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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 409–429

The Belyi Characterization of a Class of Modular
Curves

par Khashayar FILOM

Résumé. Une classe de courbes modulaires est caractérisée par l’existence de
certains couples de fonctions de Belyi qui engendrent leurs corps des fonctions.
Des applications à l’équation modulaire et au calcul de valeurs spéciales de la
fonction j sont données.

Abstract. A class of modular curves is characterized by the existence of
certain pairs of Belyi functions which generate their function fields. Applica-
tions to the modular equation and the computation of special values of the
j-function are given.

1. Introduction

According to a theorem of Belyi, compact Riemann surfaces with models
over Q̄ are precisely those admitting a non-trivial meromorphic function
unramified outside of {0, 1,∞}. Let H denote the upper half plane and
Γ(N) the principal congruence subgroup of level N . Realizing C−{0, 1} as
Γ(2)\H, one deduces that curves defined over number fields contain Zariski
open subsets that are uniformized by H modulo a finite index subgroup
of Γ(2). The main result of this note (Theorem 3.1) states that curves X
admitting a pair of Belyi functions f and g with identical critical points, and
generating the function field of X are precisely compactifications of curves
of the form Γ\H where Γ = Γ(2)∩Γ0(2N). A partial extension of this result
to the modular group Γ(1) = SL2(Z) (replacing Γ(2)) is given in §4. This
extension will be used to calculate (in principle) the modular equation
for X0(N) = Γ0(N)\H∗ (Examples 4.3, 4.4 and 4.5) and certain special
values of the j-function (see for example Corollary 4.6). An immediate
generalization of our main theorem is to the case where the function field
is generated by a number of Belyi functions with the same set of critical
points. This is the content of Theorem 3.2. A straightforward argument
establishes that all of the curves discussed in these two theorems can be
defined over the rationals.
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The paper is organized as follows. In §2 the background material about
Belyi functions on modular curves and two methods for their construction
are discussed. The calculation of Belyi functions and dessins d’enfants for
congruence subgroups appears in [3] and [5] in the particular case of dessins
associated to torsion-free congruence subgroups of genus 0. In [7] cusp forms
are utilized to embed modular curves in projective spaces and the defining
equations of the curves are obtained by analyzing the q-expansions of these
forms. In §3 the main result of the paper, Theorem 3.1, is proven. The
fourth section is devoted to our primary example of a modular curve whose
function field is generated by two Belyi functions, that is the modular curve
X0(N) equipped with Belyi functions [τ ] 7→ 1

1728j(τ) and [τ ] 7→ 1
1728j(Nτ).

Having two Belyi functions in hand, comparing the corresponding dessins
might reveal some new data and when they generate the function field, the
algebraic dependence relation between them gives rise to equation of a plane
curve whose normalization is our Riemann surface. For the sake of brevity,
some details of calculations are omitted and the reader can consult [1] for
a much lengthier treatment where other examples are also discussed.

We mainly follow notations of [6]: H∗ := H ∪ Q ∪ {∞} denotes the
upper half plane union cusps for Γ(1) and Γ always indicates a finite index
subgroup of Γ(1). We denote the compact Riemann surface Γ\H∗ by X(Γ).
For Γ = Γ(N) or Γ0(N), notations X(N) and X0(N) are used instead. The
point e

πi
3 of the upper half plane is denoted by ρ, and [τ ] means the orbit

of τ ∈ H under the action of Γ and also the corresponding point in X(Γ).
Finally, Γ̄ is the image of Γ ≤ SL2(Z) in Γ̄(1) = PSL2(Z) ⊂ Aut(H), and
we will work with Möbius transformations T : τ 7→ τ + 1 and S : τ 7→ −1

τ

(induced by T =
[ 1 1

0 1
]
and S =

[ 0 −1
1 0

]
) as a set of generators for PSL2(Z).

2. Belyi Functions on Modular Curves

The purpose of this section is to discuss two ways for equipping mod-
ular curves with some natural Belyi functions. For a more comprehensive
account of these two constructions and also more examples of them see §2,
§3 in [1] where calculations have been carried out in full detail.

In the action of Γ̄(1) on H, points with non-trivial stabilizer are exactly
the elements of the orbits Γ(1).ρ or Γ(1).i with stabilizers of orders three and
two respectively. Thus branch values of the map Γ\H→ Γ(1)\H are among
[ρ], [i] ∈ Γ(1)\H. Moreover, the point [τ ] ∈ Γ\H where τ ∈ Γ(1).ρ (resp.
τ ∈ Γ(1).i) is a ramification point of this map if and only if τ is not an elliptic
point of Γ and in that case, the multiplicity of this point is three (resp. two).
The only other ramification value that Γ\H∗ → Γ(1)\H∗ may possess is [∞]
whose fiber is the set of orbits of cusps for Γ. Hence Γ\H∗ → Γ(1)\H∗ is
a Belyi function if one identifies X(1) = Γ(1)\H∗ with CP1 in a way that
the subset containing two elliptic orbits (points [ρ], [i] ∈ X(1)) and one
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orbit of cusps (point [∞] ∈ X(1)) bijects to {0, 1,∞}. The multiple 1
1728j

of the modular function j : H → C gives us such an identification since
j has a simple pole at infinity and satisfies j(ρ) = 0 and j(i) = 1728.
Thus, for any Γ, the function 1

1728j : X(Γ) = Γ\H∗ → CP1 is Belyi. The
number of black or white vertices of the dessin associated with this Belyi
function (that is, points of f−1(0) or f−1(1)) is related to the number of
inequivalent elliptic points of order three or two respectively. Let us denote
these numbers by ν3 and ν2. There are also vertices corresponding to poles
of the Belyi function which are marked by × in our pictures. They can be
thought of as vertices located in centers of faces and the degree of such a
vertex (the order of the pole that it represents) is half the number of edges
of the corresponding face. The number of such vertices is the number of
inequivalent cusps, denoted as ν∞.

Proposition 2.1. Notations as above, for a finite index subgroup Γ of Γ(1)
the function {

f : X(Γ) = Γ\H∗ → CP1

[τ ] 7→ 1
1728j(τ)

is Belyi of degree m := [Γ̄(1) : Γ̄]. In its dessin black (resp. white) vertices
are Γ-orbits of points in Γ(1).ρ (resp. Γ(1).i) and centers of faces (× ver-
tices) are orbits of cusps of Γ. The dessin has ν∞ faces and among its black
(resp. white) vertices, there are m−ν3

3 (resp. m−ν2
2 ) vertices of degree three

(resp. two) and the rest, i.e. ν3 (resp. ν2) remaining black (resp. white)
vertices, are all of degree one. Furthermore, the degree of a vertex [τ ] of
type ×, where τ ∈ Q ∪ {∞}, is the width of the cusp τ of Γ.

