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Ax–Lindemann and André–Oort for a
Nonholomorphic Modular Function

par Haden SPENCE

Résumé. Le cas modulaire de la Conjecture d’André–Oort est un théorème
démontré par André et Pila, qui concerne la fonction modulaire bien connue
j. Je décris deux autres classes « non classiques » de la fonction modulaire, à
savoir les fonctions quasimodulaires (QM) et presque holomorphes modulaires
(AHM). Celles-ci sont peut-être moins connues que j, mais divers auteurs, y
compris Masser, Shimura et Zagier, les ont étudiées. Il suffit de se concentrer
sur une fonction QM précise χ et sa fonction AHM duale χ∗, car celles-ci
(avec j) engendrent les corps concernés. Après avoir discuté certaines des
propriétés de ces fonctions, je montre par la suite quelques résultats de type
Ax–Lindemann sur χ et χ∗. Je les combine ensuite avec une méthode ordinaire
de o-minimalité et de comptage de points pour démontrer le résultat central
de l’article; une analogique naturelle de la conjecture d’André–Oort modulaire
qui s’applique à la fonction χ∗.

Abstract. The modular case of the André–Oort Conjecture is a theorem of
André and Pila, having at its heart the well-known modular function j. I give
an overview of two other “nonclassical” classes of modular function, namely
the quasimodular (QM) and almost holomorphic modular (AHM) functions.
These are perhaps less well-known than j, but have been studied by various
authors including for example Masser, Shimura and Zagier. It turns out to be
sufficient to focus on a particular QM function χ and its dual AHM function
χ∗, since these (together with j) generate the relevant fields. After discussing
some of the properties of these functions, I go on to prove some Ax–Lindemann
results about χ and χ∗. I then combine these with a fairly standard method
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of o-minimality and point counting to prove the central result of the paper; a
natural analogue of the modular André–Oort conjecture for the function χ∗.

1. Introduction

Let H = {τ ∈ C : Im τ > 0} be the complex upper half plane. We
begin with the classical j-function, mapping from H to C, which is well-
known to be a modular function. It is also transcendental, of course, but
nonetheless has rich and beautiful arithmetic properties. For any quadratic
point τ ∈ H, the number j(τ) is algebraic over Q. Such a point j(τ) is called
a special point or singular modulus. The singular moduli are precisely the
j-invariants of elliptic curves with complex multiplication. By a classical
theorem of Schneider [16], the imaginary quadratic numbers are the only
algebraic elements of H whose image under j is also algebraic.

The special points of j turn out to be a particular instance of a more
general phenomenon. A relation between coordinates in H is called a geo-
desic relation if it is of the form τ = c for some constant c, or τ1 = gτ2 for
some g ∈ GL+

2 (Q). For each N ∈ N, there is a polynomial ΦN ∈ Z[X,Y ]
with the property that

ΦN (j(τ), j(gτ)) = 0,

for all τ ∈ H and any g ∈ GL+
2 (Q) which, when written as a primitive

integer matrix, has determinant N . So we see that geodesic relations be-
tween coordinates τi ∈ H induce algebraic relations between their images
j(τi) ∈ C. In fact, geodesic relations are the only algebraic relations in H
that induce algebraic relations on the j-side. This fact, known as the Ax–
Lindemann theorem for j, was proven by Pila in [12]; we will discuss it
further later.

We call subvarieties of Cn which arise in this way j-special subvarieties.
So a j-special subvariety of Cn is (an irreducible component of) a variety
cut out by some equations of the form ΦN (zi, zj) = 0 and zi = j(τi), for
various values of N and singular moduli j(τi). In general, a j-special point is
a zero-dimensional j-special subvariety, that is, an n-tuple (j(τ1), . . . , j(τn))
where every τi is a quadratic point.

The j-special subvarieties of Cn are rather sparse; given a random variety
V ⊆ Cn, we would not expect many j-special subvarieties to be contained
within it. Hence the following finiteness result, proven by Pila in [12]. We
call the result Modular André–Oort, since it is a special case of the full
André–Oort Conjecture, a statement about general Shimura varieties. The
full André–Oort conjecture is known under GRH by work of Edixhoven,
Klingler, Ullmo and Yafaev (see for instance [5], [6], [7] and [19]), and is
known unconditionally for Ag, the moduli space of principally polarised
abelian varieties of genus g; a result of Tsimerman, Pila et al. [15], [18].
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In turn, André–Oort is a special case of the far-reaching Zilber–Pink con-
jecture, so Modular André–Oort forms only a small part of a much larger
picture. There is a variety of literature on these topics; good starting points
include surveys by Pila [14] and Zannier [21].

Theorem 1.1 (André/Pila, Modular André–Oort). Let V be a subvariety
of Cn. Then V contains only finitely many maximal j-special subvarieties.

The “maximal” is certainly necessary; in general, a positive-dimensional
j-special variety will always contain infinitely many proper j-special sub-
varieties.

The purpose of this paper is to prove an analogue of this result in
a slightly different setting. We will be discussing what happens when j
is replaced (or supplemented) by certain “modular-like” functions, which,
while not modular functions in the strict sense, exhibit many of the same
properties. We will be focusing on two classes of near-modular function:
the quasimodular functions and the almost holomorphic modular functions.
Specifically, we will look at a quasimodular function χ and a related almost
holomorphic modular function χ∗, defined as

χ = 1728 · E2E4E6
E3

4 − E2
6
, χ∗ = 1728 · E

∗
2E4E6

E3
4 − E2

6
,

where Ek is the usual kth Eisenstein series and

E∗2(τ) = E2(τ)− 3
π Im τ

.

See Section 2 for details about the properties of χ and χ∗. One crucial
fact is the existence of modular polynomials ΨN ∈ Q[X,Y, Z], having the
property that

ΨN (χ∗(gτ), j(τ), χ∗(τ)) = 0
for suitable g ∈ GL+

2 (Q) (compare with the classical modular polynomi-
als ΦN ). In Section 3 we construct these ΨN , using them and the ΦN to
construct what we call “(j, χ∗)-special” varieties, directly analogous to the
“j-special” varieties discussed above. The (j, χ∗)-special varieties exist only
inside even Cartesian powers of C; we consider C2n as the Zariski closure
of π(Hn), where

π : Hn → C2n

is defined by

π(τ1, . . . , τn) = (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)).

The central theorem of this paper is the analogue of 1.1 in this setting:

Theorem 5.8 (André–Oort for (j, χ∗)). Let V ⊆ C2n be a variety. Then
V contains only finitely many maximal (j, χ∗)-special subvarieties.
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The proof is quite similar to that of 1.1, following a standard strategy
of o-minimality and point-counting developed by Pila and Zannier. The
majority of the novelty in its proof lies in the following “Ax–Lindemann
type” result. Loosely, it says that all the algebraic sets S ⊆ Hn with π(S) ⊆
V are accounted for by the “weakly H-special varieties”. These are defined
in Section 3; put simply, they are subvarieties of Hn cut out by geodesic
relations.

Corollary 4.13. Let V be an irreducible subvariety of C2n and let Z =
π−1(V ) ⊆ Hn. Then Zalg is just the union of the weakly H-special subvari-
eties of Z.

Here, Zalg is defined as the union of all connected, positive-dimensional,
real semialgebraic subsets of Z.

It is important to emphasise the difficulties that lie in the proof of 4.13.
Traditional Ax–Lindemann results have always relied heavily on the holo-
morphicity of the functions involved. Since χ∗ is not holomorphic, a lot
of technical trickery is required to reach 4.13. By contrast, the argument
needed to get from 4.13 to 5.8, done in Section 5, is a standard “point-
counting” argument applying the Pila–Wilkie theorem: a well known result
from the theory of o-minimal structures.

Along the way to our nonholomorphic Ax–Lindemann result, it turns
out that we need an analogous Ax–Lindemann result for the quasimodular
function χ. Such a result is of course interesting in its own right. Since
the quasimodular functions are holomorphic, not much is required for this.
We simply take an Ax–Lindemann result of Pila [13], concerning j and its
derivatives, and strengthen it slightly1.

The plan for this paper is as follows. In Section 2, we discuss some of
the basic background of quasimodular and almost holomorphic modular
forms and functions. In Section 3, we discuss the special sets and special
points of χ∗ and χ, which is of course crucial to any André–Oort state-
ment. In Section 4, the largest section of the paper, we prove the required
Ax–Lindemann results, before concluding in Section 5 with the proof of
Theorem 5.8.

Note. This work was undertaken during the course of the author’s DPhil
studies at the University of Oxford, and much of it is intended to appear
in the author’s DPhil thesis.

1In the presence of an Ax–Lindemann theorem for χ, it is reasonable to ask whether there is
also an André–Oort result in that setting. In fact it is not even obvious that we can formulate
such a result. The function χ, unlike χ∗, does not take algebraic values at quadratic points, so
there is no clear notion of what a “(j, χ)-special” variety should be.
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2. Quasimodular and Almost Holomorphic Modular Functions

Let us begin by recalling some basic background about modular functions
and Eisenstein series.

Definition 2.1. A modular function is a map f : H → C with the following
properties:

• For any γ ∈ SL2(Z) and any τ ∈ H, we have f(γ · τ) = f(τ).
Here, as usual, elements of the group SL2(R) act on H via Möbius
transformations, (

a b
c d

)
· τ = aτ + b

cτ + d
.

• f is meromorphic on H.
• f is “meromorphic at ∞”. That is, the Fourier expansion of f ,

f(τ) =
∞∑

k=−∞
ck exp(2kπiτ),

has only finitely many negative terms.

One way to construct modular functions is through Eisenstein series. The
kth Eisenstein series Ek is a function from H to C, defined as

Ek(τ) = 1
2

∑
(m,n)∈Z
(m,n)=1

1
(mτ + n)k .

For even k ≥ 4, it is easy to see that Ek converges absolutely, defining a
holomorphic function, and further that

Ek(γτ) = (cτ + d)kEk(τ),
where γ =

(
a b
c d

)
∈ SL2(Z). (For odd k, of course, the sum vanishes.) So in

particular the function

1728 · E3
4

E3
4 − E2

6
is invariant under the action of SL2(Z); it turns out to be a modular func-
tion. In fact this is simply the definition of the j-function. It is well-known
that the denominator

1
1728(E3

4 − E2
6),

which is known as the discriminant function and denoted ∆, does not vanish
anywhere on H, so j is holomorphic on all of H. It turns out that j is
really the only modular function we need to worry about, since the field of
modular functions is just C(j).

