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Journal de Théorie des Nombres
de Bordeaux 29 (2017), 799–813

A Geometric Proof of Hermite’s Theorem in
Function Fields

par Michael ROSEN

Résumé. Un théorème important de C. Hermite énonce que tout
ensemble de corps de nombres, dont les discriminants sont bornés
en valeur absolue, doit être fini. Correctement formulé, un résultat
similaire est valable pour des corps de fonctions d’une variable sur
un corps de constantes fini. Cet article donne une nouvelle preuve
de ce résultat par l’analogie avec l’approche de la « géométrie des
nombres » de H. Minkowski dans le cas des corps de nombres.

Abstract. An important theorem of C. Hermite asserts that
any set of algebraic number fields, whose discriminants are
bounded in absolute value, must be finite. Properly formulated, a
similar theorem holds true for function fields in one variable over
a finite constant field. This paper gives a new proof of this result
by using an analogue of the geometry of numbers approach due
to H. Minkowski in the number field case.

1. Introduction
We will give a new proof of the following theorem originally due to Her-

mite in the case of number fields. Our proof is along the lines of the classic
geometric proof of the number field version (due to H. Minkowski)

Throughout this paper, F will denote a finite field and k = F(T ) will
denote a rational function field over F.
Theorem 1.1. Let B be a positive constant. There exist only finitely many
geometric and separable extensions K/k in a fixed algebraic closure of k for
which the discriminant divisor dK/k satisfies degk dK/k ≤ B.

This theorem follows from the apparently weaker theorem
Theorem 1.2. Let B and N be two positive constants. There are only
finitely many geometric and separable extensions K/k in a fixed algebraic
closure of k for which [K : k] ≤ N and the discriminant divisor dK/k
satisfies degk dK/k ≤ B.
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It is important to assume the extensions are geometric since when the
constant field is finite there is a constant field extension of every positive
integer degree. All these extensions are unramified, so the degree of the
discriminant is zero in every case. Thus, Theorem 1.1 is false if we allow
constant field extensions. If an extension is inseparable, the trace map is
identically zero which implies dK/k = 0. However, there are infinitely many
inseparable extensions of degree p of k, where p is the characteristic of
k. This follows from the fact that k∗/k∗p is an infinite dimensional vector
space over Z/pZ. Once again, this is a contradiction to Theorem 1.1.

To show that Theorem 1.2 implies Theorem 1.1 it suffices to show that
degk dK/k goes to infinity as [K : k] goes to infinity. To do this one can
make use of the Riemann–Hurwitz theorem which asserts

2gK − 2 = n(2gk − 2) + degK DK/k .

Here, gK is the genus of K, gk the genus of k, n = [K : k], and DK/k is
the different divisor of K over k (see [5]). To define degK of a divisor of
K we need only define it for prime divisors w and extend by linearity. We
define degK w = [Ow/Mw : F] , where Mw is the maximal ideal of Ow the
valuation ring at w. We are using the hypothesis that K/k is a geometric
extension, i.e. the constant field of K, F, is equal to the constant field of
k. Similarly, degk v = [Ov/Mv : F]. Now, a simple calculation using the
fact that the norm of the different is equal to the discriminant proves that
degK DK/k = degk dK/k (see [5, p. 82]). Thus, for a geometric extension we
can restate Riemann–Hurwitz as follows

2gK − 2 = n(2gk − 2) + degk dK/k .
We thank Siman Wong for pointing this out to us.

Now, recall that the rational function field has genus zero and we derive
degk dK/k = 2(n+ gK − 1) ≥ 2n− 2 .

Thus, the degree of the discriminant goes to infinity with n = [K : k] as
asserted.

In his 1996 treatise [1], D. Goss outlines a proof of Theorem 1.1 due
to Y. Taguchi which uses the theory of moduli spaces of curves in charac-
teristic p. In 2010, E. Widmer proved a theorem about heights of rational
points on algebraic curves (see [8]) which can be shown to imply Hermite’s
theorem in function fields. Finally, S. Wong has written a paper (see [9])
proving Hermite’s theorem in the function field case by using the Tcheb-
otarev density theorem and a representation theory style approach.

In December of 1994 I wrote a letter to David Goss outlining a proof
of the theorem which uses the classical geometry of numbers approach.
The proof was complete if one restricts attention to separable extensions of
k = F(T ) which split completely at infinity. A few years ago I was able to
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give a proof of the theorem in full generality. It has not yet been published.
It seems appropriate to include it in this collection of papers in honor of
David Goss on his sixtieth birthday.