For principal congruence subgroups Γ(N) the Belyi function is a regular
(or Galois or normal) ramified cover with Γ̄(1)/Γ̄ ∼= PSL2(ZN ) as its group
of deck transformations. The corresponding dessin on X(N) has many sym-
metries and exploiting them simplifies calculating this Belyi function as we
shall see in the example below:

Example 2.2. For N ≥ 2, Γ(N) is torsion-free and hence according to
Proposition 2.1, in the dessin on X(N), •, ◦ vertices are of degrees 3, 2
respectively. Since Γ(N) E Γ(1) the width of any cusp (the degree of any
× vertex) is the same as the width of the cusp ∞ for Γ(N) which is N .
There are µN :=

[
Γ̄(1) : Γ̄(N)

]
edges along with µN

3 black vertices of degree
three, µN2 white vertices of degree two, and µN

N faces each with 2N edges.
Computing the Euler characteristics yields the number 1 + N−6

12N µN for the
genus of X(N).
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For N = 2, µ2 = 6 and the corresponding dessin on the sphere is dis-
played in Figure 2.1 whose Belyi function is

(2.1) f(z) = 4
27

(z2 − z + 1)3

(z2 − z)2 , f(z)− 1 = 4
27

(z + 1)2(z − 2)2(z − 1
2)2

(z2 − z)2 ,

while when N = 3, µ3 = 12 and the Belyi function is

(2.2) f(z) = 1
64
z3(z3 + 8)3

(z3 − 1)3 , f(z)− 1 = 1
64

(z6 − 20z3 − 8)2

(z3 − 1)3 ,

and the genus zero dessin is illustrated in Figure 2.2.1 Both modular curves
X(2) and X(3) are of genus zero and thus, as in (2.1) and (2.2), can be
equipped with complex coordinates z which of course are modular functions
for subgroups Γ(2) and Γ(3) respectively, cf. Remark 2.3.

Figure 2.1. The dessin on X(2).

The symmetries have been employed to obtain these dessins. In the case
of N = 2, the deck group Deck(f : CP1 → CP1) ∼= Γ̄(1)/Γ̄(2) is isomorphic
to S3 via a map which takes cosets of S and T to transpositions. In Fig-
ure 2.1 vertices [0], [1], [∞] corresponding to cusps are fixed at the beginning
and then transformations induced by S and T amount to automorphisms
z 7→ 1

z and z 7→ 1 − z of the meromorphic function in (2.1). In the dessin
on X(3) ∼= CP1 in Figure 2.2, the deck transformation group Γ̄(1)/Γ̄(3) is a
version of the alternating group A4 such that cosets of T and S correspond
to a 3-cycle and a product of two disjoint transpositions in A4, respectively.
The dessin is drawn in a way that T is the 120 ◦ rotation about the ori-
gin whose fixed points are 0 and ∞, representing orbits

[
2ρ−5
ρ−2

]
and [∞]

respectively.
1In Proposition 2.1 edges of the dessin can be described as {[γ.eiθ] | π3 ≤ θ ≤

π
2 , γ ∈ SL2(Z)}.

For a torsion-free Γ there is a general method discussed in [3] for drawing the underlying graph of
the dessin by relating it to the Schreier coset graph associated with the subgroup Γ of PSL2(Z).
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Figure 2.2. The dessin on X(3).

Remark 2.3. The fact that X(2) is of genus zero amounts to the existence
of a modular function λ for Γ(2) which identifies X(2) with CP1 (a Haupt-
modul) via inducing an isomorphism Γ(2)\H → C − {0, 1} that at cusps
takes values λ([0]) = 0, λ([1]) = 1, λ([∞]) = ∞. Then the Belyi function f
in (2.1), that we will denote as α : CP1 → CP1 hereafter, is a degree six map
which satisfies 1

1728j(τ) = α(λ(τ)) for any τ ∈ H. Interpreting Γ(2)\H as
the moduli space of elliptic curves in a Legendre form y2 = x(x− 1)(x−λ)
and Γ(1)\H as the moduli space of elliptic curves, 1728α is just the descrip-
tion of the j-invariant in terms of the Legendre form. Our discussion on the
deck transformation group of α in Example 2.2 translates to λ(−1

τ ) = 1
λ(τ) ,

λ(τ + 1) = 1 − λ(τ). Hence applying an element of Γ(1) to τ alters λ(τ)
only up to the action of S3 on C− {0, 1} generated by λ 7→ 1− λ, λ 7→ 1

λ .
2

These Möbius transformations generate the classical anharmonic group

Next, we propose a second method for constructing Belyi functions in
which the monodromy representations are easy to describe. Let Γ be a finite
index subgroup of Γ(2). Here is the key point: there is not any elliptic point

2An alternative elementary method to derive the formula j(λ) = 256 (λ2−λ+1)3

(λ2−λ)2 for the j-
invariant of y2 = x(x − 1)(x − λ) is to note that this is the unique degree 6 element of C(λ)
invariant under λ 7→ 1 − λ, λ 7→ 1

λ
whose values at λ = e

πi
3 (the hexagonal elliptic curve) and

λ = −1 (the square elliptic curve) are 0, 1728 respectively.
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for Γ(2) but there are exactly three inequivalent cusps:

(2.3)
[0] =

{
a

b

∣∣∣∣ a even, b odd} , [1] =
{
a

b

∣∣∣∣ a odd, b odd} ,
[∞] =

{
a

b

∣∣∣∣ a odd, b even} ∪ {∞}.
Fixing the identification of X(2) = Γ(2)\H∗ with CP1 in Figure 2.1, these
orbits correspond to 0, 1,∞ and so the quotient map H→ Γ(2)\H realizes
the upper half plane H as the universal cover of C−{0, 1}, the space which
is identified with Γ(2)\H via the modular function λ of level 2 introduced in
Remark 2.3. Then, for any finite index subgroup Γ of Γ(2), the obvious map
X(Γ) = Γ\H∗ → X(2) = Γ(2)\H∗ ∼= CP1 of degree [Γ̄(2) : Γ̄] may be as-
sumed to be Belyi. The main advantage of working with this Belyi function
rather than X(Γ) → X(1) ∼= CP1 introduced before, besides having lower
degree that eases computations, is that the monodromy homomorphism of
X(Γ) → X(2) ∼= CP1, which specifies the isomorphism class of the Belyi
function, has a simple description in terms of the subgroup Γ because unlike
the map H → Γ(1)\H, which is ramified, here H → Γ(2)\H ∼= C − {0, 1}
is the universal covering map and it suffices to determine the monodromy
around three punctures [0] = 0, [1] = 1 and [∞] = ∞. Identifying Γ̄(2)
with the free group on two generators π1(C − {0, 1}) such that T 2 and
ST 2S−1 correspond to homotopy classes of small counterclockwise loops
around ∞ and 0 respectively (which is consistent with the identification of
π1(C − {0, 1}) with Deck(H → Γ(2)\H) ∼= Γ̄(2)), one gets, following nota-
tions of [2], σ0, σ∞ in the permutation representation (σ0, σ1, σ∞) of this
Belyi function.
Proposition 2.4. Let Γ be a finite index subgroup of Γ(2). Then the obvious
map {

f : X(Γ) = Γ\H∗ → X(2) = Γ(2)\H∗
∼=→ CP1

[τ ] 7→ λ(τ)
where X(2) is identified with CP1 in the way that [0] 7→ 0, [1] 7→ 1 and
[∞] 7→ ∞, is a Belyi function of degree m := [Γ̄(2) : Γ̄]. In its dessin black
vertices, white vertices and vertices corresponding to faces are Γ-orbits of
points in Γ(2).0, Γ(2).1 and Γ(2).∞ respectively. The number of edges is
m and the degree of a vertex [τ ] ∈ X(Γ) is half the width of the cusp τ ∈
Q ∪ {∞} of Γ. Moreover, the monodromy is specified by two permutations
of the set of right cosets of Γ̄ in Γ̄(2) induced by the right actions of T 2 and
ST 2S−1.

