).

Since Ln(ζpn(`−1))/Kn(ζpn(`−1)) is cyclic, there exists tj (say t1) such that
Ln(ζpn(`−1)) = Kn(ζpn(`−1), t1).

Since Kn(ζpn(`−1))/Kn is unramified, the ramification index Ln/Kn is
equal to that of Ln(ζpn(`−1))/Kn(ζpn(`−1)).

On the one hand, Q`(`
1
pn )/Q` is a totally ramified extension of degree

pn. On the other hand, Q`(ζpn(`−1))/Q` is an unramified extension by ` -
pn(` − 1). Thus the ramified index of the extension Q`(ζpn(`−1), `

1
pn )/Q`

is pn.
We put µ := min{n, ordp(ord`(p1))}. Then we have

Ln(ζpn(`−1)) = Kn(ζpn(`−1), t1) = Q`(ζpn(`−1), `
1

pn−ν , `
1

pn−µ ).

Hence we have

|In| =
{
pν−µ if µ < ν

1 if µ ≥ ν.

If ordp(ord`(q)) ≤ µ, we see that |In| = 1 for all n ≥ 1. If ordp(ord`(q)) > µ,
we see that |In| does not depend on n for all n ≥ ordp(ord`(q)).
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4.1.2. We consider the case where [M : Q`] = 2 and ` 6= 2.
Since NM/Q`(q) = q2, either NM/Q`H = qZ or NM/Q`H = q2Z holds.

We have
H = 〈u〉 × UM,1

for some u in M. We may take u satisfying NM/Q`(u) = qt for t = 1, 2.
SinceM is unramified over Q`, we have NM/Q`O

∗ = Z∗` . If ord`(q) is even,
we have NM/Q`(u) = q. If ord`(q) is odd, we have NM/Q`(u) = q2.

In the case of t = 2, u is in 〈q〉 ×UM,1. If either p > 2 or t = 2 holds, we
have

H/〈Hpn , q〉 = UM,1/U
pn

M,1.

If p = 2 and t = 1, we have
H/〈Hpn , q〉 = 〈u〉 × UM,1/U

pn

M,1.

Since
O∗ = (O/`O)∗ × (1 + `O),

we have
UM,1 = µ`+1 × 〈exp(`

√
D)〉.

If either p > 2 or t = 2 holds, we have
H/〈Hpn , q〉 = 〈ζ`+1〉 ' Z/pµZ,

where we put µ := min{ordp(`+ 1), n}. Then we have
MLn ⊂MKn(ζpn(`+1)).

It follows from ` - pn(`+ 1) thatMKn(ζpn(`+1))/MKn is unramified. Thus
Ln/Kn is unramified. Hence we have |In| = 1.

If both p = 2 and t = 1 holds, we have
H/〈Hpn , q〉 = 〈u〉 × 〈ζ`+1〉 ' Z/2Z× Z/2µZ.

We have
MLn ⊂MKn(ζ2n(`+1), u

1
2n ).

It follows from ` - 2n(`+ 1) thatMKn(ζ2n(`+1))/MKn is unramified. Thus
the ramified index of Ln/Kn is less than or equal to two. Hence we have
|In| ≤ 2.

4.1.3. We consider the case of ` = 2 andM = Q2.
On the subgroup 〈−1〉 × (1 + 4Z2) of

Q∗2 = 〈2〉 × 〈−1〉 × (1 + 4Z2)
the pn-the power homomorphism is invertible by 2 6= p. Thus we have

H/〈Hpn , q〉 = 〈2〉 ' Z/pνZ,
where we put ν := min{n, ordp(ord2(q))}. We have

Kn = Q2(ζpn , 2
1

pn−ν ).
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On the one hand, Q2(2
1
pn )/Q2 is a totally ramified extension of degree pn.

On the other hand, Q2(ζpn)/Q2 is unramified by 2 - pn. Thus the ramifica-
tion index of Q2(ζpn , 2

1
pn )/Q2 is pn.