2. The Number Field Case
Before beginning the proof, we recall some background. Let E/Q be

an algebraic number field of degree n. The classical proof makes use of
the usual embedding of a number field K/Q in Rn. This is done by first
observing that R is the completion of Q at its unique archimedean prime.
The algebraic closure of R is C, the complex numbers. Let ψ1, ψ2, . . . , ψr1
be the set of real embeddings of K into C and ψr1+1, . . . ψr1+r2 a complete
set of non-conjugate complex embeddings of K into C. One then embeds
K into Rr1Cr2 by the map

Ψ(α) = (ψ1(α), . . . , ψr1(α), ψr1+1(α), . . . , ψr1+r2(α)) .

Finally, by taking a basis {1, i} for C/R we identify C with R2 and thus,
Rr1Cr2 with Rn. The ring of integers OK embeds as a lattice in Rn. The
classical proof of Hermite’s theorem makes use of this embedding and of
geometric properties of lattices in Euclidean space. So, to begin with, we
must find an analogue of the above construction and also an analogue of
one of Minkowski’s theorems in the geometry of numbers.

3. Geometry of Numbers in Function Fields
As usual, the analogue of Z ⊂ Q is A ⊂ k, where A = F[T ], the ring

of polynomials. If K/k is a finite separable extension, we define OK to be
the integral closure of A in K. The standard absolute value at the prime
at infinity of k = F(T ) is defined on polynomials by |f(T )|∞ = qdeg f(T )

and extended in the obvious way to all of k. The completion of k with
respect to this absolute value is the field of formal Laurent series in 1/T , i.e.
k∞ = F((1/T )). The field k∞ is our replacement for R. As our replacement
for C we will use the separable closure ksep∞ of k∞. It is more usual to use the
completion of the algebraic closure of k∞ but for our purposes the separable
closure will suffice. Note that |α|∞ extends uniquely from k to k∞ and from
there to ksep∞ . We will use the same notation |α|∞ for α ∈ ksep∞ . Since this
will be the only absolute value we consider, from now on we will, for the
most part, drop the subscript “∞”.

Consider the k∞ vector space V = kn∞. The field k∞ is locally compact.
In fact, the ring O∞ = F[[1/T ]] is both open and compact. Moreover, A ∩
(1/T )O∞ = (0), so A is a discrete subring of k∞. Introducing the product
topology on V , we see that V is a locally compact vector space. Let µ
denote the unique Haar measure of k∞ which has the value 1 on O∞. It
is a standard fact that for α ∈ k∗∞ and any measurable set S, one has
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µ(αS) = |α|µ(S) (see [6, Ch. II, Prop. 2]). Now, let ν be the product
measure µn on V = kn∞. It is a Haar measure on V and has the value one
on On∞.

Definition 3.1. A finitely generated A-submodule L of V is defined to be
a lattice if it is discrete and V/L is compact.

An A lattice must have the form L = Av1 + Av2 + · · · + Avn, where
{v1, v2, . . . , vn} is a k∞ basis for V . Conversely, any such object is an A-
lattice.

Definition 3.2. D(L) = O∞v1 +O∞v2 + · · ·+O∞vn
This is an “almost” fundamental domain for L. Note that D(L) ∩ L is

finite. In fact, D(L) ∩ L = {
∑
i αivi | αi ∈ F}. Call this set Lo. It is an F

vector space of dimension n. From this it is easily seen that

V =
⋃

λ∈L/Lo

{λ+D(L)}

where the union is taken over a set of coset representatives of L/Lo. This
is a disjoint union.

Definition 3.3. If L ⊂ V is an A-Lattice, define vol(L) = ν(D(L)).

As we will see, this definition is independent of the A basis chosen for L.
Let {e1, e2, . . . , en} be the standard basis of kn∞, i.e. ei has all its coefficients
0 except for a 1 at the i-th place. That vol(L) does not depend on a basis
for L follows immediately from the following Proposition.

Proposition 3.4. Let L = Av1 + Av2 + · · ·+ Avn be a lattice in V . Write
vi =

∑n
j=1 cijej. Then, |det(cij)| = vol(L).

Proof. This is fairly standard fact, so we only sketch a proof. Let P∞ be
the maximal ideal of O∞. By a box B about 0 in V we mean an open set
of the form

B = Pm1
∞ × Pm2

∞ × · · · × Pmn
∞ .

For a box of this form we begin by showing ν(TB) = |det T|ν(B) for any
linear transformation T in GLn(k∞). Every matrix in GLn(k∞) can be
written as a product of diagonal matrices, elementary matrices, and per-
mutation matrices, so it is enough to check the result for each class. For
elementary matrices, E, EB differs from B only by translation, so the mea-
sure of B is unchanged. Also, det E = 1. For permutation matrices, P, PB
and B have the same measure and detP = ±1. For diagonal matrices the
result follows from the relation µ(αPm∞) = |α|µ(Pm∞) for α ∈ k∗∞. Since
ν is Haar measure, the result holds for the translation of a box. Finally,
any open set can be approximated arbitrarily closely by a disjoint union
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of translations of boxes. Thus, ν(TU) = |det T|ν(U) for any open set U
in V , etc.