Remark 2.5. For Belyi functions Γ\H∗ → Γ(1)\H∗
1

1728 j∼= CP1, introduced
in Proposition 2.1, the monodromy representation has a more subtle de-
scription because H→ Γ(1)\H is ramified. After removing critical fibers to
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obtain the unramified cover

Γ\ (H− Γ(1).{i, ρ})→ Γ(1)\ (H− Γ(1).{i, ρ})
1

1728 j∼= C− {0, 1}

and then switching to the identification of C−{0, 1} with Γ(2)\H through
λ, one has to study the monodromy of the unramified cover

Γ\ (H− Γ(1).{i, ρ})→ Γ(2)\H : [τ ] 7→
[
λ−1

( 1
1728j(τ)

)]
.

Since 1
1728j = α ◦ λ, for two continuous curves t 7→ γ(t) and t 7→ γ̃(t) in H,

t 7→ [γ(t)] lifts to t 7→ [γ̃(t)] in the preceding unramified cover if and only
if α(λ(γ̃(t))) = λ(γ(t)). Thus everything boils down to the monodromy of
α which was analyzed in Example 2.2 : in the regular ramified covering
α : CP1 → CP1 the deck transformations group is generated by Möbius
transformations z 7→ 1− z and z 7→ 1

z induced respectively by actions of T
and S on Γ(2)\H∗ ∼= CP1. The action of π1(C−{0, 1}, z0) on a regular fiber
α−1(z0) translates to the action of Deck(α : CP1 → CP1) on this fiber once
we identify Deck(α : CP1 → CP1) with a quotient of π1(C − {0, 1}, z0) in
the obvious way. Hence, having in mind the identification of π1(C−{0, 1})
with Γ̄(2) as before, for any finite index subgroup Γ of Γ(1) the ramified
cover Γ\H∗ → Γ(1)\H∗ ∼= CP1 is isomorphic with Γ′\H∗ → Γ(2)\H∗ ∼= CP1

where Γ′ is the stabilizer of the trivial coset in the action Γ(2) on the set
of right cosets of Γ̄ in Γ̄(1) where the actions of T 2 and ST 2S−1 are by
right multiplication at T and S (or any two other generator of Γ̄(1)). Now
Proposition 2.4 determines the monodromy representation of the previous
covering and hence that of the original one Γ\H∗ → Γ(1)\H∗.3

3. Function Fields Generated by Two Belyi Functions

We now discuss our main theorem concerning a certain class of curves
over Q̄.

Theorem 3.1. Let X be a compact Riemann surface and f, g two Be-
lyi functions on X with f−1({0, 1,∞}) = g−1({0, 1,∞}) that generate
the function field. Then there is an isomorphism X ∼= X(Γ) where Γ =
Γ(2)∩Γ0(2N) for some N ∈ N in which Belyi functions f and g, after possi-
bly modifying them with an element of anharmonic group (cf. Remark 2.3),
can be identified with f : [τ ] 7→ λ(τ) (the Belyi function introduced in
Proposition 2.4) and g : [τ ] 7→ λ(Nτ). Conversely, for any such subgroup

3More generally, given (not necessarily torsion-free) Fuchsian groups Γ1 < Γ, in the ramified
cover Γ1\H→ Γ\H the monodromy action of an element γ of Γ on a generic fiber identified with
the set of right cosets of Γ̄1 in Γ̄ is the obvious action of γ on the set of cosets, cf. [2, pp. 151,
232].
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Γ of Γ(2), functions [τ ] 7→ λ(τ), [τ ] 7→ λ(Nτ) on X(Γ) are Belyi and gen-
erate its function field. Moreover, any such curve can be defined over the
rationals.

Proof. By identifying C − {0, 1} with Γ(2)\H just as before, there is a
finite index subgroup Γ of Γ(2) which uniformizes a Zariski open subset
of X via f : X → CP1. This implies that X is just X(Γ) = Γ\H∗ and
f is the natural map X(Γ) → X(2) ∼= CP1. But the same is true for
g : X → CP1 which yields the similar description X(Γ′)→ X(2) ∼= CP1 of
this Belyi function for another finite index subgroup Γ′. Removing cusps,
i.e. points in the fibers of f and g above 0, 1,∞, these functions restrict
to unramified covers Γ\H→ Γ(2)\H and Γ′\H→ Γ(2)\H. Hence Γ\H and
Γ′\H are both isomorphic to this punctured surface obtained from X. But
any isomorphism Γ\H → Γ′\H must be of the form [τ ] 7→ [u(τ)] where
u ∈ GL+

2 (R) due to the fact that Aut(H) = PSL2(R). In order for this
isomorphism to be well-defined, one should have Γ′ = uΓu−1. Thus Γ is
also contained in u−1Γ(2)u. The group Γ(2) ∩ u−1Γ(2)u coincides with its
subgroup Γ: it just suffices to note that Belyi functions f : [τ ] 7→ λ(τ)
and g : [τ ] 7→ λ(u(τ)) on X = X(Γ) actually can be defined on the curve
X(Γ(2)∩u−1Γ(2)u) corresponding to the bigger subgroup Γ(2)∩u−1Γ(2)u.
But the function field of this curve is included in C(X) = C(f, g). We
conclude that there is an equality of the function fields and hence these
subgroups of Γ(2) are the same.

On the other hand, for any such Γ, functions f, g are Belyi. For f this
is the content of Proposition 2.4 and for g this is due to the fact that

Γ\H
∼=→ Γ′\H→ Γ(2)\H

λ∼= C−{0, 1} : [τ ] 7→ [u(τ)] is unramified. Moreover,
C(X(Γ)) = C(f, g): the inclusion C(f, g) ↪→ C(X(Γ)) defines a morphism
β : X(Γ) → Y such that f, g descend to meromorphic functions on Y .
After removing cusps from X(Γ), f restricts to the unramified cover Γ\H→
Γ(2)\H. Hence by removing finitely many point from Y , we get a punctured
surface isomorphic to Γ̃\H for some suitable Γ̃ between Γ and Γ(2) such
that β is isomorphic with Γ\H → Γ̃\H. But the function g induced by
[τ ] 7→ [u(τ)] ∈ Γ(2)\H must descend to a well-defined function on Γ̃\H
which is the case if and only if Γ̃ is contained in u−1Γ(2)u or equivalently
Γ̃ = Γ.