We put µ := ordp(ord2(p1)). Then we have

Ln = Kn(p
1
pn

1 ) = Q2(ζpn , 2
1

pn−ν , 2
1

pn−µ ).
Hence we have

|In| =
{
pν−µ if µ < ν

1 if µ ≥ ν.

4.1.4. We consider the case of ` = 2 and [M : Q2] = 2. Then qZ × UM,1
has index at most two in H.

Since p 6= 2 and UM,1 = µ6 × 〈ε2〉 by (3.3), we have

H/〈Hpn , q〉 = 〈ε2〉 ' Z/pnZ
for p 6= 3 and

H/〈Hpn , q〉 = µ3 × 〈ε2〉 ' Z/3Z× Z/3nZ
for p = 3.

When p 6= 3, we have

MLn ⊂MKn(ε
2
pn ).

Since p 6= 2 and ε is unit, MLn/MKn is unramified and thus Ln/Kn is
unramified.

When p = 3, we have

MLn ⊂MKn(ε
2

3n , ζ3n+1)
Since Q2(ζ3n+1)/Q2 is unramified and ε is unit, we see thatMLn/MKn is
unramified. Hence Ln/Kn is unramified.

In these cases we have |In| = 1.

4.1.5. For a prime ` at which E has multiplicative reduction, we define

ν` :=


min{ordp(ord`(∆)), n} if the reduction is split.
1 if p = 2, the reduction is non-split,

and ord`(∆) is even.
0 otherwise.

Then the ramification index of Ln/Kn is less than or equal to pν` if E has
multiplicative reduction at ` 6= p.

Put I` := 〈Il | l|`〉 as before. Since Gal(Ln/Kn) is of p-th power order,
each Il factors through tame quotient, hence it is a cyclic group.

If Il = 1, then I` = 1. Suppose that Il 6= 1. The ramification in-
dex Kn(Tj)/Kn at l takes the maximal value at some j (say j = 1).
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If it also takes maximal values at k 6= 1, then the ramification index of
Kn(T1, Tk)/Kn(T1) at l is equal to that of Kn(T1, Tk)/Kn(Tk). Since Il is
cyclic, bothKn(T1, Tk)/Kn(T1) andKn(T1, Tk)/Kn(Tk) are unramified at l.

If the ramification index of Kn(T1)/Kn at l is greater than that of
Kn(Tk)/Kn, then Kn(T1, Tk)/Kn(Tk) is ramified at l. Since Il is cyclic,
Kn(T1, Tk)/Kn(T1) is unramified at l.

Thus Ln/Kn(T1) is unramified at l. SinceKn(T1)/Q is a Galois extension,
Ln/Kn(T1) is unramified at l are unramified at any prime lying above `.

Therefore we have an upper bound |I`| ≤ p2ν` . Now we have proved the
following theorem.
Theorem 4.1. The inequality |I`| ≤ p2ν` holds for a prime ` 6= p at which
E has multiplicative reduction.
4.2. The local case when ` is potentially good. Next we consider the
case where E has potentially good reduction at `. For such a prime ` we
have the following lemma which is a part of Proposition 4.7 of [7] due to
Raynaud.
Lemma 4.2. Let E be an elliptic curve over Q which has potentially good
reduction at `. Put m0 = 1 if p > 2, m0 = 2 otherwise. Then the base
change E/Km0 has good reduction at any prime in Km0 above `.
Proof. Put q = pm0 . Let Km0 the completion of Km0 at a prime l above `.
Let ρE,p be the p-adic Galois representation from GQ to GL2(Zp) associated
to the p-adic Tate module Tp(E). It is easy to see that ρE,p(GKm0

) = 1 +
qM2(Zp) is a torsion-free, pro-p group. If the restriction mapping ρE,p|IKm0
is non-trivial, the order of ρE,p(IKm0

) becomes infinite. Since E has po-
tentially good reduction at `, there exists a finite extension K′/Km0 such
that E/K′ has good reduction. Thus |ρE,p(IKm0

)| is less than or equal to
[K′ : Km0 ]. This gives a contradiction. Hence ρE,p|IKm0

is trivial and E/Km0

has good reduction. �

Assume that (n, p) 6= (1, 2). Let Il the inertia subgroup of Gal(Ln/Kn) at
a prime l of Kn lying above ` with ord`(N) ≥ 2, where N is the conductor
of E. Put I` := 〈Il | l|`〉. Let Kn the completion of Kn at l and R be the
ring of integers of Kn.