If T denotes the linear transformation given by the matrix (cij), we have
D(L) = T(On∞). Thus, vol(L) = ν(D(L)) = |det T|ν(On∞) = |det T| �

The next Proposition is a substitute for the geometric lemma of
Minkowski.

Proposition 3.5. Let L be a lattice in V and C ⊂ V a measurable set
closed under subtraction, i.e. if c1, c2 ∈ C then c1 − c2 ∈ C. If ν(C) >
vol(L), then C ∩ (L− Lo) is not empty.

Proof. From C =
⋃
λ∈L/L0 (λ+D(L) ∩ C), disjoint union, so

ν(C) =
∑

λ∈L/Lo

ν (λ+D(L) ∩ C) =
∑

λ∈L/Lo

ν (D(L) ∩ C − λ) .

In the last equality we have used the fact that ν is Haar measure. If the
sets D(L) ∩ C − λ were disjoint, the last sum would be less than or equal
to ν(D(L)) = vol(L). This contradicts the hypothesis that ν(C) > vol(L).
Thus, there exist coset representatives λ1 6= λ2 for L/Lo such that C −
λ1 ∩ C − λ2 is non-empty. It follows that there are elements c1 ∈ C and
c2 ∈ C such that c1 − λ1 = c2 − λ2. Thus, λ1 − λ2 = c1 − c2 ∈ C. Thus,
λ = λ1 − λ2 is in C ∩ L. λ is not in Lo since λ1 and λ2 represent different
cosets of L/Lo. �

The set C in the Proposition is a subgroup of V . It is non-empty, so if
c ∈ C then 0 = c − c is in C and −c = 0 − c is in C, Finally, if c1, c2 ∈ C
the c1 + c2 = c1 − (−c2) is in C. We will use the result when C is a box
about the origin of sufficiently large measure.

4. The Geometric Embedding in Function Fields
It turns out that to prove the Main Theorem, it is sufficient to consider

the case where K/k is a geometric Galois extension. We will prove this
reduction in an appendix. From now on we will make the assumption that
K/k is a Galois extension with Galois group G. This considerably simplifies
the exposition.

There are n k-embeddings of K into ksep∞ . We will identify k with its
image in k∞. Suppose ψ is a fixed embedding of K into ksep∞ . Then all the
embeddings are given by {ψ ◦ σ | σ ∈ G}. This follows from the fact that
ψ ◦ σ is a k-embedding for all σ ∈ G and that they are all distinct since ψ
is one to one. This gives n distinct embeddings and that is all there can be.
It follows that for any two embeddings ψ1 and ψ2 we have ψ1(K) = ψ2(K).
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Consider the field K̂ ⊂ ksep∞ which is the compositum of ψ(K) and k∞. K̂
is a finite extension of k∞ and so it is complete in the valuation given by
|α| on ksep∞ . All the k-embeddings of K into ksep∞ have image in K̂ and that
image is dense. We also note that since ψ(K)/k is a Galois extension with
group ψGψ−1 we must have K̂/k∞ is a Galois extension. Denote its Galois
group by H. By restriction to ψ(K) we can identify H with a subgroup of
ψGψ−1 and ψ−1Hψ with a subgroup of G.

As usual, we can extend the valuation |β| from k to K by choosing an k-
embedding ψi from K to ksep∞ and defining |β|ψi

= |ψi(β)| for all β ∈ K. It
is easily checked that this is an extension of | · | from k to K. All extensions
of | · | are obtained this way. As is well known, this subgroup of G given by
ψ−1Hψ is the decomposition group of the valuation | · |ψ onK. For different
embeddings ψi we get the decomposition groups of the valuations | · |ψi

. For
all this, see Serre [6, Ch. 2, §3].

Lets call two embeddings ψ1 and ψ2 equivalent if they induce the same
valuation on K. From what has been said so far, it is not hard to show that
ψ1 and ψ2 are equivalent if and only is there is an element h in H such
that ψ2 = hψ1. Let m = [K̂ : k∞] = #H, the local degree. If g is defined
by n = gm, then there are exactly g equivalence classes of embeddings
corresponding to g distinct extensions of | · | to K. Let {ψ1, ψ2, . . . , ψg} be
a set of representatives for these classes.

We claim that the set {hψi | h ∈ H, 1 ≤ i ≤ g} is the set of all the
k-embeddings of K into ksep∞ . Each element of this set is an embedding
and there are mg = n of them, so it is only necessary to show they are all
distinct. If h1ψ1 = h2ψ2, then |h1ψ1(β)| = |h2ψ2(β)| for all β ∈ K, which
implies |ψ1(β)| = |ψ2(β)| for all β ∈ K, i.e. ψ1 and ψ2 are equivalent. It
follows that ψ1 = ψ2. Since h−1

2 h1ψ1 = ψ1, and since ψ1(K) is dense in K̂
we can conclude that h−1

2 h1 = e, in other words h1 = h2.
We are now in a position to identify the map we will need to embed

K into V = kn∞. Let {ψ1, ψ2, . . . .ψg} be a complete set of inequivalent
embeddings and define, for β ∈ K,

Ψ′(β) = (ψ1(β), ψ2(β), . . . , ψg(β)) ∈ K̂g .