Next, we claim that up to a scalar multiple, elements u of GL+
2 (R) with

[Γ(2) : Γ(2) ∩ u−1Γ(2)u] < ∞ are precisely integer matrices with positive
determinant (that is to say, the commensurator of PSL2(Z) in PGL+

2 (R) is
the image of GL+

2 (Z)). For any integer 2×2 matrix of determinant M > 0:
uΓ(2M)u−1 ⊆ Γ(2) and thus Γ(2) ∩ u−1Γ(2)u contains the finite index
subgroup Γ(2M). One the other hand, if the index of Γ(2) ∩ u−1Γ(2)u in
Γ(2) is finite, Γ(2) ∩ u−1Γ(2)u must have elements in the form of

[ 1 2M
0 1

]
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and
[ 1 0

2M 1
]
for some suitableM ∈ N. So u

[ 1 2M
0 1

]
u−1 and u

[ 1 0
2M 1

]
u−1 lie in

Γ(2). Changing u by a scalar does not change the subgroup. Hence we may
suppose det(u) = 1. Writing u in the form of

[
x y
z w

]
where xw− yz = 1, we

have:

u

[
1 2M
0 1

]
u−1 =

[
1− 2xzM 2x2M
−2z2M 1 + 2xzM

]
;

u

[
1 0

2M 1

]
u−1 =

[
1 + 2ywM −2y2M

2w2M 1− 2ywM

]
.

The fact that the first matrix belongs to Γ(2) indicates that x2M,xzM, z2M
are integers. Therefore, denoting gcd(x2M, z2M) by k, real numbers x and
z may be described respectively as α

√
k
M and γ

√
k
M for suitable coprime

integers α, γ. Similarly, since the second matrix above is again an element of
Γ(2), there are integers β, δ with y = β

√
k′

M and w = δ
√

k′

M . In conclusion,
u must be in the form of α√ k

M β
√

k′

M

γ
√

k
M δ

√
k′

M


with α, β, γ, δ, k, k′,M ∈ Z,M,k, k′ > 0 and αδ−βγ = M√

kk′
. Consequently,

kk′ is a perfect square and now multiplying at the scalar
√
Mk transforms

u to an integer matrix. The claim is proved.
Using the well-known Smith normal form, an integer matrix u of deter-

minant M > 0 can be written as v
[
a 0
0 d
]
w−1 with v, w ∈ SL2(Z) and a, d

positive integers with d | a, ad = M . Denoting a
d by N , we have:

Γ(2) ∩ u−1Γ(2)u = w

(
Γ(2) ∩

([
N 0
0 1

]−1
Γ(2)

[
N 0
0 1

]))
w−1

= w (Γ(2) ∩ Γ0(2N))w−1.

Therefore, applying the isomorphism

X = X (Γ)
∼=→ X (Γ(2) ∩ Γ0(2N)) : [τ ] 7→

[
w−1(τ)

]
converts f : [τ ] 7→ λ(τ) and g : [τ ] 7→ λ(u(τ)) to f : [τ ] 7→ λ(w(τ)) and
g : [τ ] 7→ λ(u(w(τ))) = λ(v(Nτ)), respectively. Moreover, according to
Remark 2.3, the elements v, w of SL2(Z) change λ through composing it
with an element of the anharmonic group.

For the last part, it suffices to show that the minimal polynomial of
λ(Nτ) over the field C(λ(τ)) is with rational coefficients. In a neighborhood
of∞ the modular function τ 7→ λ(τ) for Γ(2) has a Laurent series expansion
in terms of q

1
2 = eπiτ with rational coefficients. Hence the same is true for

τ 7→ λ(Nτ) as ∞ is a fixed point of τ 7→ Nτ . Now plugging these Laurent
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series of q
1
2 in the minimal polynomial indicates that coefficients of this

polynomial are solution to a linear system with rational coefficients. The
solution is unique as the minimal polynomial is unique and therefore it also
lies in Q. �

Arguments used in this proof immediately establish the following gener-
alization to the case of more than two Belyi functions. Consider all (k+ 1)-
tuples (X, f1, f2, . . . , fk) where X is a compact Riemann surface, functions
fi : X → CP1 (1 ≤ i ≤ k) are Belyi with subsets f−1

i ({0, 1,∞}) identical
and moreover C(f1, . . . , fk) = C(X).

Theorem 3.2. Notations as above, such (k+ 1)-tuples can be classified up
to isomorphism as (X(Γ), [τ ] 7→ λ(τ), [τ ] 7→ λ(u2(τ)), . . . , [τ ] 7→ λ(uk(τ)))
where ui’s (2 ≤ i ≤ k) are integer matrices of positive determinants, Γ is
the finite index subgroup Γ = Γ(2)∩u−1

2 Γ(2)u2∩· · ·∩u−1
k Γ(2)uk of Γ(2) and

λ is the Hauptmodul for Γ(2) that we fixed in Remark 2.3. Furthermore,
any such Riemann surface X has a model over Q.

Proof. We only need to use what established in the proof of Theorem 3.1.
There are finite index subgroups Γ1, . . . ,Γk of Γ(2) such that fi : X → CP1

is isomorphic with [τ ] ∈ X(Γi) = Γi\H∗ → CP1 : [τ ] 7→ λ(τ). For any 2 ≤
i ≤ k there is a ui ∈ SL2(R) which defines an isomorphismX(Γ1)→ X(Γi) :
[τ ] 7→ [ui(τ)] so the function τ 7→ λ(ui(τ)) is modular for Γ1. This finite
index subgroup of Γ(2) thus is contained in Γ(2)∩u−1

i Γ(2)ui. The preceding
subgroup of Γ(2) is of finite index if and only if ui is a scalar multiple of
an integer matrix of positive determinant. Since functions f1 : [τ ] 7→ λ(τ),
fi : [τ ] 7→ λ(ui(τ)) (2 ≤ i ≤ k) generate the function field of X = X(Γ1), Γ1
must coincide with the larger group Γ := Γ(2)∩u−1

2 Γ(2)u2∩· · ·∩u−1
k Γ(2)uk

because this is the largest subgroup of Γ(2) for which all functions τ 7→ λ(τ),
τ 7→ λ(ui(τ)) (2 ≤ i ≤ k) are modular. Finally, note that there is a rational
map X = X(Γ) 99K Ck : [τ ] 7→ (λ(τ), λ(u2(τ)), . . . , λ(uk(τ))) which away
from cusps provides us with an embedding X∗ := Γ\H ↪→ Ck. Any two
components λ(ui(τ)) and λ(uj(τ)) (1 ≤ i, j ≤ k distinct and u1 := I2)
satisfy an equation which is the algebraic dependence relation between λ(τ)
and λ(uiu−1

j (τ)). This is over Q because after multiplying uiu−1
j at some

suitable integer the result will be an integer matrix of positive determinant
which, invoking Smith normal form, can be descibed as v