Note. In the remainder of this section we will quite freely use facts proven
in Zagier’s excellent paper [20, p. 18–22, 48–49, 58–60].
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So far we have only used the absolutely convergent Eisenstein series,
namely those Ek with k ≥ 4. The Eisenstein series E2 does not converge
absolutely, but by taking the terms of the sum in a suitable order, it does
define a holomorphic function E2. It does not have the same transformation
properties as the other Ek, but rather satisfies

E2(γτ) = (cτ + d)2E2(τ)− 6i
π
c(cτ + d).

Hence one can see that the modified function

E∗2(τ) = E2(τ)− 3
π Im τ

has the usual weight 2 transformation law, that is
E∗2(γτ) = (cτ + d)2E∗2(τ).

The functions E2 and E∗2 are the prototype examples of, respectively, quasi-
modular forms and almost holomorphic modular forms.

Definition 2.2. A function f : H → C is an almost holomorphic modular
form of weight k if:

• f(τ) can be written as a polynomial in (Im τ)−1, with coefficients
which are holomorphic functions, bounded as Im τ →∞.
• f satisfies the weight k transformation law:

f(γτ) = (cτ + d)kf(τ).

Definition 2.3. A function f : H → C is a quasimodular form of weight
k if it arises as the constant term (with respect to (Im τ)−1) of an almost
holomorphic modular form of weight k. Equivalently:

• f(τ) is a holomorphic function, bounded as Im τ →∞.
• f satisfies the modified transformation law:

f(γτ)
(cτ + d)k = f(τ) +

p∑
r=1

fr(τ)
(

c

cτ + d

)r
,

for some holomorphic functions fr, bounded as Im τ →∞.

The graded algebra of almost holomorphic modular forms is generated
over C by E∗2 , E4 and E6. The graded algebra of quasimodular forms,
similarly, is generated by E2, E4 and E6. In fact, these two graded algebras
are isomorphic to each other via the map sending E∗2 to E2 and fixing E4,
E6. One can see this map as that sending an almost holomorphic modular
form to its constant coefficient.

For proofs of the various assertions made above, as well as more details
about quasimodular and almost holomorphic modular forms in general,
see [20, p. 58–60]. For this paper, we are more interested in quasimodular
and almost holomorphic modular functions.
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Definition 2.4. An almost holomorphic modular (or AHM) function is a
quotient of almost holomorphic modular forms of the same weight.

A quasimodular (or QM) function is a quotient of quasimodular forms
of the same weight.

The space of AHM functions and the space of QM functions are both
obviously fields. We will write F ∗ for the field of AHM functions, and F̃
for the field of QM functions. Each contains the field of classical modular
functions. These have been studied in a few places before, perhaps most
notably by Masser in [9, Appendix A]. Masser works with an AHM function
he calls ψ, defined by E∗2E4/E6. This function has a singularity at i, so we
work instead with a related function that has no singularities.

Define:
f = E4E6

∆ , χ = E2f, χ∗ = E∗2f,

where ∆ is again the discriminant function (E3
4−E2

6)/1728. The function f
is then a meromorphic modular form of weight -2. Since ∆ does not vanish,
none of these three functions have singularities inside H.

Further, χ∗ is an AHM function and χ is a QM function. The function
χ is holomorphic on H, but of course χ∗ is only real analytic. We note for
future use that

χ∗(τ) = χ(τ)− 3
π Im τ

f(τ),

and (by the transformation properties of E2) that

χ(γτ) = χ(τ)− 6i
π

c

cτ + d
f(τ),

for all γ =
(
a b
c d

)
∈ SL2(Z).

Proposition 2.5. The fields F ∗ and F̃ are characterised by:
F ∗ = C(j, χ∗), F̃ = C(j, χ).

Moreover, F ∗ and F̃ are isomorphic via the map fixing j and sending χ∗
to χ.
Proof Sketch. Zagier proves in [20, Proposition 20, p. 59] that the graded
algebras of QM and AHM forms are generated by E4, E6 and (respectively)
E2 or E∗2 . Given that fact, it is a simple exercise to write down a generating
set for the “monomial quotients” of QM and AHM forms, and see that they
are all expressible as rational functions of j and χ or χ∗.

The isomorphism of fields is induced directly by the isomorphism between
the graded algebras of QM and AHM forms. �

The following will also be of use.
Theorem 2.6. The functions j, χ and f are algebraically independent
over C.
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Proof. Follows easily from the standard fact that j, j′ and j′′ are
algebraically independent functions over C. See for instance Zagier
[20, p. 49]. �

Our intent is to discuss the special sets corresponding to the functions
χ∗ and χ. Such things do exist; they are the subject of the next section.

3. Special Sets

3.1. New Modular Polynomials. Our discussion of special sets begins
with the following proposition involving the construction of some modular
polynomials for χ∗. Although this follows fairly easily from facts known
about j and its derivatives, together with the upcoming Lemma 3.2, the
explicit existence of these polynomials seems not to have been noted before.
The construction is very similar to the standard construction of the usual
modular polynomials; we follow Zagier [20, Proposition 23, p. 68–69] closely.

Proposition 3.1. For a positive integer N , let MN be the set of primitive
integer matrices g ∈ GL+

2 (Q) with determinant N . For each such N , there
is a nonzero polynomial ΨN ∈ Q[X,Y, Z], irreducible over C, such that

ΨN (χ∗(gτ), j(τ), χ∗(τ)) = 0
for each g ∈MN and all τ ∈ H.

Proof. The set

DN =
{(

a b
0 d

)
: a, b, d ∈ N, ad = N, 0 ≤ b < d, gcd(a, b, d) = 1

}
is a full set of representatives for MN under the action of SL2(Z). That is,
for all g ∈ MN there is some g′ ∈ DN and γ ∈ SL2(Z) such that γg′ = g.
(This is a standard fact; see for instance Lang [8] or Diamond/Shurman [1,
Exercise 1.2.11].)

We will consider a polynomial in X, defined by

(3.1)
∏

g∈DN

(X − χ∗(gτ)).

Clearly (for each τ) this is 0 if and only if X is χ∗(hτ), for some h ∈ DN .
Thanks to the invariance of χ∗ under SL2(Z), this holds if and only if X is
χ∗(hτ) for some h ∈MN .

Let γ ∈ SL2(Z). For each g ∈ DN , we have g · γ = γ′ · h, for some other
γ′ ∈ SL2(Z) and some h ∈ DN . So by the invariance of χ∗, we have

χ∗(g · γτ) = χ∗(γ′ · hτ) = χ∗(hτ).
Thus the map τ 7→ γτ induces a permutation of the set

SN = {χ∗(gτ) : g ∈ DN}.
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In fact, the described action of SL2(Z) on SN is transitive. Indeed, any
g ∈ DN can be written as

g = γhγ′, γ, γ′ ∈ GL2(Z),

with h in Smith Normal Form, meaning it is a diagonal matrix
(
A 0
0 D

)
, with

A|D (see for instance [4, Exercise 19, p. 470]). Further, h must be primitive
since g is, whence A = 1 and D = N . By replacing γ, γ′ by γ

( 1 0
0 −1

)
and

( 1 0
0 −1

)
γ′ if necessary, we can ensure that they are in fact elements of

SL2(Z). The claimed transitivity follows immediately2.
Each coefficient of X in the polynomial (3.1) is a symmetric polynomial

in the functions χ∗(gτ), g ∈ DN , so each coefficient must be invariant under
τ 7→ γτ . Moreover, if g =

(
a b
0 d
)
∈ DN , then

Im(gτ) = a Im τ

d
.

Hence each coefficient is a polynomial in 1/ Im τ with coefficients which are
meromorphic functions on H. Since they are also SL2(Z)-invariant, each
coefficient is therefore an element of the field of AHM functions F ∗ =
C(j, χ∗), so can be written as a quotient of complex polynomials in j and
χ∗. In each such rational function, we can replace instances of j and χ∗ with
variables Y and Z. If we do this for each coefficient, we get a polynomial

Ψ0
N (X,Y, Z) ∈ C(Y,Z)[X]

with Ψ0
N (X, j(τ), χ∗(τ)) = 0 if and only if X = χ∗(gτ) for some g ∈MN .

Next, note that

χ∗(x+ iy) = E2E4E6
∆ − 3

πy
· E4E6

∆ .

Each of the Eisenstein series and ∆ has a power series expansion in q =
e2πiz, with integer coefficients. The coefficient of the leading term in each
case is 1; the coefficients of the q-expansions of E2, E4 and E6 are given, for
example, in [20, p. 17 and 19], and the q-expansion of ∆ is easily calculated
from those.

Hence χ∗(x+ iy) is a polynomial in 3/πy with coefficients that are Lau-
rent series in q with integer coefficients and leading term q−1. The function
j also has a q-expansion, which is just an integer Laurent series in q, again
with leading term q−1. We will use this to show that Ψ0

N is defined over Q.

2I thank David Speyer for showing me the proof of this fact, which is taken as read in many
texts.
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We have (writing y = Im τ)

Ψ0
N (X, j(τ), χ∗(τ)) =

∏
ad=N
d>0

∏
0≤b<d

(a,b,d)=1

(
X − χ∗

(
aτ + b

d

))

=
∏
ad=N
d>0

∏
0≤b<d

(a,b,d)=1

X − ∞∑
n=−1

cnζ
nb
d q

na/d + d

a

3
πy

∞∑
n=−1

c′nζ
nb
d q

na/d

 ,
where ζd = e2πi/d and cn, c

′
n ∈ Z. The inner product is a polynomial in

3/πy, with coefficients which are Laurent series in q1/d with coefficients
from Z

[
d
a , ζd

]
, and leading term no smaller than −a/d. But it is 1-periodic,

so the fractional powers of q must cancel out. Further, the coefficients in
the resulting q-expansions must be in Z[ da ], since every Galois conjugation
ζd 7→ ζrd , where r ∈ (Z/dZ)∗, fixes the inner product; the numbers b and rb
range over the same set.

So each coefficient fk of Xk in Ψ0
N is a polynomial in 3/πy with coeffi-

cients which are rational Laurent series in q. Each coefficient is also equal
to a quotient of polynomials pk and qk in j and χ∗, thus

pk(j, χ∗) = fk · qk(j, χ∗).