By Lemma 4.2, E/Kn has good reduction at l and then one can take the
Néron model E of E over Kn. By basic properties of Néron models (cf. [2,
Definition 1, p. 12 and Corollary 2, p. 16]), we have the reduction map
E(Kn) = E(R) red→ Ẽl(Fl), where Ẽl is the reduction of E at l. Then for any σ
in Il and P in E(Kn) we see that red(σP ) = red(P ). Thus red◦Φn(I`) = {0}
by the definition of the Gn-isomorphism Φn from Gal(Ln/Kn) to E[pn]r.
It follows from

E[pn]r
red
∼→ Ẽl[pn]r,
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that Φn(Il) = {0} for any l dividing `. Hence we have |I`| = 1.
The remaining case is (n, p) = (1, 2). Since the ramification at l is tame,

Il is cyclic. Thus we may assume Ln/Kn(T1) is unramified at any prime
lying above `. Since Gal(K1(T1))/K1) ' E[2], we have |I`| ≤ 22.

If l is a potentially good prime, we put ν` = 1 or 0 according as (n, p) =
(1, 2) or not. Then |I`| ≤ 2ν` .

5. Proof of Theorem 1.1

Let us keep our notation in Section 3 and assumptions in Theorem 1.1.
Let I be the subgroup of Gal(Ln/Kn) generated by all I` satisfying `|N ,
where N is the conductor of E. Put

s :=
∑
6̀=p
ν`

for simplicity.
We first assume that p is odd. We note that Gal(Ln/Kn) is abelian. By

applying the results in Section 3 and Section 4, we have

|I| ≤
∏
`|N
|I`| =

∏
ord`(N)=1

|I`| ≤ p2n+2s.

Thus we have

[Ln ∩Kur
n : Kn] = [Ln : Kn]

[Ln : LIn] ≥
p2nr

p2n+2s = p2n(r−1)−2s

for any n ≥ 1. Here we use |Ip| ≤ p2n for simplicity.
Next we assume that p = 2. The constant r2,n and δ2 are due to Theo-

rem 3.3. Then we have

|I| ≤ 22n+2(r2,n−2)+δ2+2s

and

[Ln ∩Kur
n : Kn] = [Ln : Kn]

[Ln : LIn] ≥
22nr

22n+δ2+2s = 22n(r−1)−2(r2,n−2)−δ2−2s

for any n ≥ 1.
This completes a proof of Theorem 1.1.
We define the integer ν ≥ 0 by (3.5). Then |Ip| = p2(n−ν) holds for n > ν,

and |Ip| = 1 holds for n ≤ ν. Thus our main theorem improves as follows:

|I| ≤ p2(n−ν)+2s, [Ln ∩Kur
n : Kn] ≥ p2n(r−1)+2ν−2s

for n > ν;
|I| ≤ p2s, [Ln ∩Kur

n : Kn] ≥ p2nr−2s

for n ≤ ν.
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Next, we give a proof of Corollary 1.2. If the conductor of E is equal to a
prime p, we have p ≥ 11, ∆ | p5, and Gn ' GL2(Z/pnZ) for n ≥ 1 (cf. [13]).
Thus the assumptions of Theorem 1.1 hold in this case.

Since the conductor is equal to p, we have |I| = |Ip| and s = 0. Thus we
have

κn =
{

2n(r − 1) + 2ν (n > ν)
2nr (n ≤ ν).

This completes the proof.

6. L1 ∩ K∞ = K1 for p = 2

Let the notations be the same as in Section 2. Put N1 := L1∩K∞. Since
N1/K1 is a G1-extension contained in L1/K1, the Galois group Gal(N1/K1)
is isomorphic to the direct product of some copies of E[p]. By our previous
paper [13] the equation N1 = K1 holds for p > 2.