[
a 0
0 d
]
w−1 where

v, w ∈ SL2(Z) and a, d ∈ N satisfy d | a. Then, denoting a
d by N ∈ N

and replacing τ in λ(τ) and λ(uiu−1
j (τ)) with w(τ), we end up with the

algebraic dependence relation between two functions which up to the action
of anharmonic group are the same as λ(τ), λ(Nτ) and now the q-expansion
argument from the end of the proof of Theorem 3.1 indicates that this
algebraic dependence is in fact over Q. The equations over Q that functions
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λ(ui(τ)), λ(uj(τ)) (1 ≤ i < j ≤ k) satisfy define an affine algebraic curve
in Ck birational to X. Hence X has a model over the rationals. �

Remark 3.3. In some sense the algebraic dependence between λ(τ), λ(Nτ)
is the prototype of any algebraic relation that a function, modular for a fi-
nite index subgroup of SL2(Z), and its twist with an automorphism may sat-
isfy. Rigorously speaking, let f be a non-constant modular function for the
finite index subgroup Γ of SL2(Z), Φ(X,Y ) a polynomial without multiple
factors and u ∈ PSL2(R) an automorphism of the upper half plane H such
that Φ(f(τ), f(u(τ))) = 0 for all τ ∈ H. When τ varies in a small enough
neighborhood of a generic point of H, it is possible to express f(u(τ)) in
terms of f(τ) as functions αi(f(τ)) 1 ≤ i ≤ m where m := degY Φ and αi’s
are holomorphic. There is a right action of Γ on these branches in which
γ ∈ Γ maps f(u(τ)) to f(u(γ(τ))). We conclude that f ◦ u is modular for
the finite index subgroup Γ′ of Γ which is defined to be the kernel of the
homomorphism Γ→ Sm arising from this action. Hence f is invariant under
the action of the subgroup uΓ′u−1 of SL2(R) too. We claim that u is in the
commensurator of Γ̄(1) in PSL2(R) or equivalently (keeping in mind that
[Γ(1) : Γ′] < ∞) [Γ′ : u−1Γ(1)u ∩ Γ′] < ∞. Otherwise, there are infinitely
many elements {wi}i∈N of uΓ′u−1 such that wiw−1

j /∈ Γ(1) for i 6= j. Pick
a point τ0 of the upper half plane which is not fixed by any of countably
many matrices in the subset

⋃
i,j∈N,i 6=j w

−1
i Γ(1)wj of SL2(R)−{±I2}. This

implies that the orbits of points wi(τ0) comprise an infinite subset of the
compact Riemann surface X(Γ′). But the non-trivial meromorphic function
induced by f on X(Γ′) restricts to the constant function of value f(τ0) on
this subset since f is invariant under elements wi of uΓ′u−1. This contradic-
tion establishes our claim. Now our discussion in the proof of Theorem 3.1
on the commensurator of Γ̄(1) = PSL2(Z) in PGL+

2 (R) combined with the
existence of Smith normal form shows that u up to a scalar multiple is of the
form v

[
N 0
0 1
]
w−1 where v, w ∈ Γ(1). Therefore, one can think of Φ(X,Y ) as

a polynomial relation between functions τ 7→ f(w(τ)) and τ 7→ f(v(Nτ))
which are modular for a suitable finite index subgroup of the original group
Γ. It might be possible to turn this into a polynomial equation in the form
of Φ̃(f(τ), f(Nτ)) = 0 after a change of coordinates in the (X,Y )-plane.
This is the case when Γ′′ := {γ′′ ∈ Γ(1) | f ◦ γ′′ = f} E Γ(1) so the func-
tion field C(f) is invariant under the right action of Γ(1) which indicates
that in the equation Φ(f(w(τ)), f(v(Nτ))) = 0 one can replace f(w(τ))
and f(v(Nτ)) with functions of the form τ 7→ af(τ)+b

cf(τ)+d and τ 7→ a′f(Nτ)+b′
c′f(Nτ)+d′ .

Then, by substituting X with aX+bY
cX+dY and Y with a′X+b′Y

c′X+d′Y in Φ(X,Y ) and
multiplying at a sufficiently large power of (cX + dY )(c′X + d′Y ) we get a
non-zero polynomial Φ̃(X,Y ) for which Φ̃(f(τ), f(Nτ)) = 0. Two examples
of this situation are f = λ,Γ′′ = Γ(2), i.e. what mentioned in Theorem 3.1,
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and f = j,Γ′′ = Γ(1) which is the case of modular equations that we are
going to study in the next section.

4. Dessins on X0(N) and Modular Equation

In this section we turn to a class of compact Riemann surfaces where
the function field can be generated by two Belyi functions. It is well-
known that τ 7→ j(τ) and τ 7→ j(Nτ) are Γ0(N)-invariant and gener-
ate the function field of X0(N). The minimal polynomial of j(Nτ) over
C(j(τ)) is the so called modular equation. Aside from the Belyi function
f : X0(N) = Γ0(N)\H∗ → X(1) = Γ(1)\H∗ ∼= CP1 in Proposition 2.1,
which is nothing but 1

1728j, the modular function g : X0(N) → CP1 de-
fined as [τ ] 7→ 1

1728j(Nτ) is Belyi too. Hence C(X0(N)) coincides with the
subfield C(f, g) generated by two Belyi functions.

It must be mentioned that the situation is slightly different from that
of Theorem 3.1 in the sense that dessins of f and g need not to have the
same set of vertices, one can only say that the vertices of type × at the
centers of faces are the same, i.e. f−1(∞) = g−1(∞) which is the set of
cusp orbits for Γ0(N). But there are similarities: Γ0(N) can be written in
the form of Γ(1) ∩ u−1Γ(1)u where u is either

[
N 0
0 1
]
or
[ 0 −1
N 0

]
. Moreover,

aforementioned Belyi functions on X0(N) may be realized as maps [τ ] ∈
Γ0(N)\H∗ 7→ [τ ] ∈ Γ(1)\H∗ and [τ ] ∈ Γ0(N)\H∗ 7→ [u(τ)] ∈ Γ(1)\H∗.
Note that the second choice for u above induces the well-defined involution
[τ ] 7→ [−1

Nτ ] of X0(N). Summarizing this discussion:

Proposition 4.1. The Belyi functions{
f : X0(N)→ CP1

[τ ] 7→ 1
1728j(τ),

{
g : X0(N)→ CP1

[τ ] 7→ 1
1728j(Nτ)

on the compact Riemann surface X0(N) = Γ0(N)\H∗ generate the func-
tion field of X0(N) and transform to each other after composition with the
holomorphic involution [τ ] 7→ [−1

Nτ ]. The minimal polynomial of 1728g over
C(f) is symmetric and precisely the modular equation for Γ0(N).