If we compare the coefficients of (3/πy)k on each side, we get various equal-
ities between q-expansions. The coefficients of those q-expansions are Q-
linear in the coefficients of pk and qk. So we get a homogeneous system of
Q-linear equations holding for the coefficients of pk and qk. This system
certainly has a solution since pk and qk exist. By basic linear algebra, the
solution can be chosen to be rational up to scaling, ie. pk and qk are in
λQ[Y,Z], for some λ. In particular, pk/qk can be rewritten as a quotient of
rational polynomials.

Thus Ψ0
N ∈ Q(Y,Z)[X]. Finally, since, as noted earlier, SL2(Z) acts

transitively on SN , no subproduct of∏
g∈DN

(X − χ∗ ◦ g) = Ψ0
N (X, j, χ∗) ∈ F ∗[X]

can have coefficients that are SL2(Z)-invariant. Hence Ψ0
N (X, j, χ∗) is irre-

ducible over F ∗. In particular, Ψ0
N (X,Y, Z) is irreducible over C(Y, Z) as a

polynomial in X. It is also monic in X, so if we clear the denominators in
Y and Z exactly, we get an irreducible polynomial ΨN ∈ Q[X,Y, Z] having
the required properties. �

In the above, we have made essential use of the fact that MN is repre-
sented (up to the action of SL2(Z)) by the finitely many upper triangular
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matrices in DN . Since χ∗ is SL2(Z)-invariant, it is enough that the relation
ΨN (χ∗(gτ), j(τ), χ∗(τ)) = 0

holds for g ∈ DN ; that implies the relation for all of MN . This is not
the case for the QM function χ, which only exhibits nice properties with
respect to upper triangular elements of GL+

2 (Q). The best we can do is the
following.

Lemma 3.2. Let g1 . . . , gk be upper triangular primitive integer matrices
with positive determinant, and consider the two fields:

A = F ∗(j ◦ g1, . . . , j ◦ gk, χ∗ ◦ g1, . . . , χ
∗ ◦ gk)

and
B = F̃ (j ◦ g1, . . . , j ◦ gk, χ ◦ g1, . . . , χ ◦ gk),

considered as fields of real analytic functions, defined locally. Then A and
B are isomorphic via the map

χ∗ 7→ χ, χ∗ ◦ gi 7→ χ ◦ gi,
fixing j and all of the j ◦ gi.

Proof. The map is clearly a well-defined bijection. If some χ∗ ◦ gi and j ◦ gi
satisfy a polynomial equation p(χ∗◦g1, j◦g1, . . . , χ

∗◦gk, j◦gk) = 0, then (by
comparing growth rates) every coefficient of 1/ Im τ on the left hand side
must vanish. In particular, the constant term p(χ◦g1, j◦g1, . . . , χ◦gk, j◦gk)
must vanish. That is, the same polynomial equation holds for the χ◦gi and
j ◦ gi, so the map is indeed an isomorphism. �

It follows that
ΨN (χ(gτ), j(τ), χ(τ)) = 0,

for all upper-triangular primitive integer matrices of determinant N . The
relation fails for any matrix which is not upper triangular; simply look at
the transformation law satisfied by χ.

The existence of the polynomials ΨN allows us to say the same thing
about χ∗ that is true of j, namely: geodesic relations between coordinates
τi ∈ H induce algebraic relations between their images j(τi), χ∗(τi) ∈ C.
Similarly, we can say of χ that upper triangular geodesic relations induce
algebraic relations. Hence, just as for j, we can talk about the special va-
rieties of Cn corresponding to χ∗ and χ.

3.2. Special Subvarieties. We will discuss various related types of spe-
cial subvariety:

• H-special and weakly H-special subvarieties of Hn.
• j-special and weakly j-special subvarieties of Cn.
• (j, χ∗)-special, weakly (j, χ∗)-special and weakly (j, χ)-special sub-
varieties of C2n.



754 Haden Spence

• χ∗-special, weakly χ∗-special and weakly χ-special subvarieties of
Cn.

We shall see that the weakly χ∗-special and weakly χ-special subvarieties
turn out to be very similar objects. However, the naive approach towards
producing a “truly χ-special” subvariety does not appear to work. The same
goes for (j, χ)-special subvarieties.

3.2.1. H-special and j-special Varieties. We will start with the H-
special subvarieties.

Definition 3.3. Let n ∈ N.
Let S0∪S1∪· · ·∪Sk be a partition of {1, . . . , n}, where k ≥ 0 and Si 6= ∅

for i > 0. For each s ∈ S0, choose any point qs ∈ H. For each i > 0, let si
be the least element of Si and for each si 6= s ∈ Si choose a geodesic matrix
gi,s ∈ GL+

2 (Q). A weakly H-special subvariety of Hn is a set of the form{
(τ1, . . . , τn) ∈ Hn : τs = qs for s ∈ S0, τs = gi,sτsi for s ∈ Si,

s 6= si, i = 1, . . . , k
}
,

for some given data Si, qs, gi,s.
A weakly H-special subvariety is H-special if the constant factors qs are

imaginary quadratic numbers for all s ∈ S0.

Remark 3.4. What we call a “weakly H-special variety” is elsewhere in
the literature referred to as a “geodesic variety”. We have chosen our ter-
minology differently here so that it meshes as closely as possible with the
terminology we use for j-special varieties and so forth.

This definition may look more complex than it actually is. Put more
loosely, a weakly H-special variety is simply one defined by some number
of equations of the form τi = qi or τi = gijτj , with qi constants and gij ∈
GL+

2 (Q). If it happens that the qi are quadratic points then the variety is
H-special.

This theme continues for all the types of special variety we will define
here; a special variety will be defined by some combination of:

• Equations requiring some coordinate to be constant (perhaps a
“special” constant).
• Equations coming from the modular polynomials.

These other types of special variety will all arise as (the Zariski closures of)
the images of H-special varieties under various maps. The easiest to deal
with are the well-known j-special varieties.

Definition 3.5. Let n ∈ N and let S0 ∪ S1 ∪ · · · ∪ Sk be a partition of
{1, . . . , n}, where k ≥ 0 and Si 6= ∅ for i > 0. For each s ∈ S0, choose a
point js ∈ C. For each i > 0, let si be the least element of Si and for each
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si 6= s ∈ Si choose a positive integer Ni,s. A weakly j-special subvariety of
Cn is an irreducible component of a subvariety of the form

{(z1, . . . , zn) ∈ Cn : zs = js for s ∈ S0,

ΦNi,s(zsi , zs) = 0 for s ∈ Si, s 6= si, i = 1, . . . , k}
for some given data Si, js, Ni,s.

A weakly j-special variety is j-special if all of the constant factors js are
singular moduli, ie. js = j(τs) for some quadratic τs ∈ H.

The j-special (resp. weakly j-special) varieties of Cn are precisely those
varieties that arise as the image, under the map

(τ1, . . . , τn) 7→ (j(τ1), . . . , j(τn)),
of an H-special (resp. weakly H-special) subvariety of Hn. These are the
special varieties discussed in 1.1.

3.2.2. (j, χ∗)-special Varieties. The (j, χ∗)-special subvarieties are
slightly more intricate. We start in the simplest positive dimensional case,
considering the variety

V ′N =
{
(W,X, Y, Z) ∈ C4 : ΦN (W,Y ) = 0,

ΨN (X,Y, Z) = 0,ΨN (Z,W,X) = 0
}
⊆ C4.

By counting equations, dimC V
′
N is at most 2. In fact, dimC V

′
N = 2. To see

this, note that V ′N contains the set
Sg = {(j(τ), χ∗(τ), j(gτ), χ∗(gτ)) : τ ∈ H}

for any g ∈ MN . Since j and χ∗ are algebraically independent, Sg cannot
be contained in any algebraic curve; hence dimC V

′
N > 1.

I believe that the variety V ′N is always irreducible. I have calculated the
first few modular polynomials ΨN to see in each case that V ′N is irreducible,
but so far have been unable to prove that this is the case for all N . I
leave this as an open problem, which fortunately has no impact whatsoever
on the wider picture: by real analytic continuation, V ′N has an irreducible
component containing Sg. Call this component VN ; it is still 2-dimensional.
Since it contains Sg, the variety VN in fact contains all the Sg, g ∈MN , by
modularity of j and χ∗. Moreover, by 3.2, VN contains

S′g = {(j(τ), χ(τ), j(gτ), χ(gτ)) : τ ∈ H}
for any upper triangular g ∈ MN . These VN will form the building blocks
of (j, χ∗)-special varieties.

Definition 3.6. Let n ∈ N and let S0 ∪ S1 ∪ · · · ∪ Sk be a partition of
{1, . . . , n}, where k ≥ 0 and Si 6= ∅ for i > 0. For each s ∈ S0, choose
τs ∈ H and let (js, cs) = (j(τs), χ∗(τs)) ∈ C2. For each i > 0, let si be the
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least element of Si and for each si 6= s ∈ Si choose a positive integer Ni,s.
A weakly (j, χ∗)-special subvariety of C2n is an irreducible component of a
subvariety of the form{

(w1, z1, . . . , wn, zn) ∈ C2n : (ws, zs) = (js, cs) for s ∈ S0,

(ws, zs, wsi , zsi) ∈ VNi,s for s ∈ Si,
s 6= si, i = 1, . . . , k

}
,

for some given data Si, (js, cs), Ni,s.
A weakly (j, χ∗)-special variety is (j, χ∗)-special if every constant factor

(js, cs) is of the form (j(τs), χ∗(τs)) for some quadratic point τs ∈ H.

Every weakly (j, χ∗)-special variety arises as the Zariski closure of the
image of a weakly H-special variety under the map

(τ1, . . . , τn) 7→ (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)).
One can see from the polynomials ΨN that χ∗(τ) is an algebraic number
whenever τ ∈ H is quadratic; this also follows from the work of Masser [9,
Appendix A]. This is why (j, χ∗)-special varieties are called such; all their
constant factors are special algebraic numbers.

The weakly (j, χ)-special varieties differ from (j, χ∗)-special varieties only
in their constant factors. The definition is identical, except that the constant
factors (js, cs) are chosen to be of the form (j(τ), χ(τ)). Unlike in the AHM
case, these (j, χ)-special varieties do not arise as the Zariski closure of any
arbitrary H-special set.