In this section, we prove N1 = K1 in the case of p = 2.
Put Hn := 1+pnM2(Zp) for any n ≥ 1. It is isomorphic to Gal(K∞/Kn)

since Gn ' GL2(Z/pnZ). Contrary to the case of p > 2, we have the issues
that the equality H2

1 = H2 does not hold and H1/H2 'M2(Z/2Z) contains
E[2] as an irreducible G1-quotient. To obtain N1 = K1 in the case of p = 2
we need more careful analysis.

6.1. Maximal abelian extension of K1 in K∞. In this subsection we
prove N1 ⊂ K2.

Instead of H2
1 we consider the subgroup H of H1 generated by H2

1 . It is
easy to see that H is a normal subgroup of H1 (and also of GL2(Z2)). Since
H1/H is of exponent two, H1/H is an abelian group.

By the Legendre formula the inequality

µ

([1
2
j

]
8j
)

= −j − µ(j!) + 3j ≥ −j − j

2− 1 + 3j = j

holds for j ≥ 0. Thus

(1 + 8M)
1
2 =

∞∑
j=0

[1
2
j

]
(8M)j = 1 + 4M − 8M2 + · · ·

converges in H2 for any matrix M in M2(Zp). We have H2
2 = H3 and

H2 ⊃ H ⊃ H2
1 ⊃ H3.

Since deth2 ≡ 1 mod 8 holds for any h in H1, det g ≡ 1 mod 8 holds for
any g in H, By direct computation we can check

H = {g ∈ H2 | det g ≡ 1 mod 8}.
We have [H2 : H] = 2 and [H1 : H] = 25. We can also check H3 is a normal
subgroup of H.
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Lemma 6.1. N1 ⊂ K2 holds.

Proof. Since Gal(N1/K1) is of exponent two, we have

H1 ⊃ Gal(K∞/N1) ⊃ H.

It follows from [H2 : H] = 2 that Gal(K∞/N1) ∩ H2 equals to either H2
or H.

Suppose that Gal(K∞/N1) ∩H2 = H, Then

[H2 : Gal(K∞/N1) ∩H2] = [H2 Gal(K∞/N1) : Gal(K∞/N1)] = 2

holds. Since Gal(N1/K1) is isomorphic to the direct product of some copies
of E[2], [H1 : Gal(K∞/N1)] = 22, 24 and thus [H1 : Gal(K∞/N1)H2] =
2, 23. This contradicts that E[2] is irreducible G1-module.

Therefore Gal(K∞/N1) ∩ H2 = H2. Now we have Gal(K∞/N1) ⊃ H2
and N1 ⊂ K2. �

6.2. In this subsection we prove Gal(K2/N1) = V
(1)

2 , V4 by using the
notations in Lemma 6.2.

We study the GL2(Z/2Z)-module M2(Z/2Z) as below.

Lemma 6.2. There are exactly four non-trivial GL2(Z/2Z)-submodules of
V4 := M2(Z/2Z) and they are given by

V1 =
〈(

1 0
0 1

)〉
, V

(1)
2 =

〈(
0 1
1 1

)
,

(
1 1
1 0

)〉
, V

(2)
2 =

〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
,

and V3 = M2(Z/2Z)tr=0. The relations V4 = V
(1)

2 ⊕ V (2)
2 and V (2)

2 ⊂ V3,
V1 ⊂ V

(1)
2 holds. Further only isotypic G1-quotient modules of M2(Z/2Z)

are V4/V3 ' Z/2Z, V (1)
2 /V1 ' Z/2Z and V (2)

2 ' (Z/2Z)⊕2.

Proof. Since GL2(Z/2Z) is generated by ( 0 1
1 0 ) and ( 0 1

1 1 ), we have only to
compute the orbit decomposition of M2(Z/2Z) under the actions of these
two elements. �

As in the proof of Lemma 2.2 of [13], the G1-module Gal(N1/K1) is
isomorphic to a copy of the irreducible G1-module E[2]. By Lemma 6.2
we have Gal(K2/N1) = V

(1)
2 , V4. In particular, we have Gal(N1/K1) '

{0}, E[2].