By choosing a basis for K̂ over k∞ we can identify K̂ with km∞ and thus
K̂g with kmg∞ = kn∞ = V . This is like the classical case where we choose a
basis {1, i} to identify C with R2. The easiest case is when K̂ = k∞, the
analogue of K being a totally real number field. In that case Ψ embeds K
directly into V . In this situation, the path to the proof of our theorem is
very smooth. For the general case there are a number of obstacles to be
overcome. One has to show that there are only finitely many possibilities
for the field K̂. Also, the basis of K̂ over k∞ must be chosen carefully.
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5. The local Hermite Theorem
Let’s take up the first problem about K̂. This problem doesn’t arise in

the classical case because the completion of Q at its unique archimedean
prime is R. The only extensions of R are R itself and C. In our case, however,
k∞ has many extensions. For p-adic fields there are only finitely many ex-
tensions of bounded degree. This follows from Krasner’s lemma (see Lang’s
book [4, Ch. II, Prop. 14]). However, in characteristic p we can have infin-
itely many extensions of bounded degree. As we shall see, this is because of
facts about Artin–Schreier extensions in local fields. Proposition 5.2 below
can be thought of as a local version of Hermite’s theorem.

So as not to introduce too much notation, in this section we will use
the letters k and K, for somewhat different objects than in the rest of the
paper. We suppose k = F((U)) is a Laurent series field over a finite field
F with q = pt elements. Let | · |k be the normalized absolute value, i.e.
|U |k = q−1. Set vk(α) = − logq |α|k for all α ∈ k∗. The function vk(α) is
the normalized additive valuation on k, i.e. vk(U) = 1. If K/k is a finite,
separable extension, we define the discriminant of K/k, dK/k, to be the
discriminant of the valuation ring of K, OK , as a module over Ok. This is
well defined up to the square of a unit in Ok. The absolute value of dK/k
is well defined, and therefore so is vk(dK/k). We need to know how this
quantity behaves in towers.

Lemma 5.1. Let L/k be a finite separable extension and K/k an interme-
diate extension. Then,

vk(dL/k) = [K : k]vk(dL/K) + [L : K]vk(dK/k) .
In particular, if vk(dL/k) is bounded above by B then vk(dK/k) and vK(dL/K)
are also bounded above by B.

Proof. We note that vk extends uniquely to K and the normalized additive
valuation on K satisfies evk = vK , where e = e(K/k) is the ramification
index.

We recall the relation DL/k = DL/KDK/k among the various multiplica-
tive differents involved. Recall also that the discriminant is the norm of the
different. Take the norm NL/k of both sides and then take | · | of the result.
Since NL/k = NK/kNL/K , we find

|dL/k|k = |NK/k(dL/K)|k|dK/k|
[L:K]
k .

In a separable extension the norm of an element is the product of the
conjugates of the element. Since we are in the local case, the conjugate of
an element has the same absolute value as the element itself. Thus, our
relation can be rewritten as

|dL/k| = |dL/K |
[K:k]
k |dK/k|

[L:K]
k .
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The equation in the statement of the Lemma follows by taking − logq of
both sides. The equation immediately shows that vk(dK/k) ≤ vk(dL/k).
Since e = e(K/k) ≤ [K : k] the equation also implies

vk(dL/k) ≥ [K : k]vk(dL/K)) ≥ e vk(dL/K) = vK(dL/K) . �

Proposition 5.2 (The Local Hermite Theorem). Let k be a Laurent series
field in one variable over a finite field F of characteristic p. Let vk be its
canonical additive valuation. Let L/k be a finite Galois extension of k inside
a fixed separable closure of k. Fix positive integers B and N . There are only
finitely many L with [L : k] ≤ N and vk(dL/k) ≤ B.

Proof. Let G be the Galois group of L/k and P ⊂ G a p-Sylow subgroup.
Consider the fixed field K of P . We must have [K : k] is not divisible
by p. In this case the proof of the finiteness of the number of such K with
[K : k] bounded can be proved by adopting the proof of the p-adic case given
in [4]. There the problem is reduced to the totally ramified case. The theory
of Eisenstein polynomials together with a compactness lemma yields the
result. This doesn’t work in the characteristic p case because an Eisenstein
polynomial can be inseparable if p divides the ramification index. However,
if p doesn’t divide the ramification index, a monic Eisenstein polynomial
is separable which is what is needed to invoke Krasner’s Lemma. Applying
this reasoning to K/k shows that only finitely many such extensions with
[K : k] ≤ N can exist.