Definition 3.7. A geodesic upper triangular (or GUT) variety is a weakly
H-special variety for which all of the relations gi,s are upper triangular
matrices.

Since χ behaves nicely only under upper-triangular matrices, one can see
that weakly (j, χ)-special varieties arise only from GUT varieties. A weakly
(j, χ)-special variety is the Zariski closure of the image of a GUT variety
under the map

(τ1, . . . , τn) 7→ (j(τ1), χ(τ1), . . . , j(τn), χ(τn)).

Remark 3.8. The polynomials ΨN only work for χ and χ ◦ g when all of
the relevant matrices are upper triangular. As a result, numbers χ(τ) with
τ quadratic are not algebraic in general. Diaz has proven and conjectured
various results about these points and their transcendence properties in his
paper [2]. So χ seems not to have any points that we could reasonably call
special points, other than perhaps the SL2(Z)-translates of i and e2πi/3,
where χ vanishes.

This is why we have not attempted to define a notion of (j, χ)-special
variety; the naive approach does not seem to produce a correct definition
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and it is not immediately clear whether a correct such notion exists. This
is also why, in 3.7, we have not defined any notion of “H-special GUT
variety”. We might, for instance, have required all of the constant factors
to be quadratic, or to be special in some other way, but this seems unlikely
to produce a meaningful outcome since χ apparently has no special points.

3.2.3. χ∗-special Varieties. The final special varieties we are interested
in are the χ∗-special varieties. The idea is that, while any individual poly-
nomial ΨN introduces a dependence on a j-coordinate, multiple different
relations induced by ΨN can cancel each other out and introduce a relation
that exists between the χ∗ ◦ gi alone, not involving j.

Unfortunately, it seems difficult to isolate the specific polynomials that
arise in this process. So the easiest definition to use for χ∗-special varieties
is the following:

Definition 3.9. A (weakly) χ∗-special variety is an irreducible component
of the Zariski closure of the projection of a (weakly) (j, χ∗)-special variety
onto the coordinates corresponding to χ∗-variables.

Equivalently, a χ∗-special (resp. weakly χ∗-special) variety is an irre-
ducible component of the Zariski closure of the image of an H-special (resp.
weakly H-special) set under the map

(τ1, . . . , τn) 7→ (χ∗(τ1), . . . , χ∗(τn)).
As before, the weakly χ-special varieties differ from the weakly χ∗-special
varieties only in their constant factors, and there is no obvious concept of
a χ-special variety.

In what follows, we prove a few results about the possible shape of weakly
χ∗-special varieties.

Proposition 3.10. Let N ≥ 2 and let S = χ−1{0}. Then there is an upper
triangular g ∈MN such that the set

{χ(gs) : s ∈ S}
is infinite.

Proof. For any τ ∈ H which is SL2(Z)-equivalent to i, the Eisenstein series
E6 is equal to 0. In particular, SL2(Z) · i ⊆ S. So we only need to show
that (for some g) χ(g(γ · i)) takes infinitely many values as γ varies. This
is easy to see simply by considering matrices of the form

g =
(
N 0
0 1

)
∈ DN , γn =

(
1 −1

1− nN nN

)
∈ SL2(Z).

Then we get

g · γn =
(

N −1
1− nN n

)
·
(

1 0
0 N

)
,
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so using the transformation law for χ, we have

χ(g(γn · τ)) = χ(τ/N)− 6i
π

1− nN
(1− nN)(τ/N) + n

f(τ/N),

where f = E4E6/∆. Setting τ = i, the above expression clearly takes
infinitely many values as n varies, provided that f(i/N) 6= 0, which is clear
since the only zeros of E4 and E6 are SL2(Z)-equivalent to i or ρ. �

Corollary 3.11. The modular polynomial ΨN (X,Y, Z) is nonconstant in
Y for all N ≥ 2.

Proof. Otherwise ΨN = ΨN (X,Z), and then by 3.10, ΨN (0, Z) has infin-
itely many solutions, and so is identically zero. Since ΨN is irreducible, this
would mean that ΨN (X,Z) is a constant multiple of X, which is clearly
false. �

Remark 3.12. The modular polynomial Ψ1(X,Y, Z) is just X−Z. By the
above it is the only modular polynomial which does not depend on Y .

Corollary 3.13. Let n ≥ 1. For each 1 ≤ i ≤ n, let gi be an upper
triangular primitive integer matrix with positive determinant Ni. Suppose
that not all the Ni are equal to 1. Then the Zariski closure of the set

S = {(χ(τ), χ(g1τ), . . . , χ(gnτ)) : τ ∈ H}
has complex dimension exactly 2. Similarly, the Zariski closure of

S∗ = {(χ∗(τ), χ∗(g1τ), . . . , χ∗(gnτ)) : τ ∈ H}
has complex dimension exactly 2.

Proof. Consider the (j, χ∗)-special variety W ⊆ C2n+2, defined by
W = {(X0, . . . , Xn, Y0, . . . , Yn) : (X0, Y0, Xi, Yi) ∈ VNi , 1 ≤ i ≤ n}.

W is a 2-dimensional variety and contains the sets
{(j(τ), j(g1τ), . . . , j(gnτ), χ∗(τ), χ∗(g1τ), . . . , χ∗(gnτ))}

and
{(j(τ), j(g1τ), . . . , j(gnτ), χ(τ), χ(g1τ), . . . , χ(gnτ))}.

So the sets S and S∗ are each contained in the projection of W onto the
Yi-coordinates (which correspond to χ∗-variables). Since dimW = 2, the
projection certainly has dimension at most 2. So we need to show that S
is not contained in a curve, which is immediate from 3.10 since not all the
Ni are equal to 1. By 3.2, S∗ cannot be contained in any curve either. �

Corollary 3.14. The only positive-dimensional, proper weakly χ∗-special
(or indeed weakly χ-special) subvarieties of C2 are the diagonal X = Y and
the horizontal and vertical lines.

Proof. Immediate. �
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4. Ax–Lindemann Theorems

4.1. The Pila–Wilkie Counting Theorem. In the remainder of this
document we will use, several times, the theory of o-minimal structures, a
branch of model theory. The study of o-minimal structures has been used
to great success by Habegger, Masser, Pila, Tsimerman, Zannier and many
others to work with problems in functional transcendence, diophantine ge-
ometry and other areas. Readers unfamiliar with the topic can see the
excellent book by van den Dries [3] or surveys by Pila [14].

The crucial theorem we need for the purposes of this article is the fol-
lowing.

Theorem 4.1 (Pila–Wilkie Counting Theorem). Let Z ⊆ Rn be a definable
set in an o-minimal structure (R, {+, · , . . .}, {<, . . .}).

For each ε > 0 and each k ∈ N there is a constant c(Z, k, ε), such that
for every T ∈ N, we have

#
{

(x1, . . . , xn) ∈ Qn ∩ Z \ Zalg : max
i

[Q(xi) : Q] ≤ k,

max
i

Ht(xi) ≤ T
}
≤ c(Z, k, ε)T ε.

This may require some explanation. The set Z here is supposed to be
“definable in an o-minimal structure”. For details about what this means,
one can see the surveys cited above. It is enough to know that there is a
certain class of subsets of Cn = R2n which will be called “definable in the o-
minimal structure Ran,exp,” or just “definable”. Crucially, the graphs of the
functions j, χ and χ∗, restricted to any SL2(Z)-translate of the standard
fundamental domain

D =
{
τ ∈ H : −1

2 < Re τ ≤ 1
2 , |τ | > 1

}
,

are all definable sets. This follows from the fact that each of the functions
can be written as a sum of convergent q-expansions, but can also be seen
using a result of Peterzil and Starchenko [10] about the definability of the
Weierstrass ℘-function, going via the theory of elliptic curves.

Consequently, for any variety V ⊆ Ckn, the restricted preimage
π−1(V ) ∩ Dn

is a definable set whenever π : Hn → Ckn is some combination of the maps
j, χ and χ∗. We will be applying 4.1 to sets of precisely this form.

Given a definable set Z, we can consider what is called the “transcenden-
tal part of Z”, Z \ Zalg, where Zalg is the union of all connected, positive-
dimensional, real semialgebraic subsets of Z. Pila–Wilkie tells us that the
number of algebraic points in Z \Zalg, of degree less than some fixed k and
height at most T , grows more slowly than any positive power of T . Hence,
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if we can prove that a given definable set Z contains “too many” algebraic
points of a given height and degree, then Z must contain an arc of a real
algebraic curve.

If Z = π−1(V ) ∩ Dn as above, our next task is to find out which real
algebraic curves can exist within such preimages. For this we need what is
known as an Ax–Lindemann-type result; such results are the topic of this
section.

4.2. Ax–Lindemann for j. In the classical setting, Pila proved the up-
coming result in his paper towards André–Oort, [12]. It is called the Ax–
Lindemann theorem for j. Of great interest in its own right, it is also vital
to the proof of André–Oort-type results, via Pila–Wilkie. Before we can
state it, we will need the following definition:

Definition 4.2. Consider some subset Z ⊆ Hn. A complex algebraic com-
ponent A of Z is a connected component of a set of the form

W ∩Hn,

for W an irreducible subvariety of Cn, with the property that A ⊆ Z.

Theorem 4.3 (Pila, “Ax–Lindemann for j”). Let V ⊆ Cn be a variety.
Define a map π : Hn → Cn by

π(τ1, . . . , τn) = (j(τ1), . . . , j(τn)),

and let Z = π−1(V ).
A maximal complex algebraic component of Z is weakly H-special.

As we noted in the introduction, this is loosely saying: “the only complex
algebraic relations between coordinates in H that induce algebraic relations
between their j-images in Cn are the geodesic relations.”

For our purposes, the Ax–Lindemann theorem for j also tells us the
following.

Corollary 4.4. Let V , π and Z be as in 4.3. Then Zalg is simply the union
of all positive-dimensional weakly H-special subvarieties of Z.

To go from 4.3 to 4.4 one just uses the holomorphicity of j. A real
semialgebraic arc in Z is contained in a complex algebraic component of Z
by analytic continuation.

4.3. Quasimodular Ax–Lindemann. For the QM function χ, a good
portion of the work on Ax–Lindemann results is already done for us. The
upcoming result is due to Pila, in [13]. To state it, we will need a definition.
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Definition 4.5. Let τ1, . . . , τn be elements of some algebraic function field
C(W ). Then τ1, . . . , τn are called geodesically dependent if either:

• For some g ∈ GL+
2 (Q) and some i, j, we have τi = gτj whenever

τi, τj take values in H, or
• At least one of the τi is constant.