6.3. The proof of N1 = K1. In this subsection we decide the inertia
group of a prime ideal lying above 2 in K2 over Q and we give a proof of
N1 = K1.

Put K1 = Q2(E[2]) and K2 = Q2(E[4]). Since E has multiplicative re-
duction, there exists some q in 2Z2 such that E is isomorphic to the Tate
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curve Eq over the unramified extensionM of Q2 forM = Q2, Q2(
√
−3).

It follows from
∆ = q

∏
n≥1

(1− qn)24

(cf. [15, p. 356]) that

Q2(Eq[2]) = Q2(√q) = Q2(
√

∆), Q2(Eq[4]) = Q2( 4
√
q, ζ4) = Q2( 4√∆, ζ4).

Since ord2(q) is odd, Q2(√q)/Q2 is a totally ramified extension of degree
two. Q2( 4

√
q, ζ4)/Q2 is a totally ramified extension of degree eight.

SupposeM = Q2(
√
−3). Put ϕ is an isomorphism from E to Eq. Then

σϕ = ϕ ◦ [−1]E for the generator σ of Gal(M/Q2). Since Q2( 4
√
q, ζ4)/Q2 is

totally ramified andM/Q2 is unramified, Q2( 4
√
q, ζ4) ∩M = Q2. Thus we

can prolong σ from Gal(M/Q2) to Gal(M(E[4])/Q2) such that σ is the
identity on Q2( 4

√
q, ζ4). For P in E[4] we have

ϕ(P ) = σϕ(P ) = ϕ ◦ [−1]E(σP ).

Thus we have σP = [−1]E(P ). Therefore

Q2(E[2]) = Q2(Eq[2]), Q2(E[4]) =M(Eq[4]).

Now we have the following lemma.

Lemma 6.3. Assume that Gn ' GL2(Z/2nZ) for n = 1, 2. Then we have

K1 = Q2(√q), K2 =M( 4
√
q, ζ4).

The inertia group in K2/K1 is equal to Gal(M( 4
√
q, ζ4)/M(√q)). It is

generated by two elements:
4
√
q 7→ 4

√
q, ζ4 7→ −ζ4

and
4
√
q 7→ − 4

√
q, ζ4 7→ ζ4.

Their matrix representation with respect to E[4] is equal to those with
respect to Eq[4] = 〈 4

√
q, ζ4〉 and they are

1 + 2
[
0 0
0 1

]
, 1 + 2

[
0 0
1 0

]
,

respectively. By using〈[
0 0
0 1

]
,

[
0 0
1 0

]〉
∩ V (1)

2 = {0},

we have the following lemma.

Lemma 6.4. Assume that Gn ' GL2(Z/2nZ) for n = 1, 2. The fixed field
of V (1)

2 in K2/K1 is a totally ramified extension over K1 of degree four.



Class numbers of the fields of the pn-torsion points 913

We put Q2N1 = N1. By (3.1) and (3.4) we have
N1 ⊂ L1 ⊂M(√q, ζ4).

Thus the ramification index of N1/K1 is at most two. By Lemma 6.4 we
see that Gal(K2/N1) = V

(1)
2 does not occur.

Now we have Gal(K2/N1) = V4 and N1 = K1.

Theorem 6.5. The equality N1 = K1 holds for p = 2.

7. Examples

In this section we will give elliptic curves which satisfy the condition in
Theorem 1.1. The computation is done by using Mathematica, version 10,
and databases Sage [16] for elliptic curves over Q and [9] for local fields.

7.1. p = 2. Let E be the elliptic curve defined by y2 + xy + y = x3 −
141x+ 624. This elliptic curve has the conductor N = 2 · 712 = 10082, the
minimal discriminant ∆ = 23 · 713, and j-invariant 2−3 · 53 · 193. By the
criterion of [3] one can check that Gn ' GL2(Z/2nZ) for any n ≥ 1 since
4t3(t+ 1) + j = 0 does not have a rational solution in t. By [16] we see that
E(Q) ' Z2 and it is generated by P1 = (−6, 38) and P2 = (6,−1).