The Galois group of L/K is P , a p-group, so there is a tower

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = L .

where each extension Ki+1/Ki is cyclic of degree p. Thus, each of these
extensions is generated by the root of an Artin–Schreier equation xp −
x = ai, where ai ∈ Ki. Under the hypotheses of the Proposition, we will
show that for each Ki there are only finitely many possible Artin–Schreier
extensions of degree p. This will complete the proof.

By a general structure theorem, each Ki has the form Ki = E((πi)),
where πi is a uniformizing parameter. Since [E : F] ≤ [L : k] ≤ N , we see
that there are only finitely many possibilities for the finite field E. Let’s
temporarily drop the subscript “i”. Set E = E((π)) and let M/E be an
Artin- Schreier extension of degree p. Thus, M is generated by a root of
xp−x−a where a ∈ E. If vE(a) > 0, this equation has a root in E. In fact,
let α =

∑∞
i=0 a

pi . This series converges and α− αp = a. It follows that −α
is a root of our equation and soM = E. Every element in E is the sum of a
polynomial over E in π−1 and an element a such that v(a) > 0. It therefore
suffices to consider Artin–Schreier equations where a is a polynomial over
E in π−1. Let λ be the degree of this polynomial. H. Hasse has shown that
if p does not divide λ then vK(dM/K) = (p− 1)(λ+ 1). He also shows that
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If p does divide λ then the extension is given with a polynomial in π−1 of
smaller degree. See H. Hasse [2] or H. Stichtenoth [7, Prop. 3.7.8, p. 127].
Among other things, this shows, in contrast to the p-adic case, there are
infinitely many Galois extensions of E of degree p. However, if we also
bound vK of the discriminant, then λ is bounded, and so there are only
finitely many such extensions.

It remains to show that if vk(dL/k) is bounded by B then vKi(dKi+1/Ki
)

is also bounded by B for each i from 0 to t− 1. This, however, follows by
repeated application of Lemma 5.1. �

6. Proof of the Main Theorem
Having explored the local case, we now return to the global setting and

recall our original notation. First, k = F(T ) is a rational function field over
a finite field F with characteristic p andK/k is a finite Galois extension with
group G and degree n. For a polynomial f(T ) let | · |∞ be the absolute value
on k defined by |f(T )|∞ = qdeg f , and k∞ the completion of k with respect
to this absolute value. We have, k∞ = F((T−1)). Let ψ be an embedding
of K into ksep∞ and K̂ = k∞ψ(K). In our statement of the main theorem,
we suppose that both n and the discriminant divisor of K/k is bounded.
This easily implies that both [K̂ : k∞] and vk∞(dK̂/k∞

) are bounded. From
the local Hermite theorem, Proposition 5.2 above, we see that there are
only finitely many possibilities for K̂. We recall the mapping Ψ′ defined
immediately after the proof of Proposition 5.2.

Ψ′(β) = (ψ1(β), ψ2(β), . . . , ψg(β)) ∈ K̂g

where β ∈ K and the ψi vary over a complete set of inequivalent embeddings
of K into ksep∞ .

To go further, we now choose an element γ ∈ K̂ which is a normal basis
element for K̂/k∞. This means that {h1γ, h2γ, . . . , hmγ} is a basis for K̂
over k∞. Here, hj vary over the elements in H. For convenience we choose
h1 = e. A careful discussion of the existence of a normal basis element is
given in section 14.14 of Jacobson’s book, Basic Algebra I [3]. It is proven
there that γ is a normal basis element if and only if det(hihj(γ)) 6= 0.
We will use this important fact later. One last restriction; for convenience
we assume |γ| ≤ 1. This can always be achieved by multiplying γ with a
sufficiently high power of 1/T if necessary.

We now, finally, extend the map Ψ′ to a map Ψ from K into kn∞ = V .
Let β ∈ K and, for i = 1, 2, 3, . . . , g write ψi(β) =

∑m
j=1 ajihj(γ), where

aji ∈ k∞. We then define

Ψ(β) = (a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , a1g, a2g, . . . , amg) ∈ kn∞ = V.

It is easy to see that Ψ is a map of k∞ vector spaces.
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Now, take the equation ψi(β) =
∑m
j=1 ajihj(γ) and multiply both sides

with hk to get

hkψi(β) =
m∑
j=1

hkhj(γ)aji .