Proof. Proposition 2.1 implies that f is Belyi and it is straightforward to
check that [τ ] 7→ [−1

Nτ ] is a well-defined holomorphic involution of X0(N).
So g must be Belyi as well, being the composition of the Belyi function f
with an automorphism. The fact that j(τ) and j(Nτ) generate the function
field C(X0(N)) is standard. �

Remark 4.2. It is possible to transform the situation in Proposition 4.1
to that of Theorem 3.1 after replacing our curve with a finite cover. To
be precise, in Theorem 3.1 we encountered the curve X̃0(N) := X(Γ(2) ∩
Γ0(2N)) with the pair of Belyi functions f̃ : [τ ] 7→ λ(τ), g̃ : [τ ] 7→ λ(Nτ)
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on it. This is a ramified covering of X0(N) in the obvious way and makes
the following diagrams commute:

X̃0(N)

π

��

f̃ // CP1

α
��

X0(N)
f
// CP1

X̃0(N)

π

��

g̃ // CP1

α
��

X0(N) g
// CP1

Although subgroups Γ0(N) provide us with examples of function fields gen-
erated by a pair of Belyi functions with identical poles, yet these are not all
such examples because, as Proposition 2.1 indicates, there are constraints
on degrees of black and white vertices in dessins arising from finite index
subgroups of Γ(1). Even assuming conditions outlined in that proposition
about the degrees is not enough. In other words, it is not possible to for-
mulate an analogue of Theorem 3.1 for the case where f, g : X → CP1 are
Belyi functions with C(X) = C(f, g) and f−1(∞) = g−1(∞) with the prop-
erty that in the corresponding dessins the degree of any black (resp. white)
vertex is one or three (resp. one or two). For instance, Γ0(2)\H and Γ0(3)\H
are both isomorphic to C−{0} as we shall see in Examples 4.3, 4.4 whereas
these subgroups of Γ(1) are not conjugate by an element of PSL2(R) due to
different orders of torsion elements and therefore the argument employed
in the proof of Theorem 3.1 breaks down.

An essential ingredient of Theorem 3.1 is existence of an automorphism
whose composition with the Belyi functions f is the Belyi function g. As the
preceding example concerning Γ0(2)\H∗ and Γ0(3)\H∗ indicates, the weaker
assumption f−1(∞) = g−1(∞) is not enough to infer existence of such an
automorphism. To illustrate the subtlety here, notice that even if –unlike
the previous example –one assumes that moreover underlying graphs of
dessins of f and g are isomorphic, still ramified coverings f and g need not
to be isomorphic so there might not be any holomorphic automorphism
carrying one of the dessins to the other. For instance, look at Figure 4.1
(adopted from [4, p. 92]) of two different embeddings of a tree on the
Riemann sphere. In each dessin there is only one face whose center can be
located at the point ∞, the point that will serve as the common unique
pole of resulting Belyi functions. Thus the set of poles and the underlying
graphs are the same but the corresponding dessins are not isomorphic (or
even Galois conjugate).

Before starting to work with this pair of Belyi functions in examples, let
us say a few words about the dessin of g. As mentioned before, just like the
case of f , vertices of type × (poles of the Belyi function g) are orbits of
cusps for Γ0(N). But the degrees might be different. For instance, according
to Proposition 2.1, degrees of cusp orbits [0], [∞] ∈ X0(N) = Γ0(N)\H∗ in
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Figure 4.1. Dessins of two polynomial Belyi functions
on CP1. The underlying graphs are the same whereas the
dessins are not.

the dessin of f are specified by widths of these cusps of Γ0(N). These
widths are N and 1 respectively. These degrees are reversed in the dessin
of g: writing down the q-expansion and carefully analyzing charts around
these points of X0(N), it is not hard to see that the orders of poles [0]
and [∞] of [τ ] ∈ X0(N) 7→ j(Nτ) are 1 and N respectively. This fact will
aid us in drawing the dessin of g in Examples 4.3, 4.4 (Figures 4.3, 4.5).
Black (resp. white) vertices of the dessin of g correspond to Γ0(N)-orbits
of points τ in the upper half plane lying in the Γ0(N)-invariant subset
1
NΓ(1).ρ (resp. 1

NΓ(1).i) where again, just as the dessin of f described in
Proposition 2.1, the degree is either one or three (resp. one or two) with
degree one occuring precisely when τ is an elliptic point of Γ0(N).4 Again,
we observe that unlike Theorem 3.1, in Proposition 4.1 the dessins of f
and g may have different black or white vertices. Actually, the new vertices
appearing in the dessin of g lead to some interesting results: suppose the
equation of the Belyi function f : X0(N)→ CP1 is calculated and its dessin
is fixed both in the algebraic (in terms of the Γ0(N)-orbits appearing as
vertices) and the geometric (in the sense of coordinates on the Riemann
surface X0(N)) sense. One should consider how the dessin of the Belyi
function g is positioned with respect to it. There are constraints because
type × vertices whose coordinates have been fixed occur in the dessin of g
too. If there are enough of these constraints (three constraints in the genus
zero case, one constraint in the genus one case while no constraint necessary
for higher genera) the coordinates of these new vertices are determined up
to finitely many choices and evaluating the function 1728f at them (or the
other way around, finding the values that 1728g attains at vertices of the
dessin of f) results in values of the j-function on some new Γ(1)-orbits.
Several j-values computed by this procedure are outlined in Corollary 4.6.

Example 4.3. When N = 2: Γ̄0(2) = 〈T 〉Γ̄(2). In Example 2.2 the Belyi
function X(2) ∼= CP1 → X(1) ∼= CP1 was calculated as z 7→ 4

27
(z2−z+1)3

(z2−z)2

(cf. (2.1)) whose dessin is shown in Figure 2.1. Here T induces the order
two Möbius transformation z 7→ 1 − z with fixed points ∞, 1

2 . Therefore,

4In general, Γ0(N) has an elliptic point of order three if and only if N is odd and −3 is a
quadratic residue modulo N and has an elliptic point of order two if and only if −1 is a quadratic
residue modulo N .
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any meromorphic function CP1 → CP1 invariant under it factors via z 7→
(z − 1

2)2. Applying this map to coordinates of vertices in Figure 2.1, we
arrive at the dessin of f : X0(2)→ CP1 in Figure 4.2.

Figure 4.2. The dessin of the Belyi function f : X0(2)→ CP1.

The Belyi function of this dessin is f(z) = 1
27

(4z+3)3

(4z−1)2 and satisfies f(z)−

1 = 1
27

4z(4z−9)2

(4z−1)2 .
Let us switch to the second Belyi function g : [τ ] 7→ 1

1728j(2τ). There is
only one black vertex, [ρ2 ], and the white vertices are [ i

2 ] and [ i+1
2 ]. Accord-

ing to the dessin in Figure 4.2, [ i+1
2 ] is the unique elliptic orbit of Γ0(2).