Otherwise, the τi are called geodesically independent.

Theorem 4.6 (Pila, Ax–Lindemann with Derivatives). Suppose that C(W )
is an algebraic function field and that

τ1, . . . , τn ∈ C(W )
take values in H at some P ∈ W , and are geodesically independent. Then
the 3n functions

j(τ1), . . . , j(τn), j′(τ1), . . . , j′(τn), j′′(τ1), . . . , j′′(τn)
(considered as functions on W locally near P ) are algebraically independent
over C(W ).

For our purposes, we need a slightly stronger formulation of this result.

Theorem 4.7 (Ax–Lindemann with Derivatives, Stronger Form). Let F
be an irreducible polynomial in 3n + 1 variables over C. Let A ⊆ Hn be
a complex algebraic component and let G be the smallest weakly H-special
variety containing A. Suppose that G is a GUT variety and that

F (τ1, j(τ1), j′(τ1), j′′(τ1), . . . , j(τn), j′(τn), j′′(τn)) = 0
for all (τ1, . . . , τn) ∈ A. Then in fact this holds for all (τ1, . . . , τn) ∈ G.

Proof. We will work by induction on n. The case n = 1 is immediate.
By definition, the algebraic component A is a connected component of

some variety W ⊆ Cn. Treating τ1, . . . , τn as the coordinate functions on
W , the hypotheses of the theorem imply that

j(τ1), j′(τ1), j′′(τ1), . . . , j(τn), j′(τn), j′′(τn),
treated as functions locally near some P ∈ A, are algebraically dependent
over C(W ), whence Theorem 4.6 tells us that the τi are geodesically de-
pendent.

By induction, we may assume that no τi is constant on A. Hence there
are 1 ≤ i, j ≤ n and g ∈ GL+

2 (Q) such that τi = gτj on A. Since this is
a symmetric condition, we may assume that i 6= 1. Then without loss of
generality, i = n.

Since G is a GUT variety, g is upper triangular. Hence there are alge-
braic functions φ1, φ2, φ3 (induced by the modular polynomials and their
derivatives) such that:
(4.1) j(τi) = φ1(j(τj)),
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(4.2) j′(τi) = φ2(j(τj), j′(τj)),

and

(4.3) j′′(τi) = φ3(j(τj), j′(τj), j′′(τj)).
Substituting this into F yields

F
[
τ1, j(τ1), j′(τ1), j′′(τ1), . . . , j(τn−1), j′(τn−1), j′′(τn−1),

φ1(j(τj)), φ2(j(τj), j′(τj)), φ3(j(τj), j′(τj), j′′(τj))
]

= 0

whenever (τ1, . . . , τn−1, gτj) ∈ A. We can then rewrite this as

σ(τ1, j(τ1), j′(τ1), j′′(τ1), . . . , j(τn−1), j′(τn−1), j′′(τn−1)) = 0,
for some algebraic function σ. This will hold for all (τ1, . . . , τn−1) ∈ A′,
where A′ is the projection of A onto the first n− 1 coordinates.

It is possible that σ is the zero function. If so, then working backwards
we see that F vanishes whenever (4.1), (4.2) and (4.3) hold. In particular,
F vanishes whenever τi = gτj . Hence it must vanish on G, as required.

If σ 6= 0, we have more work to do. There is an irreducible polynomial
pσ such that

pσ(σ(X),X) = 0
for all X. In particular,
(4.4) pσ(0, τ1, j(τ1), j′(τ1), j′′(τ1), . . . , j(τn−1), j′(τn−1), j′′(τn−1)) = 0
for all (τ1, . . . , τn−1) ∈ A′. Note that pσ(0,X) is not the zero polynomial.

We can now appeal to induction to see that (4.4) holds for all
(τ1, . . . , τn−1) ∈ G′,

where G′ is the projection of G onto its first n− 1 coordinates. Putting it
in different terms: 0 is a root of
(4.5) pσ(X, τ1, j(τ1), . . . , j′′(τn−1))
whenever (τ1, . . . , τn−1) ∈ G′. We can choose a point p ∈ A′, a G′-open
neighbourhood V of p and a complex-open neighbourhood W of 0 such
that: for all q ∈ V , the only root of (4.5) within W is the root 0. However,
σ(τ1, j(τ1), . . . , j′′(τn−1)) is always a root of (4.5). So for all (τ1, . . . , τn−1) ∈
V , we must have

σ(τ1, j(τ1), . . . , j′′(τn−1)) = 0.
By analytic continuation, this holds for all (τ1, . . . , τn−1) ∈ G′. Recalling
the definition of σ, we get that

F
[
τ1, j(τ1), j′(τ1), j′′(τ1), . . . , j(τn−1), j′(τn−1), j′′(τn−1),

φ1(j(τj)), φ2(j(τj), j′(τj)), φ3(j(τj), j′(τj), j′′(τj))
]

= 0
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whenever (τ1, . . . , τn−1) ∈ G′. Hence
F (τ1, j(τ1), . . . , j′′(τn−1), j(gτj), j′(gτj), j′′(gτj)) = 0

for all (τ1, . . . , τn−1) ∈ G′. In other words
F (τ1, j(τ1), . . . , j′′(τn)) = 0

for all (τ1, . . . , τn) ∈ G, as required. �

For our purposes, we need a version of this result that discusses j and
χ, rather than the derivatives of j, hence the following corollary.

Corollary 4.8. Let F be an irreducible polynomial in 3n+1 variables over
C. Let A ⊆ Hn be a complex algebraic component and let G be the smallest
weakly H-special variety containing A. Suppose that G is a GUT variety
and that

F (τ1, j(τ1), χ(τ1), f(τ1), . . . , j(τn), χ(τn), f(τn)) = 0
for all (τ1, . . . , τn) ∈ A. Then in fact this holds for all (τ1, . . . , τn) ∈ G.
(Recall that f is the function E4E6/∆, which arises in the transformation
law for χ and as the coefficient of 1/ Im τ in χ∗.)

Proof. Follows easily from 4.7, using the fact that j, χ, f ∈ C(j, j′, j′′) and
that j(τ), χ(τ), f(τ) are algebraically independent functions over C(τ). �

4.4. Almost Holomorphic Ax–Lindemann. In the classical situation,
as we see above, the holomorphicity of the functions involved allows us to
“complexify the parameter” to produce a complex algebraic set from a real
algebraic one. Since χ∗ is not holomorphic, there is substantial difficulty
in attempting to complexify the parameter in the same way. While a real
algebraic arc in Hn is certainly contained in a complex algebraic compo-
nent of Hn, there is no guarantee that this algebraic component remains
within the preimage of the given variety V . Fortunately, the simple shape
of χ∗ allows us to use some tricks to get around this problem. This sub-
section is dedicated to proving the desired Ax–Lindemann results for χ∗.
This is a crucial step towards our central André–Oort result for χ∗; most of
the novelty in our proof of 5.8 lies in this nonholomorphic Ax–Lindemann
result.

As we mentioned in Section 1, we will be discussing a map π : Hn → C2n,
defined by

π(τ1, . . . , τn) = (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)).

Theorem 4.9 (AHM Ax–Lindemann). Let S be an arc of a real algebraic
curve in Hn and suppose that S ⊆ π−1(V ), where V is some irreducible
variety in C2n. Then S is contained in a weakly H-special variety G with
G ⊆ π−1(V ).
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The proof of this is necessarily rather technical, so for ease of reading we
have broken it into various smaller chunks. The plan is as follows. Firstly,
we deal with the case in which the imaginary part of every complex co-
ordinate is constant on the arc S. This is the content of Lemma 4.10 and
Corollary 4.11. With this done, we can assume that the imaginary part of at
least one coordinate (say τ1) is nonconstant on S. Hence we can parametrise
S in terms of the imaginary part of τ1.

Using this parametrisation, we will show that a particular algebraic func-
tion φ in the variables Im τ1, j(τi), χ(τi), f(τi) vanishes on S. If φ takes a
very specific shape, we can conclude via 4.8. Otherwise, we will see that

Im τ1 = ψ(j(τ1), . . . , j(τn), χ(τ1), . . . , χ(τn), f(τ1), . . . , f(τn))
on S, for some algebraic function ψ. In this situation, Lemma 4.12 shows
that Im τ1 must be constant on S after all, which is a contradiction.

Lemma 4.10. Let G ⊆ Hn be a GUT variety, let F be a polynomial in 2n
variables, and let c1, . . . , cn be real constants. Suppose that

F

(
j(τ1), χ(τ1)− 3

πc1
f(τ1), . . . , j(τn), χ(τn)− 3

πcn
f(τn)

)
= 0

for all (τ1, . . . , τn) ∈ G. Then
F (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)) = 0

for all (τ1, . . . , τn) ∈ G.

Proof. By induction on n we may assume that no coordinate is constant
on G. So up to permutation of coordinates, we have

G =
{
(τ1, g1,1τ1, . . . , g1,k1τ1, τ2, g2,1τ2, . . . , g2,k2τ2, . . .

. . . , τr, gr,1τr, . . . , gr,krτr) : τ1, . . . , τr ∈ H
}
,

for some upper triangular matrices gi,j . Hence

(4.6) F

[
j(τ1), χ(τ1)− 3

πd1
f(τ1), . . .

. . . , j(g1,k1τ1), χ(g1,k1τ1)− 3
πd1,k1

f(g1,k1τ1),

. . . , j(τr), χ(τr)−
3
πdr

f(τr),

. . . , j(gr,krτr), χ(gr,krτr)−
3

πdr,kr

f(gr,krτr)
]

= 0,

for some suitable relabelling di, di,j of the constants ci.
All of the gi,j are upper triangular matrices in GL+

2 (Q), so let us consider
a general upper triangular matrix g =

(
a b
0 d
)
. Let A = gcd(b, d) and D =
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ad/A. Let k,m be integers such that mb + kd = A. For all integers t, we
have (

b/A −k + tb
d/A m+ td

)
·
(
A −ma
0 D

)
=
(
a b
0 d

)
·
(

0 −1
1 tD

)
.