Set Γ be the m×m matrix ( hkhj(γ) ). Then,
h1ψi(β)
h2ψi(β)

...
hmψi(β)

 = Γ


a1i
a2i
...
ami


Let Γ(g) be the n×n matrix with the matrix Γ arranged by blocks along

the diagonal and all the other entries zero. As we have seen, the hkψi run
through all the k-embeddings of K into K̂. Arrange these lexicographically
and rename them λ1, λ2, . . . , λn. Finally, define Λ(β) = (λ1(β), λ2(β), . . . ,
λn(β)) arranged as a column vector. Then, from the above matrix equation
we find

Λ(β) = Γ(g)Ψ(β) ∈ K̂n .

Let {ω1, ω2, . . . , ωn} be an integral basis for OK over A = F[T ]. Finally, we
derive the matrix equation which will show that Ψ(OK) is an A-lattice in V
and enable us to calculate the volume of its fundamental domain. Consider
the equation of n× n matrices

(Λ(ω1),Λ(ω2), . . . ,Λ(ωn)) = Γ(g) (Ψ(ω1),Ψ(ω2), . . . ,Ψ(ωn)) .
Just as in the classical case, the determinant of the left hand side squared
is dOK/A, the discriminant of OK considered as an A-module. Let’s just call
this discriminant d from now on. It is the finite part of the discriminant of
K/k. Since we are assuming K/k is separable, d 6= 0. This implies that the
A-module generated by the vectors Ψ(ωi) is an A lattice in V and that the
volume of its fundamental domain is, by Proposition 3.4,

vol(Ψ(OK)) = |det(Γ)|−g
√
|d| .

For future reference, we note that the left hand side of this equation is
an integral power of q, so this must be true of the right hand side as well.
Also note that since we have chosen γ to have absolute value ≤ 1 it follows
that |det(Γ)|−g ≥ 1. Here, and in the rest of the paper, the absolute value
| · | refers to the absolute value at infinity, | · |∞.

We are finally in position to prove the main result, Theorem 1.1. We can
assume n = [K : k] > 1, since otherwise K = k, and there is nothing to
prove. The idea is to produce an element α ∈ OK such that the coefficients
of Ψ(α) satisfy certain inequalities. One consequence of these inequalities
will be that α generates K over k. Secondly, the inequalities put a bound
on the coefficients of the minimal polynomial satisfied by α over A. It will
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follow that there are only finitely many such polynomials and therefore
only finitely many such α, and consequently only finitely many fields K
satisfying the hypotheses of the Theorem.

Recall that for 1 ≤ i ≤ g and β ∈ K we set ψi(β) =
∑m
j=1 ajihj(γ) and

then the aij are assembled into the column vector Ψ(β). Let’s consider the
domain in V defined by the inequalities

(∗) |a11| ≤ qn|det(Γ)|−g
√
|d| and |aij | ≤ q−1 for all i, j 6= 1, 1 .

As we pointed out earlier, the right hand side of the first inequality is
an integral power of q. Thus, the sets defined by the inequalities are just
powers of P∞. From this one easily deduces that the volume of the open
set defined by all the inequalites is q det(Γ)−g

√
|d| which is greater than

vol(Ψ(OK)) = |det(Γ)|−g
√
|d|. By Proposition 3.5, there is an α ∈ OK

such that Ψ(α) satisfies our inequalities.
Assume to begin with that g > 1. From ψi(α) =

∑m
j=1 ajihj(γ) and the

above inequalities, we see immediately that |ψi(α)| < 1 for i = 2, 3, . . . , g.
If |ψ1(α)| ≤ 1, then α would have absolute value ≤ 1 at all infinite places.
Since α ∈ OK it has absolute value ≤ 1 at all finite places. This would
imply

∏
v |α|v < 1, where the product is over all normalized valuations of

K. This contradicts the product formula since α 6= 0. Thus, |ψ1(α)| > 1
and also, from the inequalities (∗), we also see that we have the inequality
|a11| > 1.

Now suppose that g = 1. In this case, |H| = |G| (equivalently, m = n)
and so, there is just one place in K above the prime ∞ of k. Thus, all the
embeddings hψ1 are equivalent and, also, {h(γ) | h ∈ H} is a normal basis
for K̂ over k∞. Write ψ1(α) =

∑n
j=1 aj1hj(γ). We claim that |a11| > 1. If

not, then by (∗) we have |ψ1(α)| ≤ 1. Since α ∈ OK the absolute value of α
at all primes both finite and infinite is ≤ 1. Since α 6= 0 this is only possible
if α is a non-zero constant. This will lead to a contradiction. To see this
let’s change the notation sightly and write α =

∑
h∈H a(h)h(γ). Let h′ ∈ H

and apply h′ to both sides of this equation. Since α ∈ k ⊂ k∞, h′α = α
which implies

α =
∑
h∈H

a(h)h′h(γ) .