Therefore, the degrees of these vertices are three, two and one respectively.
Up to now, the dessin of g on X0(2) ∼= CP1 possesses three edges, one
black vertex of degree three and two white vertices of degrees one and two
which implies that there are two faces. But, as we observed before, points
[0] and [∞] are two vertices of type × and of degrees 1 and N = 2. The
coordinates of [ i+1

2 ], [0], [∞] may be read off from the dessin of f in Fig-
ure 4.2 which implies that g(z) must be in the form of k(z−α)3

z− 1
4

while satisfies

g(z)− 1 = kz(z−β)2

z− 1
4

where α = [ρ2 ], β = [ i
2 ]. Fixing three vertices of a dessin

on CP1 rigidifies it so the unknowns α, β and k are readily determined:
k = 1024

27 , α = 3
16 , β = 9

32 . Thus g(z) = 1
27

(16z−3)3

4z−1 , g(z) − 1 = 1
27

4z(32z−9)2

4z−1
and the dessin is illustrated in Figure 4.3. Our pair of Belyi functions is:

(4.1) f(z) = 1
27

(4z + 3)3

(4z − 1)2 , g(z) = 1
27

(16z − 3)3

4z − 1 .

To derive the modular equation for Γ0(2) it suffices to find the algebraic
dependence relation between 1728f = 64 (4z+3)3

(4z−1)2 and 1728g = 64 (16z−3)3

4z−1 .
A simple observation helps us to accomplish this: changing z to z+1

4 in
them yields new rational functions 64 (z+4)3

z2 and 64 (4z+1)3

z where the for-
mer transforms to the latter by substituting z with 1

z . Hence any polynomial
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Figure 4.3. The dessin of the Belyi function g : X0(2)→ CP1.

equation that 1728f and 1728g satisfy is symmetric and actually a polyno-
mial relation between 64 (z+4)3

z2 + 64 (4z+1)3

z and (64 (z+4)3

z2 )(64 (4z+1)3

z ) which
are polynomials in y := z + 1

z .

64(z + 4)3

z2 + 64(4z + 1)3

z
= 4096

(
z2 + 1

z2

)
+ 3136

(
z + 1

z

)
+ 1536

= 4096y2 + 3136y − 6656

(
64(z + 4)3

z2

)(
64(4z + 1)3

z

)

= 262144
(
z3 + 1

z3

)
+ 3342336

(
z2 + 1

z2

)
+ 14991360

(
z + 1

z

)
+ 26808320

= 262144y3 + 3342336y2 + 14204928y + 20123648.
One has to compute the algebraic dependence relation between the above
quadratic and cubic in y and then in the derived equation replace them
with X + Y and XY respectively:

X3 + Y 3 −X2Y 2 + 1488(X2Y +XY 2)− 162000(X2 + Y 2)
+ 40773375XY + 8748000000(X + Y )− 157464000000000 = 0.

Example 4.4. Let N = 3. In the coordinate system on X(3) ∼= CP1

picked in Example 2.2, T acts as the rotation through 120 ◦ about the
origin. Therefore, since Γ̄0(3) = 〈T 〉Γ̄(3), factoring the degree twelve Belyi
function in (2.2) via z 7→ z3 gives rise to the formula z 7→ 1

64
z(z+8)3

(z−1)3 for the
Belyi function f : X0(3) → CP1 whose dessin, illustrated in Figure 4.4, is
obtained from applying z ∈ CP1 7→ z3 ∈ CP1 to coordinates of vertices in
Figure 2.2.
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Figure 4.4. The dessin of the Belyi function f : X0(3)→ CP1.

The dessin of the Belyi function g : [τ ] 7→ 1
1728j(3τ) is displayed in

Figure 4.5 where the coordinates of
[2ρ−5
ρ−2

]
, [0], [∞] have been obtained from

the dessin of f in Figure 4.4. Again, these three coordinates rigidify the
dessin and the coordinates of unknown vertices [ i

3 ], [ i+1
3 ] and [ρ3 ] will be

uniquely determined. We leave the details to the reader and just exhibit
the final formula for our pair of Belyi functions on X0(3) ∼= CP1, cf. [1].

(4.2) f(z) = 1
64
z(z + 8)3

(z − 1)3 , g(z) = 1
64
z(9z − 8)3

z − 1 .

Figure 4.5. The dessin of the Belyi function g : X0(3)→ CP1.

The next task is to compute the algebraic equation that meromorphic
functions 1728f = 27 z(z+8)3

(z−1)3 and 1728g = 27 z(9z−8)3

z−1 satisfy. Again, the pair
(f, g) has a property that facilitates such a calculation: f( z

z−1) = g(z) and
following a procedure similar to the one explained in the previous example,
we obtain the modular equation for Γ0(3) below:

X4 + Y 4 −X3Y 3 + 2232(X3Y 2 +X2Y 3) + 2587918086X2Y 2

−1069956(X3Y +XY 3)+36864000(X3+Y 3)+8900222976000(X2Y +XY 2)
+ 452984832000000(X2 + Y 2)− 770845966336000000XY

+ 1855425871872000000000(X + Y ) = 0.
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The existence of a relation such as f( z
4z−1) = g(z) in (4.1) or f( z

z−1) =
g(z) in (4.2) that facilitated computing the algebraic dependence for either
of these pairs is not accidental. Involutions z 7→ z

4z−1 or z 7→ z
z−1 ofX0(2) ∼=

CP1 or X0(3) ∼= CP1 are examples of the involution [τ ] 7→ [−1
Nτ ] of X0(N)

appeared in Proposition 4.1. It is interesting to find the values of 1728f = j
at the fixed points of these involutions. When N = 2, we have [τ ] = [−1

2τ ]
for Γ0(2)-orbits of τ =

√
2i

2 , τ = i−1
2 . The coordinates of these fixed points

are z = 0, 1
2 , i.e. fixed points of the involution z 7→ z

4z−1 . Since i−1
2 is

congruent with i under the action of Γ(1) : j( i−1
2 ) = j(i) = 1728 which

coincides with value of 1728 ·f(z) = 64 (4z+3)3

(4z−1)2 at z = 0. So j(
√

2i
2 ) = j(

√
2i)

must be 1728 · f(1
2) = 203. Similarly, when N = 3 under the action of

Γ0(3) the equality [τ ] = [−1
3τ ] holds for τ =

√
3i

3 or τ = ρ. These orbits
have coordinates z = 0, 2 because they are fixed points of z 7→ z

z−1 . The
j-function and 27 z(z+8)3

(z−1)3 vanish at ρ and z = 0, respectively. Therefore,
1728 · f(2) = 2 · 303 must be equal to j(

√
3i

3 ) = j(
√

3i).
Another interesting set of values of the modular j-function can be ob-

tained by evaluating 1728f at vertices of the dessin of g. In the case of
N = 2 evaluating the Belyi function f(z) = 1

27
(4z+3)3

(4z−1)2 derived in (4.1)
at vertices [ρ2 ] = 3

16 and [ i
2 ] = 9

32 of the dessin illustrated in Figure 4.3
yields: j(ρ2) = 1728 · f( 3

16) = 16 · 153 and j( i
2) = 1728 · f( 9

32) = 663

while in Example 4.4 one should compute the values of f(z) = 1
64
z(z+8)3

(z−1)3 at
points [ρ3 ] = 8

9 , [ i+1
3 ] = 6−2

√
3

9 and [ i
3 ] = 6+2

√
3

9 : j(ρ3) = 1728 · f(8
9) =

−3 · 1603, j( i+1
3 ) = 1728 · f(6−2

√
3

9 ) = (18 − 6
√

3) · (82 − 54
√

3)3 and
j( i

3) = 1728 · f(6+2
√

3
9 ) = (18 + 6

√
3) · (82 + 54

√
3)3.