The leftmost matrix is an element of SL2(Z). The matrix
(
A −ma
0 D

)
has

the same determinant as g; we shall call this matrix h. Note (taking t = 0
above) that (

b/A −k
d/A m

)
h

(
0 1
−1 0

)
= g.

From these matrix equations and the transformation properties of j, χ and
f , we can easily see that

j

(
g

(
0 −1
1 tD

)
τ

)
= j(hτ), for all t.

χ

(
g

(
0 −1
1 tD

)
τ

)
→ χ(hτ) as t→∞.

f

(
g

(
0 −1
1 tD

)
τ

)
→ 0 as t→∞.

Also,

j

((
0 −1
1 tD

)
τ

)
= j(τ).

χ

((
0 −1
1 tD

)
τ

)
→ χ(τ) as t→∞.

f

((
0 −1
1 tD

)
τ

)
→ 0 as t→∞.

Now, equation (4.6) holds for all τ1, . . . , τr ∈ H. Hence we can replace each
τi in (4.6) by

(
0 −1
1 tDi

)
τi, for suitable fixed Di and arbitrary t. Letting t tend

to infinity we see by continuity of F that

F

[
j(τ1), χ(τ1), . . . , j(h1,k1τ1), χ(h1,k1τ1), . . . ,

j(τr), χ(τr), . . . , j(hr,krτr), χ(hr,krτr)
]

= 0

for all τi ∈ H and certain upper triangular matrices hj,k. By 3.2 (the iso-
morphism between upper triangular extensions of the fields of QM/AHM
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functions), we therefore have

(4.7) F

[
j(τ1), χ∗(τ1), . . . , j(h1,k1τ1), χ∗(h1,k1τ1), . . . ,

j(τr), χ∗(τr), . . . , j(hr,krτr), χ∗(hr,krτr)
]

= 0

The matrices hj,k each have the same relation to gj,k as h does to g in the
calculation above. In particular, there is γj,k ∈ SL2(Z) such that

γj,khj,k

(
0 1
−1 0

)
= gj,k.

So we can replace each τi in (4.7) by
( 0 1
−1 0

)
τi and use the modularity of j

and χ∗ to see that

F

[
j(τ1), χ∗(τ1), . . . , j(g1,k1τ1), χ∗(g1,k1τ1), . . . ,

j(τr), χ∗(τr), . . . , j(gr,krτr), χ∗(gr,krτr)
]

= 0.

This says precisely that
F (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)) = 0

for all (τ1, . . . , τn) ∈ G. �

Corollary 4.11. Let S and V be as in 4.9. Suppose that the imaginary
part of every complex coordinate is constant on S. Then S is contained in
a weakly H-special variety G with G ⊆ π−1(V ).

Proof. By induction on n, we may assume that no complex coordinate is
constant on S. So consider the smallest weakly H-special variety containing
S, which we will call G. Since no complex coordinate is constant on S, the
same is true of G. We want to show G ⊆ π−1(V ).

Consider some coordinate τi on S ⊆ G. It takes the form τi = xi + ici.
Suppose that on G, there is some τj , j 6= i which is related to τi by some
matrix g which fails to be upper triangular. Then on S, we have τj =
g(xi + ici). Since τi is nonconstant on S, xi must vary, which then forces
Im τj to vary since g is not upper triangular. This is a contradiction. So G
is a GUT variety.

Now pick any of the irreducible polynomials F which define V . We have

(4.8) F

(
j(τ1), χ(τ1)− 3

πc1
f(τ1), . . . , j(τn), χ(τn)− 3

πcn
f(τn)

)
= 0

for all (τ1, . . . , τn) ∈ S and for real constants ci = Im τi.
Let us parametrise S in terms of some real parameter t, as the image of a

map t 7→ (τ1(t), . . . , τn(t)) around t = 0. Without loss of generality, suppose
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that τ1 is nonconstant, so that all of the other functions τi are algebraic over
τ1. The functions τi may then be extended to complex t in some complex
neighbourhood of 0. The image of this complex neighbourhood under the
map then necessarily lives in some irreducible complex algebraic curve C.
Since (4.8) holds on S ⊆ C and all of the functions arising in (4.8) are
complex analytic, it follows that (4.8) holds on the whole of C. (This method
of complexifying the parameter will arise several times; compare with, for
instance, [11, Lemma 2.1].)

So we get that (4.8) holds on some complex algebraic component A con-
taining S. Define G to be the smallest weakly H-special variety containing
A. As previously, we may assume that G is a GUT variety. Hence we can
apply 4.8 to see that

F

(
j(τ1), χ(τ1)− 3

πc1
f(τ1), . . . , j(τn), χ(τn)− 3

πcn
f(τn)

)
= 0

for all (τ1, . . . , τn) ∈ G. By Lemma 4.10, we then have

F (j(σ1), χ∗(σ1), . . . , j(σn), χ∗(σn)) = 0

for all (σ1, . . . , σn) ∈ G. This holds for all of the defining polynomials of V ,
hence S ⊆ G ⊆ π−1(V ) as required. �

Lemma 4.12. Let S be an arc of a real algebraic curve in Hn and let ψ
be an algebraic function in 3n variables. Suppose that

Im τ1 = ψ(j(τ1), . . . , j(τn), χ(τ1), . . . , χ(τn), f(τ1), . . . f(τn))

for all (τ1, . . . , τn) ∈ S.
Let G be the smallest weakly H-special variety containing S, and suppose

that G is a GUT variety. Then Im τ1 is constant on S.

Notation. The tuple

(j(τ1), . . . , j(τn), χ(τ1), . . . , χ(τn), f(τ1), . . . f(τn))

will arise often in what follows, so we abbreviate it as π̃(τ1, . . . , τn). We will
also abbreviate y = Im τ1 throughout. So the first hypothesis of the Lemma
may be written as

y = ψ(π̃(τ1, . . . , τn)).

Proof of Lemma 4.12. Suppose for a contradiction that y = Im τ1 is non-
constant on S. Then we can parametrise S in terms of y, yielding

S = {(x(y) + iy, u2(y) + iv2(y), . . . , un(y) + ivn(y)) : y ∈ U}

for some open set U ⊆ R and algebraic functions x, ui, vi, real-valued on U .
Since S is an algebraic arc, we also have some polynomials ai such that

ai(x(y), y, u2(y), v2(y), . . . , un(y), vn(y)) = 0
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for all (τ1, . . . , τn) ∈ S. Noting that τ1 = x(y) + iy, and replacing instances
of y with ψ, we get

(4.9) ai
[
τ1 − iψ(π̃(τ1, . . . , τn)), ψ(π̃(τ1, . . . , τn)),

u2(ψ(π̃(τ1, . . . , τn))), v2(ψ(π̃(τ1, . . . , τn))), . . . ,
un(ψ(π̃(τ1, . . . , τn))), vn(ψ(π̃(τ1, . . . , τn)))

]
= 0,

for all (τ1, . . . , τn) ∈ S. We rewrite the left hand side of this equation as an
algebraic function

σ(τ1, π̃(τ1, . . . , τn)).
Then there is an irreducible polynomial pσ such that

pσ(σ(T,J,X,F), T,J,X,F) = 0
identically. In particular, since σ vanishes on S, we have

pσ(0, τ1, π̃(τ1, . . . , τn)) = 0
for all (τ1, . . . , τn) ∈ S. By complexifying the parameter, as in Corollary 4.11
and [11, Lemma 2.1], this holds on a complex algebraic component A con-
taining S. Now, the weakly special closure of A is the same as the weakly
special closure of S, namely G. Since G is a GUT variety, we may therefore
apply 4.8 to see that

pσ(0, τ1, π̃(τ1, . . . , τn)) = 0
for all (τ1, . . . , τn) ∈ G.

In other words, 0 is a root of
(4.10) pσ(X, τ1, π̃(τ1, . . . , τn))
for all (τ1, . . . , τn) ∈ G. Since

pσ(σ(T,J,X,F), T,J,X,F) = 0
identically, we know that

σ(τ1, π̃(τ1, . . . , τn))
is also root of (4.10) for all (τ1, . . . , τn) ∈ G.

We can pick a point a ∈ S, a G-open neighbourhood W of a, and a
complex neighbourhood U of 0, such that: as (τ1, . . . , τn) varies within W ,
the only root of (4.10) within U is 0 itself. However, as (τ1, . . . , τn) varies
in W , the function σ(τ1, π̃(τ1, . . . , τn)) remains a root of (4.10). Since σ
vanishes on S, we can get it arbitrarily close to 0 within W . In particular,
we can get σ(τ1, π̃(τ1, . . . , τn)) to lie within U . Since it is a root of (4.10),
we must have

σ(τ1, π̃(τ1, . . . , τn)) = 0
for all (τ1, . . . , τn) ∈W . By analytic continuation, this holds everywhere on
G, which says that (4.9) holds on G.
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For notational simplicity, let us suppose that the coordinates which are
related to τ1 in G are the first k coordinates, that is:

G = {(τ1, g2τ1, . . . , gkτ1) : τ1 ∈ H} ×G′,
for some other GUT variety G′. So, whenever

(τ1, g2τ1, . . . , gkτ1, τk+1, . . . , τn) ∈ G,
we also have

(τ1 + t, g2(τ1 + t), . . . , gk(τ1 + t), τk+1, . . . τn) ∈ G
for every t ∈ Z. Since G is a GUT set, the gi are upper triangular, so the
numbers gi(τ1 + t), up to translation by an integer, take only finitely many
values as t varies. In particular, since j, χ and f are periodic, each of the
functions

j(gi(τ1 + t)), χ(gi(τ1 + t)), f(gi(τ1 + t))
takes only finitely many values as t varies. Hence

ψ
(
π̃(τ1 + t, g2(τ1 + t), . . . , gk(τ1 + t), τk+1, . . . , τn)

)
takes only finitely many values as t ∈ Z varies. If we plug this into (4.9),
we see that

ai(τ1 + t− ic, c, u2(c), v2(c), . . . , vn(c)) = 0
for some constant c and infinitely many distinct t. Thus ai is independent
of its first coordinate. Since this is true of all the ai defining S, the only
possibility for S is that it is the product of a horizontal line in the τ1
plane and points in the other coordinates. So y is constant on S, which is
a contradiction. �

With all the above lemmas done, we may finally proceed to the body of
the proof of 4.9.