We apply Theorem 1.1 to E for p = 2. Since E has non-split multi-
plicative reduction at 2, we have ν71 = 1. r2,n = 1, 2 holds. Thus κ1 ≥
2 · 1 · (2− 1)− 2(r2,n − 2)− δ2 − 2 · 1 = 0. (It becomes a trivial inequality.)
We also have κn ≥ 2n(2− 1)− 2(r2,n− 2)− 2 · 1 ≥ 2n− 4 for n ≥ 2. Hence
the class number hQ(E[2n]) satisfies

22(n−2) | hQ(E[2n])

for any n ≥ 2. In this case we can check ζ4 =
√
−1 ∈ L1.

7.2. p = 2 and r2,n = 1. Let E be the elliptic curve defined by

h(x, y) := −(y2 + xy + y) + x3 + x2 − 55238x+ 4974531 = 0.
This elliptic curve has the conductor N = 2 · 52 · 313 = 15650, the minimal
discriminant ∆ = −219 · 56 · 313, and j-invariant −2−19 · 313−1 · 73 · 1033 ·
1393. Further it has split (resp. non-split) multiplicative reduction at p = 2
(resp. 313) and potentially good reduction at 5.

Similarly one can check that Gn ' GL2(Z/2nZ) for any n ≥ 1. By [16]
we see that E(Q) ' Z2 and it is generated by P1 = (37305

64 ,−6849551
512 ) and

P2 = (−75, 2987).
A direct computation shows that L1 is obtained by adding the roots of

the following two equations to K1:
f(x) = 64x4 − 149220x3 + 6883875x23 + 5695579750x− 548615793125,
g(x) = x4 + 300x3 + 110850x2 − 56367500x+ 4518668125.
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These polynomials are obtained as follows. Firstly we compute

2P = (f1(x, y), g1(x, y)), f1, g1 ∈ Q(x, y)

for P = (x, y). For P1, we have the system of algebraic equations

f1(x, y) = 37305
64 , g1(x, y) = −6849551

512 , h(x, y) = 0.

By deleting y we obtain f(x) as a unique common factor. Similarly we
obtain g(x) from P2.

Since E has split multiplicative reduction at p = 2, we have M = Q2.
By using [9] we see that

K1 = Q2(
√
−2), L1 = Q2(

√
−2,
√
−3,
√
−10) = K1(

√
−3).

Therefore ζ4 =
√
−1 6∈ L1 and hence r2,n = 1.

We now apply Theorem 1.1 to E for p = 2. Since E has potentially
good reduction at 5, ν5 = 1, 0 according as n = 1 or n ≥ 2. Since E has
non-split reduction at 313 and ord313(∆) is odd, ν313 = 0. Then we have
κ1 ≥ 2 ·1 · (2−1)−2(1−2)−2−2 · (1 + 0) = 0 and κn ≥ 2n · (2−1)−2(1−
2) − 0 − 2 · (0 + 0) = 2n + 2 for n ≥ 2. Hence the class number hQ(E[2n])
satisfies

22n+2 | hQ(E[2n]) (n ≥ 2).

7.3. p = 3. Let E be the elliptic curve defined by y2 + xy = x3 + 543x+
10026. This elliptic curve has the conductor N = 3 · 672 = 13467, the
minimal discriminant ∆ = −311 · 673, and j-invariant 3−11 · 3893. By [16]
we see that G1 ' Gal(Z/3Z) and E(Q) ' Z2 whose generators are given by
P1 = (−13, 35) and P2 = (39, 282). Then we can apply the criterion of [4]
(see also the j-invariant in [3, p. 961]) for G2 to obtain G2 ' GL2(Z/32Z).
Therefore the conditions in Theorem 1.1 for E is fulfilled. It follows from
r = 2, ν67 = 0 that κn ≥ 2n(2− 1) = 2n. Hence the class number hQ(E[3n])
satisfies

32n | hQ(E[3n])

for each n ≥ 1.
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