Example 4.5. The group Γ0(4) does not have any elliptic point and thus
is a torsion-free genus zero congruence subgroup. One can check its dessin
from [3, p. 277]. A better way to analyze this dessin, that also determines
which vertex corresponds to which orbit, is to note that Γ0(4) is a nor-
mal subgroup of Γ0(2) with the quotient Γ0(2)/Γ0(4) an order two group
generated by the coset of the matrix

[−1 1
−2 1

]
. This matrix generates the

stabilizer of i+1
2 in the action of Γ0(2) and maps 0 to 1, a point from the

same Γ0(4)-orbit. Hence the dessin of f : [τ ] ∈ X0(4) 7→ 1
1728j(τ) is the

pullback of the dessin on X0(2) illustrated in Figure 4.2 by a degree two
map X0(4) ∼= CP1 → X0(2) ∼= CP1 branched over [ i+1

2 ], [0] ∈ X0(2). Such
a dessin is displayed in Figure 4.6 below where points [ i+1

2 ], [i] are fixed to
be 0, 3 respectively and [0], the unique cusp of width N = 4, is placed at



The Belyi Characterization of a Class of Modular Curves 427

infinity.

(4.3) f(z) = (z2 − 6)3

27(z2 − 8) , f(z)− 1 = z2(z2 − 9)2

27(z2 − 8) .

Figure 4.6. The dessin of the Belyi function f : X0(4)→ CP1.

Unlike Examples 4.3, 4.4, here there are three cusps and since the invo-
lution l : [τ ] 7→ [−1

4τ ] of X0(4) permutes cusp orbits, the cusp coordinates in
Figure 4.6 uniquely determine l: in this coordinate system on X0(4) ∼= CP1,
the involution l swaps [∞] =

√
8 with [0] = ∞ while fixes [1

2 ] = −
√

8 and
thus is given by z 7→

√
8z+24
z−
√

8 . Composing it with f yields the second Belyi
function g(z), the one which is induced by [τ ] 7→ 1

1728j(4τ):

(4.4)
g(z) = (z2 + 30

√
8z + 264)3

216
√

8(z −
√

8)4(z +
√

8)
,

g(z)− 1 = (z + 3
√

8)2(z2 − 66
√

8z − 504)2

216
√

8(z −
√

8)4(z +
√

8)
.

The fixed points of l are z = −
√

8 and z = 3
√

8 that represent orbits [1
2 ]

and [ i
2 ]. This yields the value 1728 · f(3

√
8) = 663 for j( i

2) = j(2i) that
coincides with what computed before. Evaluating 1728 · g(z) at black and
white vertices of Figure 4.6 yields: j(4(i+1)

2 ) = 1728 · g(0) = 663, j(4i) =
1728 · g(3) = 27

√
8 · (3 +

√
8)3 · (91 + 30

√
8)3, j(4(i+3)

5 ) = 1728 · g(−3) =
−27
√

8 ·(3−
√

8)3 ·(91−30
√

8)3, j(4ρ) = 1728 ·g(
√

6) = 13500 ·(30+17
√

3)3

and j(4(ρ+1)
3 ) = 13500 · (30− 17

√
3)3.

The following corollary summarizes the special values of the modular
j-function obtained in this paper. We have chosen representatives of Γ(1)-
orbits with imaginary parts as big as possible in order to have fast con-
vergence in the q-expansion so that the interested reader can verify these
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computations numerically only by writing down first few terms of the q-
expansion. For instance, 4(i+3)

5 is replaced with i + 1
2 from the same orbit

or 1+3
√

3i
2 is preferred to ρ

3 .

Corollary 4.6. We have:
j(
√

3i) = 16 · 153, j(2i) = 663, j(
√

2i) = 203,

j

(
1 + 3

√
3i

2

)
= −3 · 1603, j(3i) =

(
18 + 6

√
3
)
· (82 + 54

√
3)3,

j

(1 + 3i
2

)
=
(
18− 6

√
3
)
· (82− 54

√
3)3,

j(4i) = 27
√

8 · (3 +
√

8)3 · (91 + 30
√

8)3,

j

(
i + 1

2

)
= −27

√
8 · (3−

√
8)3 · (91− 30

√
8)3,

j(2
√

3i) = 13500 ·
(
30 + 17

√
3
)3
,

j

(√
3i
2

)
= 13500 ·

(
30− 17

√
3
)3
.

Let us finish with an example of a ramified cover ofX0(N) whose function
field is generated by three Belyi functions instead of two, the situation which
is reminiscent of Theorem 3.2.

Example 4.7. Suppose that apart from Belyi functions [τ ] 7→ 1
1728j(τ) and

[τ ] 7→ 1
1728j(Nτ) on X0(N) introduced in Proposition 4.1, we also require

[τ ] 7→ 1
1728j(

τ
N ) to be a Belyi function. In order for this function to be

well-defined, one has to pass to a ramified cover of X0(N) corresponding
to a subgroup of Γ0(N) which is contained in Γ(1)∩ (

[ 1 0
0 N

]−1Γ(1)
[ 1 0

0 N
]
) =

Γ0(N)t. We can work with

Γ′0(N) := Γ0(N) ∩ Γ0(N)t =
{[

a b
c d

]
∈ Γ(1)

∣∣∣N | b, c}
= Γ(1) ∩

([
N 0
0 1
]−1Γ(1)

[
N 0
0 1
])
∩
([ 1 0

0 N
]−1Γ(1)

[ 1 0
0 N

])
.

Denote the corresponding curve by X ′0(N) := X(Γ′0(N)). The same ar-
guments indicate that the three Belyi functions [τ ] 7→ 1

1728j(τ), [τ ] 7→
1

1728j(Nτ) and [τ ] 7→ 1
1728j(

τ
N ) generate the function field C(X ′0(N)). The

algebraic dependence relation between any two of them is a modular equa-
tion. We conclude that this curve has a model over Q. It is worth mention-
ing that X ′0(N) is just the quotient of X(N) under the action of the group
Γ′0(N)/Γ(N) of diagonal matrices over Z/NZ and hence X(N) → X ′0(N)
is a regular cover with Γ′0(N)/Γ(N) ∼= (Z/NZ)∗ as its group of deck trans-
formations. This is closely related to the standard fact that the modular



The Belyi Characterization of a Class of Modular Curves 429

curve X(N) has a model over the cyclotomic field Q(e
2πi
N ) where the Galois

group Gal(Q(e
2πi
N )/Q) is isomorphic with (Z/NZ)∗ too.
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