Proof of 4.9. By induction on n, we may assume that no complex coordi-
nate is constant on S. It might be, however, that the imaginary part of one
or more coordinates is constant on S. If Im τi is constant on S for every i,
then we are in the situation of Lemma 4.11 so we conclude immediately.
Hence we may assume without loss of generality that Im τ1 is nonconstant
on S.

Next, let G be the unique smallest weakly H-special subvariety of Hn
containing S. It is a standard fact (which we have used once already; see
for instance Lang [8] or [1, Exercise 1.2.11]) that any g ∈ GL+

2 (Q) takes the
form γ · h for some upper triangular h ∈ GL+

2 (Q) and some γ ∈ SL2(Z).
Therefore there is some γ ∈ SL2(Z)n such that γG is a GUT variety. The
subset γS ⊆ γG is still a real semialgebraic arc. By the modularity of j
and χ∗, γG ⊆ π−1(V ) if and only if G ⊆ π−1(V ). So by working with γS
we may assume without loss of generality that G is a GUT variety.
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We will write y = Im τ1 throughout, and retain the abbreviation
π̃(τ1, . . . , τn) = (j(τ1), . . . , j(τn), χ(τ1), . . . , χ(τn), f(τ1), . . . , f(τn)).

Since y is nonconstant, we can parametrise S as
S = {(x(y) + iy, u2(y) + iv2(y), . . . , un(y) + ivn(y)) : y ∈ U},

for some open U ⊆ R and algebraic functions x, ui, vi, real-valued on U .
Consider one of the polynomials F which defines V . We have

F

(
j(τ1), χ(τ1)− 3

πy
f(τ1), . . . , j(τn), χ(τn)− 3

πvn(y)f(τn)
)

= 0

for all (τ1, . . . , τn) ∈ S. We can rewrite the left hand side of this equation
as an algebraic function

φ(y, π̃(τ1, . . . , τn)).
Since φ is an algebraic function, there is an irreducible polynomial pφ with
the property that

pφ(φ(T,J,X,F), T,J,X,F) = 0
for all T , J = (J1, . . . , Jn), X = (X1, . . . , Xn) and F = (F1, . . . , Fn). In
particular, we have that

pφ(0, y, π̃(τ1, . . . , τn)) = 0
for all (τ1, . . . , τn) ∈ S. So let us define

P (T,J,X,F) = pφ(0, T,J,X,F).
Note that P is not the zero polynomial, since pφ is irreducible.

We are going to modify P as follows. Consider each coefficient of T k in
P separately. These are polynomials

Ck(J,X,F).
For each k, if

Ck(π̃(τ1, . . . , τn)) = 0
for (τ1, . . . , τn) ∈ S, then remove this coefficient of T k from the polynomial
P . Having done this for each coefficient, we have a modified polynomial
which we call P̃ . Note that we still have

P̃ (y, π̃(τ1, . . . , τn)) = 0
for (τ1, . . . , τn) ∈ S.

It is possible that P̃ is the zero polynomial. This happens if and only if
every coefficient Ck has the property that
(4.11) Ck(π̃(τ1, . . . , τn)) = 0
for (τ1, . . . , τn) ∈ S. By complexifying the parameter, as in Corollary 4.11
and [11, Lemma 2.1], the equation (4.11) holds for (τ1, . . . , τn) ∈ A, where A
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is the smallest complex algebraic component containing S. Now, the weakly
H-special closure of A is the same as the weakly special closure of S, which
is the GUT variety G. Hence we can apply 4.8, to see that (4.11) holds for
all (τ1, . . . , τn) ∈ G.

Since this holds for all Ck, we have
pφ(0, Y, π̃(τ1, . . . , τn)) = P (Y, π̃(τ1, . . . , τn)) = 0

for all (τ1, . . . , τn) ∈ G and all choices of Y . In other words, 0 is a root of
(4.12) pφ(X,Y, π̃(τ1, . . . , τn))
for all (τ1, . . . , τn) ∈ G and all Y .

Now we proceed exactly as we did in Lemma 4.12. We can certainly
pick a point a = (a1, . . . , an) ∈ S such that for all (τ1, . . . , τn) in some
G-open neighbourhood W of a, the only root of (4.12), in some complex
neighbourhood U of 0, is 0 itself. However, we know that

X = φ(Y, π̃(τ1, . . . , τn))
is a root of (4.12) identically. Fixing Y = Im a1, we see that

φ(Im a1, π̃(τ1, . . . , τn))
gets arbitrarily close to 0 within W (it vanishes at a). So as (τ1, . . . , τn)
varies within W , φ is a root of (4.12), and lies inside of U . The only such
root is 0, so we must have

φ(Im a1, π̃(τ1, . . . τn)) = 0
for all (τ1, . . . , τn) ∈W . By analytic continuation, this holds for all

(τ1, . . . , τn) ∈ G.
Recalling the definition of φ, we get

F

(
j(τ1), χ(τ1)− 3

π Im a1
f(τ1), . . . , j(τn), χ(τn)− 3

πvn(Im a1)f(τn)
)

= 0

for all (τ1, . . . , τn) ∈ G. Hence we are in the situation of Lemma 4.10, so we
get

F (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)) = 0,
for all (τ1, . . . , τn) ∈ G, as required.

We have now dealt with the case where P̃ is the zero polynomial. So we
suppose that P̃ 6= 0 and look for a contradiction. Since

P̃ (y, π̃(τ1, . . . , τn)) = 0
for (τ1, . . . , τn) ∈ S, there is an irreducible factor Q of P̃ with this same
property.

Suppose some coefficient of yk in Q vanishes on S. Then we repeat the en-
tire process, removing redundant coefficients to get a polynomial Q̃. Again,
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an irreducible component of Q̃ must vanish on S. Then we can remove
redundant coefficients from this irreducible component, and so on.

We continue repeating this process until it terminates with an irreducible
polynomial

R(y, π̃(τ1, . . . , τn)),
which vanishes on S, with the property that none of the coefficients of yk in
R vanish on S. If R were the zero polynomial, then working backwards we
see that P̃ should have been the zero polynomial, which we have assumed
is not the case. So R 6= 0. In particular, R is nonconstant as a polynomial
in y.

Hence, since none of the coefficients of yk in R vanish on S, we can
extract an algebraic function ψ such that

y = ψ(π̃(τ1, . . . , τn))

for all (τ1, . . . , τn) ∈ S. By our earlier comment, we know that the smallest
H-special variety containing S is G, a GUT variety. So we are in the situa-
tion of Lemma 4.12, hence y is constant on S, which is a contradiction. �

We can reformulate 4.9 into the following slightly cleaner statement.

Corollary 4.13. Let V be an irreducible subvariety of C2n and let Z =
π−1(V ). Then Zalg is just the union of the weakly H-special subvarieties
of Z.

In the next section we use this to prove the central result of the document.

5. André–Oort for χ∗

Since there are no obvious χ- or (j, χ)-special varieties in Cn, it is not
clear what an André–Oort statement should look like. We can, however,
formulate meaningful André–Oort statements for χ∗. In this section we
state and prove 5.8, which is the main theorem of the document, an André–
Oort theorem for j and χ∗. The map π will throughout be defined as before,
namely

π(τ1, . . . , τn) = (j(τ1), χ∗(τ1), . . . , j(τn), χ∗(τn)).
The proof follows the standard strategy explicated in [12] very closely,

and we will borrow ideas freely from there. Readers familiar with the strat-
egy will be aware of the piece that is currently missing. We need some
number-theoretic lower bound in order to force π−1(V ) to contain many
points of a given height. This will force a real algebraic arc to exist in
π−1(V ), so that we can apply the results of the previous section. For the
case of j, the lower bound comes from the size of certain Galois orbits,
which are known by a result of Siegel to be sufficiently large. Our approach
essentially comes down to that same lower bound of Siegel, but first we
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have to do some work to ensure that the bound still applies to χ∗-special
points.

Proposition 5.1 (Masser). For a quadratic point τ ∈ H, we have
Q(χ∗(τ)) ⊆ Q(j(τ)).

Proof. Masser proves this in the Appendix of [9] for a function he calls ψ,
which is E∗2E4/E6. Since χ∗ lies in Q(ψ, j), the result follows for χ∗. �

A careful look at Masser’s proof of the above yields the following stronger
result.

Proposition 5.2. Let τ ∈ H be a quadratic point and consider the al-
gebraic numbers j(τ) and χ∗(τ). Let σ be a Galois conjugation acting on
Q(j(τ)) ⊇ Q(χ∗(τ)). Let τ ′ be a quadratic point such that j(τ ′) = σ(j(τ)).
Then χ∗(τ ′) = σ(χ∗(τ)).

Proof. This comes entirely from close inspection of Masser’s work (the ap-
pendix in [9]). Let d be the discriminant of the quadratic number τ , and
suppose that d is not equal to 3k2 for some odd k. Define some rational
functions βτi,k such that βτi,k(j(τ)) are the coefficients of the Taylor expan-
sion of Φd about the point (j(τ), j(τ)). This we can certainly do, and we
get

Φd(X,Y ) =
∑

(i,k) 6=(0,0)
βτi,k(j(τ))(X − j(τ))i(Y − j(τ))k.

It appears that the rational functions βτi,k will differ with τ . However, we
will show that, for the τ and τ ′ defined in the hypotheses of the theorem,
we do have βτi,k = βτ

′
i,k.

Since Φd has rational coefficients, any Galois conjugation preserves the
left hand side of the above. So we get

Φd(X,Y ) =
∑

σ(βτi,k(j(τ)))(X − σ(j(τ)))i(Y − σ(j(τ)))k

=
∑

βτi,k(j(τ ′))(X − j(τ ′))i(Y − j(τ ′))k.

We also have
Φd(X,Y ) =

∑
(i,k) 6=(0,0)

βτ
′
i,k(j(τ ′))(X − j(τ ′))i(Y − j(τ ′))j ,

so by uniqueness of Taylor coefficients, the rational functions βτi and βτ ′j are
equal. On pages 118 and 119 of [9], ψ(τ) is expressed as a fixed Q-rational
function p in the βτi,k(j(τ)) and j(τ). The equality

ψ(τ) = p(j(τ), βτi,k(j(τ)))
holds whenever τ has discriminant d and βτi,j are the Taylor coefficients
of Φd about (j(τ), j(τ)). Since τ ′ and τ have the same discriminant (both
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satisfy Φd(j(ρ), j(ρ)) = 0), this equation holds for both τ and τ ′. Since
βτi = βτ

′
i we get

σψ(τ) = p(σ(j(τ)), βτi,k(σ(j(τ))))
= p(j(τ ′), βτi,k(j(τ ′)))

= p(j(τ ′), βτ ′i,k(j(τ ′))) since βτi,k = βτ
′
i,k

= ψ(τ ′).