We have two expressions for α. Looking at the coefficient of e in both, we
find a(e) = a(h′−1). It follows that a(h) is constant on H. Thus, |a(e)| =
|a(h)| for all h ∈ H and |a(h)| ≤ q−1 for h 6= e. We deduce |ψ1(α)| < 1.
Since α is a non-zero constant it has absolute value 1 at all primes, but this
contradicts the fact that we have shown it has absolute value less than 1 at
the infinite prime. This concludes the proof that |a11| = |a(e)| > 1. Notice
that once again we must have |ψ1(α)| > 1.
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We have shown that |a11| > 1 and |ψ1(α)| > 1 in all cases. From now on
we make no restrictions on g, the number of infinite primes.

Now, let us consider once again the equation

(∗∗) hkψi(α) =
m∑
j=1

ajihkhj(γ) .

We claim that ψ1(α) 6= hkψi(α) except when i = 1 and k = 1 (we
continue to assume, as we can, that h1 = e).

Let us first take the case where i = 1. In equation (∗∗), take i = 1 and
k ≥ 2. The coefficient of hk(γ) in hkψ1(α) is seen to be a11 which has
absolute value > 1. The coefficient of hk(γ) in ψ1(α) has absolute value
< 1. Thus, ψ1(α) 6= hkψ1(α).

Now suppose that i ≥ 2. If ψ1(α) = hkψi(α) take the absolute value of
both sides. The left hand side has absolute value > 1 and the right hand
side has absolute value < 1, so, once again ψ1(α) 6= hkψi(α).

Finally, let’s revert to our alternate way of describing the embeddings of
K into ksep∞ , namely {ψ1 ◦σ | σ ∈ G = Gal(K/k)}. The translation of what
we have just proved is that ψ1(α) 6= ψ1(σα) for all e 6= σ ∈ G. Since ψ1 is
one to one, it follows that α 6= σα for all e 6= σ ∈ G. Thus, α generates K
over k.

It remains to show that if α ∈ OK satisfies the inequalities in (∗) there
are only finitely many equations of degree n of which it can be a root. To
see this, note that |hkψ1(α)| ≤ qn|det(Γ)|−g

√
|d| for every k from 1 to m

and similarly, |hkψi(α)| ≤ q−1 for i ≥ 2 and every k. Now, α is a root of
f(x) =

∏
σ∈G(x − σα). It follows that the coefficients of f(x), which are

in A, are bounded by constants which depend only on n and |d| and the
choice of K̂. There are only finitely many such polynomials for each choice
of K̂. By the local Hermite theorem, Proposition 5.2, there are only finitely
many choices for K̂, and it follows that there are only finitely many choices
for α. This completes the proof.

Remark 6.1. The proof seems to depend only on d which is the finite
component of dK/k. However, this is an illusion. We needed a bound on the
infinite component of dK/k in order to prove the local Hermite theorem,
Proposition 5.2.

Appendix A. Reduction to the Galois Case.
In this appendix it will be shown that to prove Theorem 1.2 it is suffi-

cient to consider Galois extensions of k. To prove this we will need several
facts about how the discriminant divisor behaves in towers, These facts
are undoubtedly well known, but we have not been able to locate a good
reference.



A Geometric Proof of Hermite’s Theorem in Function Fields 811

Suppose k is a global function field, i.e. a function field in one variable
with a finite field of constants F. Let K1 and K2 be two separable finite
extensions of k contained in a common algebraic closure. Let L = K1K2
denote the compositum of K1 and K2. For any separable finite extension
K of k let DK/k denote the different divisor of K over k.

Proposition A.1. DL/k ≤ DK1/k + DK2/k. (We use the conorm maps to
identify DK1 and DK2 with divisors of L.)

Proof. Since the assertion is local in nature we can reduce to the case where
k is complete with respect to a discrete rank one valuation and consequently,
so are K1, K2, and L.

It is a little more convenient to work with ideals at first. So, we let
O,O1, O2, and O3 be the valuation rings in the fields k,K1,K2 and L. Let
DKi/k represents the ideal different from Ki to k. We need to prove that
DK1/kDK2/k ⊆ DL/k, where the left hand side is contained in the right hand
side by extension of ideals.

The extensionK2 over k is separable and the residue class fields are finite.
Thus, by [6, Ch. III, Prop. 12], there is a θ ∈ OK2 such that OK2 = Ok[θ].
Let f(x) ∈ Ok[x] be the monic irreducible polynomial for θ over k. It is a
standard fact that DK2/k = (f ′(θ)). See [6, Cor. 3 to Prop. 11].

Now, since θ generates K2 over k it also generates L over K1. Let g(x)
be the monic irreducible for θ over K1. One has f(x) = g(x)h(x) where
g(x), h(x) ∈ OK1 [x]. Differentiate and substitute x = θ and we find f ′(θ) =
h(θ)g′(θ). Using [6, Cor. 1 to Prop. 11], one deduces that g′(θ) ∈ DL/K1 .
Thus

DK2/k = (f ′(θ)) ⊆ (g′(θ)) ⊆ DL/K1 .

Thus, DL/k = DL/K1DK1/k ⊇ DK2/kDK1/k. This establishes the proposi-
tion for ideals and it is a simple matter to translate this result back to the
language of divisors. �

Corollary A.2. Suppose K1,K2, . . . ,Kt be a set of t finite and separable
extensions of a global field k all contained in a common algebraic closure
of k. Let L = K1K2 . . .Kt. Then,

DL/k ≤ DK1/k +DK2/k + · · ·+DKt/k .

Proof. This follows by induction on t using the Proposition. �

We now specialize to the case where k = F(T ) is the rational function
field over a finite field. Let K/k satisfy the hypotheses of Theorem 1.2.
Let K = K1,K2, . . . ,Kt denote the conjugates of K/k inside an algebraic
closure of K. Then, L = K1K2 . . .Kt is the Galois closure of K over k. If
n = [K : k] it is a fact that [L : k] ≤ n!.
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Proposition A.3. As in Theorem 1.2, let K vary over separable and geo-
metric extensions of k for which degk dK/k ≤ B and [K : k] ≤ n. Then, the
Galois closures of these K vary over Galois extensions of L/k for which
degk dL/k ≤ n!B and [L : k] ≤ n!.

Proof. In the above Corollary to Proposition A.1 take the norm, NL/k of
both sides of the inequality presented there. The left hand side become
dL/k. On the right hand side, note that NL/kDKi/k = NKi/kNL/Ki

DKi/k =
[L : Ki]dKi . Since the Ki are all conjugates of K we have the equality
[L : Ki] = [L : K] for all i. Also, dKi/k = dK/k for all i. Substituting in the
above Corollary, we find

dL/k ≤ t[L : K]dK/k = [L : k]dK/k .
Thus, degk dL/k ≤ [L : k] degk dK/k. Since [K : k] ≤ n it follows that
[L : k] ≤ n!. Thus, degk dL/k ≤ n!B �

Before stating and proving the main result of this Appendix, we need
the following Lemma.

Lemma A.4. Let E/F be a finite extension of finite fields. Set k = F(T )
and k′ = E(T ). Suppose that A′ is a divisor of k′. Then, [E : F] degk′ A′ =
degkNk′/kA

′.

Proof. Both sides of the identity are linear in A′ so it suffices to prove the
Lemma for a prime divisor w of k′. Let v lie below w. Consider the residue
class field at w, Ow/Pw as an extension of F. There are two intermedi-
ate fields, E and Ov/Pv. Using the multiplicativity of indices in towers we
compute

[E : F] degk′ w = f(w/v) degk v = degk(Nk′/kw) .
This proves the Lemma for prime divisors and thus in general. �

Theorem A.5. Suppose Theorem 1.2 can be proven for all geometric, Ga-
lois extensions of k = F(T ). Then, Theorem 1.2 is true in general.

Proof. Suppose K is a separable and geometric extension of k with
[K : k] ≤ n and degk dK/k ≤ B .

Let L be the Galois closure of K over k. Our conclusion seems to follow
immediately from Proposition A.3. However, L/k is not, in general, a geo-
metric extension, so there remains some work to be done. Let E be the con-
stant field of L. Then, L is a geometric and Galois extension of k′ = E(T ).
Since [E : F] ≤ [L : k] ≤ n!, there are only finitely many possibilities for
E. Thus, it suffices to show that for each possible E there are only finitely
many possibilities for L as a geometric, Galois extension of k′. We do this
by showing there are bounds on [L : k′] and degk′ dL/k′ which depend only
on n and B. The first requirement is easy, since [L : k′] ≤ [L : k] ≤ n!.



A Geometric Proof of Hermite’s Theorem in Function Fields 813

To establish the required bound on dL/k′ we begin by noticing that L is
the compositum of the fields K ′i = EKi which are separable and geometric
extensions of k′. Following the proof of Proposition A.3, we derive the
following inequality

degk′ dL/k′ ≤ [L : k′] degk′ dK′/k′ .

Since we have assumed that degk dK/k ≤ B, we will finish the proof by
showing degk′ dK′/k′ = degk dK/k. We start by considering the extension
K ′/k with its two intermediate extensions K and k′. Using the formula for
the behavior of the different in towers, we find DK′/K +DK/k = DK′/k′ +
Dk′/k. Since constant field extensions are unramified, DK′/K and Dk′/k are
both trivial, so DK/k = DK′/k′ . Recall that DK/k is identified with a divisor
of K ′ via the conorm map. Now, take the norm NK′/k of both sides using
the behavior of the norm in towers, and we derive

[E : F]dK/k = Nk′/kdK′/k′ .

Finally, apply the lemma to the k′-divisor dK′/k′ and we find degk dK/k =
degk′ dK′/k′ , as asserted. �
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