When τ is 3k2 for some odd k, the exact same argument still goes through,
except the rational function p is replaced by q, which is some other (still
fixed and explicit) rational function. Both p and q are written out on pages
118 and 119 of [9], but we will write them here for completeness3.

p(j, βi,k) = 9j(β2,0 − β1,1 + β0,2)
β0,1

+ 3(7j − 6912)
2(j − 1728) .

q(j, βi,k) = 9j(β4,0 − β3,1 + β2,2 − β1,3 + β0,4)
β0,1

+ 3(7j − 6912)
2(j − 1728) .

In either case we get σψ(τ) = ψ(τ ′). Since χ∗ = r(j, ψ) for a Q-rational
function r, we get σ(χ∗(τ)) = χ∗(τ ′) as required. �

Corollary 5.3. Let K be a number field. There are positive constants c, δ >
0 with the following property. Let τ ∈ D be a quadratic point of discriminant
D. Then there are � Dδ distinct quadratic points τ ′ ∈ D, of height at most
cD, such that (j(τ ′), χ∗(τ ′)) is a Galois conjugate, over K, of the point
(j(τ), χ∗(τ)).

Proof. For quadratic points σ ∈ D, let H(σ) be the height of σ and D(σ)
the discriminant. It is known that the number of distinct Galois conjugates
of j(σ) over Q is bounded from below by a positive power of D(σ). This
follows from the Siegel lower bound [17] for class numbers of quadratic
fields. See Pila [12] for more details.

Since [K : Q] is a fixed constant, the number of Galois conjugates of j(τ)
over K is therefore � Dδ. Each Galois conjugate θi of j(τ) over K yields
a distinct τi ∈ D, such that θi(j(τ)) = j(τi). Moreover, D(τi) = D(τ) = D.

By work of Pila [12], there is a constant c such that, for any σ ∈ D,

H(σ) ≤ cD(σ).

Hence each τi has H(τi) ≤ cD.
Finally, by 5.2, we have (j(τi), χ∗(τi)) = (θi(j(τ)), θi(χ∗(τ))). �

3The reader may note a strange-looking asymmetry in p and q, namely the β0,1 in the de-
nominator. Why not β1,0? Masser in fact proves in his work that β0,1 = β1,0, so really there is
no asymmetry.
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Corollary 5.3 gives us exactly the lower bound we need to work with the
Pila–Wilkie theorem. Shortly we will use this bound and the Pila–Wilkie
theorem 4.1 to prove our main theorem, 5.8. First we have a proposition
demonstrating the ideas in the simplest case; it also serves as the base case
for an inductive argument we use in 5.8.

Proposition 5.4 (André–Oort for (j, χ∗), in 2 dimensions). Let C ⊆ C2 be
an irreducible algebraic curve. Then C contains only finitely many (j, χ∗)-
special points.

Proof. Suppose that C contained infinitely many special points. Since spe-
cial points are algebraic, this tells us that C can in fact be defined over Q
and thus over a number field K.

Define a set Z ⊆ D by
Z = {τ ∈ D : (j(τ), χ∗(τ)) ∈ C}.

Then Z is definable. If it contains an arc of a real algebraic curve, then by 4.9
it must be all of H, which is impossible since j and χ∗ are algebraically
independent. Hence Zalg is empty. We will show that Z \Zalg = Z contains
“many” (ie. a positive power of T ) quadratic points of a given height T ,
contradicting the Pila–Wilkie theorem.

Since C contains infinitely many special points, we have infinitely many
distinct quadratic points τ ∈ D with (j(τ), χ∗(τ)) ∈ C. In particular, we
can find such a τ with arbitrarily large discriminant D. Hence by 5.3,
there are � Dδ quadratic points τ ′ ∈ D, of height at most cD, such that
(j(τ ′), χ∗(τ ′)) is a Galois conjugate of (j(τ), χ∗(τ)) over K.

Since it is a Galois conjugate of (j(τ), χ∗(τ)), we know that
(j(τ ′), χ∗(τ ′)) ∈ C,

hence all of the τ ′ lie in Z. So there are � Dδ quadratic points (of height
at most cD) in Z = Z \ Zalg, which contradicts the Pila–Wilkie Theorem
for any ε < δ. �

In more dimensions, the fundamental ideas for dealing with special points
by counting Galois conjugates are exactly the same; we have the following.
(Compare with Theorem 11.2 of [12].)

Proposition 5.5. Suppose V ⊆ C2n is a variety defined over a number
field K. Write V sp for the union of all positive-dimensional (j, χ∗)-special
subvarieties of V . Suppose that V sp is a variety. Then V \ V sp contains
only finitely many (j, χ∗)-special points.

Proof. Let Z = π−1(V ) and Z = Z ∩ Dn. Then Z is definable.
The set Zalg consists of Zsp = π−1(V sp) as well as possibly some weakly

H-special varieties; but the weakly H-special varieties can contain no qua-
dratic points. Hence, if we denote by N(X,T ) the number of quadratic
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points in X up to height T , we have

N(Z \ Zsp, T ) ≤ N(Z \ Zalg, T )�ε T
ε

for any ε > 0; the last bound coming from the Pila–Wilkie Counting The-
orem. Here Zsp = Zsp ∩ Dn.

Suppose for a contradiction that V \V sp contains infinitely many (j, χ∗)-
special points. Then we can find quadratic points

u = (τ1, . . . , τn) ∈ Z \ Zsp

of arbitrarily large discriminant D. By 5.3, there are� Dδ quadratic points
u′ ∈ Dn, with height at most cD, such that π(u′) is a Galois conjugate of
π(u) over K. This gives us � Dδ quadratic points (of height at most cD)
in Z \ Zsp. Choosing any ε < δ, we get a contradiction to the Pila–Wilkie
theorem for sufficiently large D. �

So we have some control over the special points that can arise in a given
variety. The next step is to deal with the positive-dimensional special sub-
varieties.

Definition 5.6. A H-special (or (j, χ∗)-special, or j-special, etc.) variety
is called basic if it has no constant factors. That is, if the set S0, from the
definition of a special variety, is empty.

Every weakly H-special variety S arises as the product of a basic H-
special variety B with some number of constant factors qi (if all the qi are
quadratic points then S is special). When this happens, we say that S is the
translate of B by the factors qi. The following lemma tells us which basic
special varieties have translates lying in the preimage of a given variety V .

Lemma 5.7. Let V ⊆ C2n be a variety and define Z = π−1(V ). There
is a finite collection B of basic H-special varieties with the property that
every maximal, positive-dimensional, weakly H-special subvariety of Z is a
translate of γB, for some B ∈ B and γ ∈ SL2(Z)k.

Proof. This is identical to Proposition 10.2 of [12]. In the presence of 4.9,
the proof carries over exactly. �

Finally, we combine 5.5 and 5.7 in an inductive argument to prove our
main theorem.

Theorem 5.8 (André–Oort for (j, χ∗)). Let V ⊆ C2n be a variety. Then
V contains only finitely many maximal (j, χ∗)-special subvarieties.

Proof. There is a subvariety Ṽ ⊆ V , defined over Q, containing all the
algebraic points of V . So we may assume that V is defined over Q (and
thus over a number field K).
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We will proceed by induction on n. The base case is 5.4. The conclusion
holds by 5.5 if V sp is variety. So it is sufficient to prove that V sp is a variety,
under the assumption that 5.8 holds for m < n.

By 5.7, there are finitely many basic H-special varieties, B ∈ B, such
that every maximal H-special subvariety of π−1(V ) is a translate of some
γB. A maximal (j, χ∗)-special subvariety of V is the Zariski closure of
π(S), for some maximal H-special subvariety S ⊆ π−1(V ). Therefore any
maximal (j, χ∗)-special subvariety of V is the translate (by some special
points (j(τi), χ∗(τi))) of one of a finite collection C of basic (j, χ∗)-special
varieties. (The twists by elements of SL2(Z) have no effect since j and χ∗
are modular.)

So it is enough to show that, given some basic special C ∈ C, there
are only finitely many translates of C which are maximal (j, χ∗)-special
subvarieties of V . Such a C will be a subvariety of C2k for some k.

The possible translates of C are elements of C2(n−k), namely the set of
points4

V ′ =
{
(j1, χ1, . . . , jn−k, χn−k) : the translate of C by

(j1, χ1, . . . , jn−k, χn−k) is contained in V
}
.

This is an algebraic subvariety of C2(n−k). The translates of C which yield
special subvarieties of V are the (j, χ∗)-special points of V ′. The translates
which yield maximal special subvarieties are the (j, χ∗)-special points of
V ′ \ (V ′)sp. By our inductive assumption, there are only finitely many such
points. Thus V sp, which consists of finitely many translates of the finitely
many basic special varieties in C, is a variety. So we can conclude by 5.5. �

Corollary 5.9 (André–Oort for χ∗). Let V ⊆ Cn be a variety. Then V
contains only finitely many maximal χ∗-special subvarieties.

Proof. Consider a variety V ′ ⊆ C2n, defined as

V ′ = {(J1, X1, . . . , Jn, Xn) : (X1, . . . , Xn) ∈ V }.

Given a maximal χ∗-special subvariety S of V , there is a corresponding
(j, χ∗)-special subvariety S′ ⊆ V ′, such that the projection of S′ onto the
Xi coordinates (which correspond to χ∗) is S. By 5.8, it is enough to show
that S′ is a maximal (j, χ∗)-special subvariety of V ′.

Indeed, if S′ were contained in a (j, χ∗)-special subvariety T ⊆ V ′, with
dimT > dimS′, then by the definition of (j, χ∗)-special varieties, there must
be a condition on a χ∗-coordinate which is relaxed in going from S′ to T .

4We are being slightly lax with our labelling of coordinates here. The constant factors by
which we translate our basic varieties can be in any of the pairs of coordinates in (C2)n. Since
there are only finitely many ways to reorder the coordinates, no issues will arise from allowing
the translations to take place in any of the coordinates.
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Hence the projection of T onto the Xi coordinates would be a χ∗-special
subvariety of V strictly containing S. Contradiction. �
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